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Abstract: The present paper shows the correspondence between the short-range size 
effect occurring in crack bridge and the long-range size effect observed on a 
textile reinforced concrete (TRC) tensile specimens. In the analysis of the 
effects we exploit the fact that the specimen acts as a chain of crack bridges in 
its failure state. The cracks are bridged by bundles consisting of several 
thousands of filaments that are embedded in a cementitious matrix. We include 
the effect of scatter of filament properties over the bundle cross section in a 
crack bridge and study its influence on the ultimate failure of the reinforced 
specimen.  
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1. INTRODUCTION 

The crucial aspect in determining the ultimate load carrying capacity of 
textile reinforced concrete (TRC) specimens is a correct description of the 
hot-spots of strain and damage, e.g. of the crack bridges. In the final stages 
of the tensile loading with a finished crack pattern the specimen may be 
viewed as a chain of crack bridges with its strength governed by the 
"weakest-link" concept. The experimental results on tensile TRC specimens 
show a significant loss of bundle efficiency that are usually ascribed to 
damage or low penetration of the bundle by the matrix combined with 
insufficient anchorage in the boundary layers (Hegger et al., 2005). This 
paper contributes to the discussions about the reasons for the strength 
reduction by studying the weakest link effect in a chain of crack bridges with 
scatter of strength. 
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The chained crack bridges are realized by multi-filament bundles 

exhibiting a considerable scatter of strength due to a highly heterogeneous 
nature of the material structure in the yarn, in the bond layer and in the 
cementitious matrix. As documented in Chudoba et al. (2005) on 
experimental and numerical studies, these sources of randomness can lead to 
a substantial reduction of the bundle strength especially for extremely short 
nominal lengths occurring in a case of a crack bridge. Therefore, the 
evaluation of the impact of varying material properties of bridges in a serial 
ordering on the global strength is inevitable. 

In order to demonstrate the correspondence between the statistics of the 
global response and the local scatter in the crack bridge we first review the 
weakest link concept in Sec. 2. The simple modeling framework allows us to 
study the change of the ultimate strength with an increasing number of 
cracks N for different levels of scatter of local filament properties in the 
crack bridges. In Sec. 3 we use an analytical strain based fiber bundle model 
to evaluate the probability density function of a single crack bridge strength. 
Another example in this section uses a more sophisticated model including 
the debonding effect. Both examples document the general applicability of 
the procedure for evaluating the chain effect in a TRC loaded in tension. 

2. GENERAL DETERMINATION OF TRC 
STRENGTH STATISTICS 

As documented in Fig. 1 the tensile specimen exhibits very fine crack 
pattern. Obviously, the ultimate failure is governed by the weakest-link 
statistics. Therefore, the survival probability of the chain with N cracks may 
be obtained as a product of survival probabilities of the individual cracks: 

( ), ,11 1
N

f N fP P− = −  (1) 

where ( ),1 1fP F σ≡  represents the failure probability of a single crack 
bridge (cumulative strength distribution). The load level σ for a given 
number of crack bridges N and probability of failure ,f NP  can be computed 
with the inverse cumulative strength distribution function of a crack bridge: 

( )1
1 ,1 1N

f NF Pσ −= − −  (2) 
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Figure 1. Crack pattern of a failed tensile specimen reductions by studying the weakest link 
effect in a chain of crack bridges with scatter of strength. 

In case of normally distributed strength of a crack bridge (short filament 
bundle) the load level of a chain of bridges with failure probability ,f NP  
reads simply: 

( )1
,1 1N

f NPσ −= Φ − −  (3) 

This formula provides a general procedure for estimating the strength 
statistics of TRC with N crack bridges, each with the failure probability 
distribution ( ),1 1fP F σ≡ . This distribution is obtained using the statistical 
strain-based bundle model (Phoenix and Taylor 1973) as follows 
1. Given a single-filament response function (constitutive law) ( );q e θ  as a 

function of strain e  and a vector of random (or deterministic) quantities 
θwith their corresponding distribution functions ( ),i iGθ θ  compute the 
mean response of a filament within the bundle (normalized bundle force) 
as a k-fold integral over k-number of nondeterministic variables of the 
model ( );q e θ : 

