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ABSTRACT 
 

We study well published results on direct tensile tests of dog-bone specimens with rotating boundary conditions performed by 
van Vliet and van Mier. There are several papers presenting the experimental results and naming various sources 
of experimentally observed size effect on nominal strength. We model the experiments by methods stochastic nonlinear 
fracture mechanics attempting at capturing the size effects.  
We first model the specimens by microplane material law to show that a large portion of the dependence of nominal strength 
can be explained deterministically. However, it is clear that more sources of size effect take part and we consider two of them. 
Namely, we model the local material strength by an autocorrelated random field attempting at capturing statistical part of the 
complex size effect, scatter inclusive. A noticeable fact already shown by Vořechovský [1,2] and [3] is that such an approach 
has the large size asymptotic behavior coinciding with the classical Weibull power law while the small size asymptote deviates 
strongly from the Weibull size effect. The strength drop of the smallest specimen reported in experiments is explained by weak 
surface layer of constant thickness (caused e.g. by drying, surface damage, aggregate size limitation at the boundary or other 
irregularities). All three named sources are believed to be the most contributing sources of the observed strength size effect 
and the model combining all of them is capable of reproducing the measured data. The computational approach represents a 
marriage of advanced computational nonlinear fracture mechanics with simulation techniques for random fields representing 
spatially varying material properties [4]. Using the numerical example we document how different sources of size effect on 
strength can interact and result in relatively complex processes in quasibrittle failure. The presented study documents the well 
known fact that an experimental determination of material parameters (needed for rational and safe design of structures) is 
very difficult for quasibrittle material such as concrete. 
 

Introduction 
 
The paper studies well published results of direct tensile tests on dog-bone specimens with rotating boundary conditions with 
varying size (range 1:32) performed by van Vliet and van Mier [5,6,7,8,9,10]. In particular we are interested in the series of dry 
concrete specimens A to F (dimension D varying from 50 to 1600 mm, see Fig. 1); a series accompanied by verification tensile 
splitting tests. The paper attempts at explaining of the complex size effect on mean and variance of nominal strength by 
combination of random field simulation of local material properties, “weak boundary“ effects and a nonlinear fracture 
mechanics software based on a cohesive crack model. There has been spent much effort on different explanations of 
experimentally obtained size effect on strength from several different points of view. Firstly, the effect of a non-uniform 
distribution of strains in the smallest cross-section was studied with simple linear constitutive law [6,7] and a separation of 
structural and material size effects was discussed. The results were also compared to the Weibull theory [11] based on the 
weakest-link model which was found to fit the mean nominal strength of sizes B to F [5,6,7,8,9]. Unfortunately, the slope of 
mean size effect curve corresponds to Weibull modulus of 6 which does not coincide with the measured scatter of strengths at 
each size. However, this is required in Weibull type of size effect. Secondly, the effect of Gaussian stress fluctuation with non-
uniform loading was studied by Dyskin et al. [10] and the developed model employing a limiting distribution of independent 
Gaussian variables with linear trend agrees with the data very well. Van Mier and van Vliet also compared the data to “Delft 
lattice model” using a simple local elastic-brittle material with regular and random lattices with good results. The statistical part 
of experimentally obtained size effect has been recently modeled in [12] by Weibull distribution of strength.  
In this paper, the authors firstly try to explain the mean size effect curve by deterministic effects (not assuming the local 
material strength random). It partly explains the decreasing slope of the mean size effect curve (MSEC) in double-logarithmic 
plot (nominal strength versus characteristic size). However, the strong decrease of the mean strength of the smallest specimen 
A is believed to be sufficiently captured by modeled weak surface layer of thickness of about 2 mm. A parametric study of the 
influence of a “weak layer” thickness and the percentage reduction of the layer strength compared to the bulk strength will be 
presented with regard to resulting MSEC. Next, the authors approximate the local material strength by an autocorrelated 
random field attempting at capturing the whole size effect, scatter inclusive and combine all sources together. 
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Figure 1. Dog-bone specimens tested by van Vliet and van Mier: series A to F, 2D model in software ATENA 