( ) ( ) ( ); ; de q e Gµ = ∫θ θ
θ

θ θ θ  (4) 

2. Find the local maximum of the mean response (bundle strain *e e=  at 
which the maximum force is attained). This can be done either by 
seeking the stationary point of ( );eµθ θ  in case of analytical expression, 
see examples in Chudoba et al. (2005) and Vořechovský & Chudoba 
(2005) or numerically by seeking the peak force value. 
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3. Evaluate the mean bundle response function at bundle strain *e e=  to 

get the mean bundle strength: ( )* *eθ θµ µ=  and compute the bundle 
strength variance as: 

( ) ( ) ( )
2* * * * *, ; de e q e Gθ θ µ Γ = Γ = − ∫ θ θ

θ

θ θ  (5) 

4. Estimate the whole cumulative density function ,1fP . In most cases it 
suffices to consider Gaussian distribution for the “middle” part (core) 
(0.1 to 0.9 percentiles) so that the probability of failure at a given load 
level σ reads: 

( ) ( )
*

,1 1 *fP F θ

θ

σ µ
σ σ

 − ≡ = Φ
 Γ 

 (6) 

where ( )Φ •  = standard Gaussian cumulative distribution function. 
Note that the distribution (of bundle strength ,1fP ) can be estimated 

numerically by means of Monte Carlo simulation. One can evaluate the 
bundle response simN  times and save the peak forces (of all simulations). 
Then the CDF of bundle strength can be estimated by an empirical 
cumulative histogram of the peak sample.  

3. EXAMPLES FOR SELECTED CRACK BRIDGE 
MODELS IN A CHAIN 

In order to demonstrate the procedure and the significance of the size 
effect in a TRC specimen we now provide two examples of a crack bridge 
model with the response function represented both analytically and 
numerically. 

Example 1. Bundle model with perfect clamping: The scatter of 
filament stiffness parameters leads to a reduced strength of a bundle with a 
very short length. In a crack bridge the strength reduction is in particular 
caused by the scatter of filament lengths and their delayed activation (slack). 
Besides that, the scatter of filament strength across the bundle leads to a 
further reduction of the bundle strength (Smith and Phoenix 1981). In order 
to demonstrate the effect on an example we consider a crack bridge with a 
scatter of filament lengths. In particular, we introduce the relative difference 
of the filament length with respect to the nominal length as ( ) /il l lλ = −  
with a uniform distribution, i.e. ( ) max/Gλ λ λ λ=  where max0 λ λ≤ ≤ . The 
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other parameters of the filament, i.e. Young's modulus E, area A and 
breaking strain ξ  are considered constant. For the chosen distribution, it is 
possible to derive analytical formulas for the bundle mean strength and its 
variance (see Chudoba et al. 2005) at a given control strain e  as 

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

max max

max

max

; ; d

ln 1 / 0 linear
ln 1 ln /

nonlinear

e q e G

EAe e
e

EAe e

λ λ
λ

µ λ λ λ

λ λ ξ
λ ξ

ξ
λ

=

 + ≤ ≤
= + −

>


∫

 (7) 

The calculated normalized mean load strain diagrams are exemplified in 
Fig. 2 for several levels of scatter represented by maxλ . Obviously, the crack 
bridge strength/efficiency rapidly decreases with an increasing maxλ . 

In the derivation of the crack bridge strength distribution we shall exploit 
the fact that the maximum mean bundle strength is attained at the global 
strain *e ξ=  for the uniform distributions with max 1.71λ ≤  and has the 
simple form: 

( ) ( ) ( )

( )

* *

max max

; d

ln 1 /

e q e G

EA

λ λ
λ

µ λ λ

ξ λ λ

=

= +

∫
 (8) 

The corresponding variance (see Phoenix and Taylor 1973) is obtained as 

 

( ) ( ) ( )

( ) ( )

2* * *

2
2 max

2
max max

; d

ln 11
1

q e e G

EA

λ λ λ
λ

λ µ λ

λ
ξ

λ λ

 Γ = − 

 +
= − + 

∫
 (9) 

With reference to the central limit theorem we can expect the 
convergence of the crack bridge strength distribution to the normal 
distribution, see Eq. 6. The verification of the convergence to the Gaussian 
distribution has been done by Monte Carlo simulation in connection with the 
deterministic bundle model described in Chudoba et al. (2005). 

With the crack strength distribution at hand we can approach to the 
quantification of the chain statistics. Using Eq. (3) we quantify the 
interaction of the short-range size effect due to a local scatter ( )maxλ  with the 
chaining of crack bridges in a tensile specimen. In Fig. 4 we plot the crack 
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bridge efficiency (reduction of strength with respect to a perfect crack 
bridge) for the failure probability ,f NP  = 0.5 (median) and the levels of the 
scatter parameter maxλ  studied previously in Fig. 2. 
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Figure 2. Mean force-strain diagrams of one crack bridge with uniform distribution of 
additional fiber length λ ∈ (0, λ max). λ max= a) 0.0, b) 0.25, c)0.5, d) 0.75, e)1.0, f) 1.25  

and g) 1.5 plotted with a scatterband (mean ± standard deviation). 
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Figure 3. Mean force-strain diagrams ± one standard deviation of one crack bridge with 
debonding model and with uniform distribution of additional fiber length λ ∈(0, λ max). 

λ max = a) 0.0, b) 1.5. 

Example 2. Bundle model with debonging: The procedure for 
evaluating the total strength described in Sec. 2 can be used with more 
complex idealizations of a crack bridge taking into account further failure 
and damage mechanisms. In addition to filament rupture considered in the 
previous model we now include the influence of debonding between 
filament and matrix. The response function ( );q e θ  is represented by a finite 
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element idealization of the shear lag with a cohesive interface between the 
filament and matrix. In order to evaluate the integrals (Eqs. 7 and 8) a 
general numerical integration tool has been implemented to obtain the 
statistical characteristics of a crack bridge strength (Konrad et al., 2006). We 
remark that the crack bridge model provides the possibility to study the 
impact of the variability in any of the model parameter(s) on the statistics of 
the overall bundle response (load displacement diagram), not only on the 
length that is used in this paper. 
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Figure 4. Median chain strength for varying number of cracks and scatter λ max ( ,f NP  = 0.5) 

With ( )Gλ λ  defined as in the example 1, we now include the debonding 
of a filament from the matrix as an additional effect. Again we keep all other 
parameters including the interface characteristics, constant. The resulting 
load-displacement diagram displayed in Fig. 3b for max 1.5λ =  shows a 
significantly higher mean crack bridge strength (1008 N, see Fig. 3b) than in 
the case of a perfect bond (648 N, see Fig. 2g). The reason for such an 
increased strength is the homogenizing effect of the debonding causing a 
more uniform stress distribution across the bundle (more filaments can act 
simultaneously before they break). We also note that there is no significant 
reduction in the scatter of strength: 173.99 N for perfect bond and 145.08 N 
with included debonding. 

The performance of a chain of crack bridges with and without debonding 
is compared for max 1.5λ =  in the semi-logarithmic plot in Fig. 4. Due to a 
similar amount of scatter, the slope of the two size-effect curves is almost 
the same. In other words, while the local debonding improves the mean 
strength by introducing stress redistribution during the failure process, the 
decay of strength with the increasing number of cracks remains almost the 
same. The size effect curve is simply shifted upwards. 
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4. CONCLUSIONS 

The paper shows the correspondence between local scatter in a crack 
bridge of a textile-reinforced tensile specimen and the resulting reduction of 
the specimen tensile strength. The presented approach provides a rough 
estimation and explanation of the strength reduction of tensile specimens 
with dry yarn reinforcement with a high amount of imperfections in the 
bundle structure and in its bond to the cementitious matrix. If we consider a 
usual range of lengths of tensile structural elements of order of magnitude 1-
6 m and average crack distance of 0.01-0.02 m, the realistic range of N is 50-
600. As demonstrated by the two examples, the local scatter in a crack 
bridge significantly affects the load bearing capacity of textile reinforced 
specimens and, thus, the statistical size-effect resulting from the weakest link 
failure must be an inherent part of dimensioning rules for the discussed type 
of composite. While the size effect was demonstrated with a single source of 
randomness, in reality the crack bridge exhibits several mutually interacting 
sources of randomness that have been deliberately disregarded here. 
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