Experiment 

The experiments are well documented in [5,6,7,8,9,10]. We will briefly mention only those necessary data needed to explain 
the modeling part, all other details can be found in the cited publications. Dog-bone shaped specimens were loaded in uniaxial 
tension with scaled geometrically eccentricity from the vertical axis of symmetry e=D/50 [mm]. The loading platens were 
allowed to rotate freely in all directions around the loading point at the top and bottom concrete face. The loading platens were 
glued to concrete. Six different sizes were tested, all beams were geometrically similar. The beam thickness was kept constant 
(100 mm) implying transition from plane strain like conditions at the smallest size to plane stress conditions for the large sizes. 
The concrete mixture was reported to have an average cube compressive strength of 50 MPa and maximum aggregate size 
dmax = 8 mm. 

Tab. 1. Experimental data. Specimens’ dimensions, nominal strengths and sample size. 

Type A B C D E F 

D [mm] 50 100 200 400 800 1600 

r = 0.725 D [mm] 36.25 72.5 145 290 580 1160 

Average σN [MPa] (std. dev. of σN) 2.54 (0.41) 2.97 (0.19) 2.75 (0.21) 2.30 (0.09) 2.07 (0.12) 1.86 (0.16)

No. of specimens tested 10 4 7 5 4 4 

 
For comparison purposes, it is necessary to define nominal strength. Since the eccentricity of loading points has been 
geometrically scaled in both experiments and numerical model, we can neglect its effect and define the nominal stress σ 
simply as a function of characteristic dimension D (maximum specimen width), instantaneous tensile force F applied at 
concrete faces on the eccentricity e and cross sectional area in the middle of the specimen A (=0.6 Db) 

 σ = =
1

0.06
F F
A D

 (1) 

Having defined the nominal stress, we define the nominal strength σN as the nominal stress attained at maximum loading force 
(σN =Fmax/A). 

Deterministic model 

A strong contribution to non-uniformity of the nominal strength is the “energetic-deterministic” size effect caused by 
approximately constant fracture process zone (FPZ) size with stress redistribution in beams of all sizes; see e.g. Bažant and 
Planas [13]. This effect can be modeled e.g. by finite element method if the fracture energy and the whole shape of pre- and 
postpeak behavior is correctly introduced. We created the deterministic model in software package ATENA [14], using the 
Bažant’s microplane material model (version 4) and crack band model [15] as a regularization. We neglected the transition 
from plain strain to plane stress conditions with growing beam size and model the whole series of sizes with plane stress 
model. Based on the information about the average cube compressive strength of 50 MPa ATENA generated a set of 
consistent microplane parameters: K1=1.5644E-04, K2=500, K3=15, K4=150, crack band cb = 30 mm, number of microplanes 
21. We changed the crack band to 8 mm, a value which better matches the experimental data, see Fig. 1 left. The crack band 
size is related to fracture energy of material and controls the size at which the transition from ductile to elastic-brittle failure 
happens. A noticeable fact is that in the size effect plot the curve can be shifted right or left as a rigid body just by changing cb. 



More specifically, the deterministic nominal strength ( )σ det ,N bD c  computed for a certain size D using a value cb is also the 
nominal strength of size k D computed with crack band width k cb: 

 ( ) ( )σ σ∀ > = ⋅ ⋅det detfor 0 : , ,N b N bk D c k D k c  (2) 
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Figure 2. Left: size effect plot for experimental data, deterministic and weak layer computations. Right: computational model 

with weak layer. 

Weak boundary 

A parametric study on this effect has been performed to illustrate what is the effect of (i) the weakened layer thickness and (ii) 
reduction of the material strength in that layer. In Fig. 2 we plot six size effect curves computed with deterministic model 
equipped with a layer of weakened material on both curved edges of the specimen (see the illustration on the right). In 
particular, we selected three thicknesses tw (0.5, 2 and 8 mm) and for each thickness we considered two different reduction 
factors of material strength parameter rt (0.5 and 0.9). In the figure, for each layer thickness the two curves are plotted and the 
space between them is filled with gray color (the upper always corresponds to reduction of 0.9 and the lower one to reduction 
of 0.5). It can be seen that the nominal strength reduction decays as the layer thickness becomes negligible compared to 
specimen dimension D. Moreover, the ratio between the reduced strength and deterministic nominal strength can be roughly 
used as a strength reduction coefficient for any ratio tw /D. This reveals simple scaling rule written for an arbitrary positive 
multiplier k as the reduction factor rσ of specimen strength due to weak strip compared to deterministic strength with no strip: 

 ( )
( )

( )
( )σ σ

σ σ
σ σ

⋅ ⋅  = ≅ ∈  ⋅  det det

, ,
; ;1N w N ww

t
N N

D t k D k ttr r r
D D k D

, (3) 

where ( )σ det
N D  = deterministic strength for size D 

 ( )σ ,N wD t  = deterministic strength for size D with weak layer thickness wt  
 rt = reduction factor for material strength within the weak layer ∈ 0;1tr  
Best results are obtained with tw = 2 mm and reduction coefficient rt = 0.5. The thickness roughly corresponds to the frequent 
largest aggregate size at boundary (particle size certainly decreases as we approach the specimen boundary). As can be seen 
from the figure, we are able to partly fit the drastic strength reduction of specimens where the thickness tw is not negligible 
compared to specimen neck thickness of 0.6 D. The deterministic size effect (transition from plastic to elastic strength) is 
automatically included in the computation because we use the same material model and parameters. However, the most 
important effect of strength reduction for large specimens can not be modeled by the two effects studied so far. Neither we are 
able to model the strength scatter because there has been no randomness considered in the model yet. 

Stochastic model 

We believe that the strong size effect on strength in the experimental data is predominantly caused by spatial 
variability/randomness of local material strength. Therefore, we considered the strength related parameter in microplane model 
denoted K1 in ATENA random and performed Monte Carlo type simulations for each size of a specimen. In particular, we 
sampled 64 realizations of random field of parameter K1 for each size and computed the responses (complete load-
displacement diagrams, stress fields, crack patters, etc.). We numerically tested that parameter K1 has approximately linear 
relation to structural strength in a wide range around the mean value used in deterministic model. The reason for sampling the 
local material strength by random field instead of independent random variables is that we believe that in reality the strength of 
any two close locations must be strongly related (correlated) and such a relation can be suitably modeled by an autocorrelated 



random field. We assumed the distribution of local strength in each material point identical and Weibull distributed. The local 
probability of failure pf (cumulative distribution function Fσ) depending on stress level σ reads: 

 ( )σ
σσ
σ

  
 = = − −  
   0

1 exp
m

fp F , (4) 

where σ0 = scale parameter of Weibull distribution [MPa], Value 1.6621E-4 used for K1  
 m = shape parameter of Weibull distribution (dimensionless, depends solely on 

cov = coefficient of variation). Value of 7.91 used for random K1. 
 
To obtain results consistent with previous deterministic analysis we kept the value of parameter K1 as the mean value. The 
second parameter of Weibull distribution has been set with regard to the cov of nominal strength of the smallest sample (in 
experiments cov of the size A was 0.16). This choice is supported by the fact that size A has the largest sample size (10 
replications, see Tab. 1). Therefore the estimation of variance has higher statistical significance than for other sizes. Moreover, 
we believe that the effect of weakened boundary only reduces the mean nominal strength but does not influence the scatter of 
strengths. For simplicity we used the value of cov=0.15 (15% variability of local material strength). This is relatively high value 
implying relatively low Weibull modulus mentioned above.  
Discretized random field is a set of autocorrelated random variables. The most important parameter (apart from autocorrelation 
function) is the autocorrelation length controlling the distance over which the random material strengths are correlated. We 
used the squared exponential autocorrelation function:  

   
 = −  
   

2

exp
r

dR
l

, (5) 

where d = distance of two points  
 lr = correlation length, Value of 80 mm used for random field for K1 
 
It can be shown that for specimens much smaller than one autocorrelation length the realization of random field of the local 
strength K1 is a constant function over the whole region and all local strengths of the whole specimen can be represented by 
just one random variable (instead of number of spatially correlated variables). Since the specimen’s nominal strength is just a 
simple transformation of input strength parameter K1 (no spatial variability allowing cracks to localize in other location than in 
deterministic analysis), we knew that the mean nominal strength of the smallest specimen will be the same as that obtained by 
deterministic analysis. That is why we used the K1 from deterministic analysis as the mean value of random field of K1.  
 
The samples of random fields evaluated in locations of integration points were simulated by methods described in [4,2,16]. The 
simulated random fields are stationary, isotropic and homogeneous. Briefly, the orthogonal transformation of covariance matrix 
has been used in combination with Latin Hypercube Sampling of the random part of field expansion. Such a combination 
proved itself to be very effective in providing samples of random fields leading to high accuracy in estimated response 
statistics compared to classical Monte Carlo sampling. Numerical studies documenting this efficiency are published in [4,2,16]. 
This is extremely important property in cases when evaluation of each one response is very time consuming. In our case the 
evaluation is represented by one computation of response by nonlinear finite element method with microplane material model. 
Clearly this is very expensive and we must keep the number of simulations as low as possible. The number of 64 simulations 
was tested to be high enough and enabling stable and accurate statistical estimates of field’s statistics (averages, sample 
standard deviations, autocorrelation structure) as well as reproducible estimates of statistics of structural response (nominal 
strength etc.). 
 
The automatic simulation of all structural responses was done by software SARA integrating (i) ATENA software (evaluation of 
response) on one side and (ii) FREET software [2,17,18] (simulation of samples of random parameters, statistical assessment) 
on the other side.  
 
In Fig. 3 we plot computed sets of load-displacement diagrams and sketch the definition of displacement (separation of two 
measuring points). Selected load displacement curves are highlighted and the corresponding realizations of random strength 
fields are plotted in Fig. 4. The letter denotes specimen size and the integer denotes number of simulation. Besides the most 
frequent simple load-displacement functions we purposely highlighted several curves with unusual shape (snap-back type or 
“a loop”). In routine practice of testing concrete structures such special shapes can be experimentally measured just 
occasionally. As discussed later, in our case some unusual of unexpected curves are obtained partly thanks to the definition of 
displacement ∆u and mainly thanks to the spatial randomness with high variability. The comparison of peak strength of 
deterministic load-displacement diagram with mean value of nominal strength can be made in Fig. 3. The difference between 
them grows with specimen size. While for size C the mean strength nearly coincides with the peak of deterministic diagram, for 
specimen size E the deterministic curve is above all 64 random realizations of the diagram, see Fig. 3.  



In Fig. 4 we plot chosen realizations of random strength field for all sizes A – F. It can be seen that as the ratio of 
autocorrelation length and specimen size D decreases, the rate of spatial fluctuation of random field realizations grows. 
Therefore there is increasing number of locations with low material strength (locations prone to failure). Or, in other words, with 
increasing specimen size there is an increased probability that there will be a weak spot in highly stressed regions. This effect 
is long referred to as the statistical size effect. The classical statistical size effect is modeled by the simple weakest link model 
and usually approximated by Weibull power law [11]. However, as explained in [1,2,3], the classical Weibull model is not able 
to account for spatial correlation between local material strengths. Rather, Weibull model is based on IID (identically distributed 
independent distributions) random variables linked in series. The effect of such a consideration is that the strength of infinitely 
small specimen is infinite. In Weibull model every structure is equivalent to a chain under uniaxial tension, a chain of 
independent members having identical statistical distribution of stress. If the local strength is modeled by an autocorrelated 
random field (and we consider the autocorrelation length to be a material property), the small size asymptote of strength is 
equivalent to the distribution of local material strength. On the other hand, the large size asymptotics is exactly identical to that 
of the Weibull model [1,2,3] (for a proper choice of reference length and the corresponding scale parameter of Weibull 
distribution in Weibull model). The autocorrelation length plays an important role of statistical scaling length in material 
controlling the transition from one strength random variable model (full correlation in small structures) to many independent 
local strengths (large structures, Weibull model). 
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Figure 3. Load-displacement diagrams (64 realizations) of structural sizes C, D, E and F. Selected diagrams are highlighted. 

Crack patterns of two randomly chosen specimens A 22 and B 14 (see Fig. 4) show the most frequent location of strain 
localization. The small eccentricity of load and relatively narrow neck of dog bone specimen nearly guarantee that cracking will 
initiate on the right side of the neck. Samples of random fields in both cases (A, B) are nearly constant functions and therefore 
there is no space left for the weakest link principle. Pattern C 22 in the same figure documents that the local strength can be in 
some location so small that the relatively low stresses in that location can initiate fracturing. In specimen 22 the rotation of 
platens was opposite to the usual direction. Since the damage localized out of the distance on which we measured the 
displacement ∆u the corresponding L-D diagram in Fig. 3 has the snap-back like shape. The same is true also for C 51 
whereas C 34 and C 55 are again just typical representatives of L-D diagrams and crack patterns. Similar features can be 
found in series D. Positions of cracking in D 3 and D 22 caused the snap back while D 27, D 44, D 47 and D 55 illustrate the 
random sampling of crack initiation leading to usual shape of L-D diagram displayed on our virtual testing machine. 
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Figure 4. Simulated random strength field realizations and corresponding crack patters in deformed specimens. Field 

simulated and crack widths computed in integration points. 

Very interesting are diagrams E 15 and E 18. The “loops” in Fig. 3 are the results of an unfortunate case of cracking close to 
points of measured displacement. It can happen that at some point of loading the lower measuring point can start moving 



faster than the upper point and this result in bizarre shape of L-D diagram E 15. A specimen can later start cracking in the neck 
as occurred in the case of E 18. In series F the autocorrelation length becomes so small compared to specimen dimension that 
again cracks initiates on the right side of the neck nearly in all cases, see Figs. 3 and 4. In series A we never reported snap-
back like curve due to cracking outside the measuring distance and in B and F this happened once only, see Fig. 3. We can 
conclude that the most interesting processes happen in specimens with dimension comparable to one or two correlation 
lengths (region of transition from one random strength variable to a set in independent strength variables). 

We note that in contrast to the experiments, we did not control loading by the displacement increments ∆u. Instead, we loaded 
the beams by displacement at the ends and therefore we were able to monitor snap-back type of curves without any difficulty. 
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Figure 5. Left: Estimated distribution of nominal strength of specimens with Weibull random field of K1. Best fits by Weibull 

distribution (Eq. 4). Right: Computed field of principal tension over the specimen in an elastic stress state 

We were able to simulate random specimen responses of specimens smaller than A with random fields of K1, moreover we 
could simply use a random variable sampling to represent randomness in that small specimens. On the other hand, it becomes 
very problematic to simulate samples of random fields of specimens much larger than F. Even though the first author is deeply 
involved in techniques to overcome the computational difficulties with stochastic finite element computation of large structures 
[19] we will present another technique here. Fortunately, only strength is random in our analysis and we can use the classical 
Weibull integral for large structures. As explained in [1,2,3] if the structure is sufficiently large, the spatial correlation of local 
strengths becomes unimportant and the Weibull integral yields solution equivalent to full stochastic finite element simulation. 
We will briefly sketch the computational procedure of evaluating the Weibull integral for structural failure probability, details can 
be found e.g. in [13]. The Weibull integral has the form: 

 ( ) ( ) ( )σ σ − − =  ∫ 0ln 1 ; , df
V

P c m Vx x  (6) 

where Pf = probability (the cumulative probability density) of failure load of structure 
 [ ]•c  = stress concentration function 
There are several possible definitions of the stress concentration function, see [13]. In the studied specimens the major 
contributor to the stress tensor is the normal stress σyy. The field of stress σyy nearly coincides with the principal tension σI. 
Since only tensile stresses are assumed to cause a failure, we defined the stress concentration function simply as: 

 ( ) ( )σ
σ σ

σ
  = 0

0 0

1; ,
m

Ic m
V

x
x  (7) 

where V0 = reference volume associated with m and σ0 
 
In Fig. 5 right we plot computed field of principal tension over the specimen in an elastic stress state. Numerical integration of 
this stress field for different specimen sizes and failure probabilities can be suitably rewritten in dimensionless coordinates so 
that the computation becomes extremely easy. Resulting mean size effect is plotted in Fig. 6 (asymptotic mean size effect 
curve). Let us also mention that another way of simulating the random strength of large structures can be done utilizing the 
stability postulate of extreme values [20]. Such a computational procedure is an elegant trick using the recursive property of 
distribution function and is described in [21,22] together with applications. Results of such an approach (and also Weibull 
integral as presented here) are valid only for extremely large sizes where effects of structural nonlinearity (caused stress 
redistribution) disappear. For small sizes there are two problems: (i) spatial correlation of local strengths and (ii) effect of stress 
redistribution. The result must be a straight line in double logarithmic plot of size versus strength (size effect plot is a power 
law). An approach based on simple scaling of Weibull random variables associated with structural regions of different sizes 



has been used in [12]. Authors simply used the scaling rules only for sizes larger that size C and this helped them to obtain 
close fit of experimental data. Unfortunately, the numerical model used did not allow platens to rotate freely and did not model 
the eccentricity of loading force which both, in our view can negatively affect the results of response statistics. By prescribing 
both platens to move without rotation one forces the specimen to fracture differently than if platens can rotate freely. This 
becomes extremely important if the local strength gets randomized spatially. 

Analysis of the Results 

By introducing three different scaling lengths we are able to independently incorporate three different effects in the model 
resulting in three size effects on nominal strength. The crack band width cb (deterministic scaling length) controls at which size 
the transition from ductile to elastic-brittle behavior happens and therefore it controls the transition between two horizontal 
asymptotes in the size effect plot (see Fig. 2). The second introduced length (weak boundary thickness tw) together with the 
material strength reduction controls at which size there will be a significant reduction of nominal strength. The reduction gets 
amplified with decreasing specimen size and causes opposite slope of size effect than the deterministic and statistical ones 
(see Fig. 2). The last introduced length is the autocorrelation length lr controlling the transition from randomness caused by 
overall material strength scatter (one random variable for material strength) to a set of independent identically distributed 
random variables of local material strengths via autocorrelated random field. In other words it controls the convergence to 
Weibull statistical size effect based in the weakest link principle. Such interplay of three independent material/structural lengths 
is very complex. It would be nearly impossible to determine all these parameters from the available experimental data even if 
the model featuring the three effects was perfectly correct. 

In Fig. 5 left we plot the estimated distribution function of nominal strength for all tested sizes as we obtained them from the full 
stochastic finite element analysis with parameter K1 modeled by random field. The table above the graphs presents the 
parameters of Weibull distribution that best fit the empirical histograms. For some reason it happened that the Weibull modulus 
increases for sizes E and F even if the slope of corresponding size effect curve in Fig. 6 suggests again the value 7.91 (the 
value we that expect and that follows from simple Weibull size effect of elastic-brittle structure). The deviations may be caused 
by numerical errors; especially insufficient discretization of random field with respect to the autocorrelation length. The 
variability is not captured sufficiently by the density of integration points because we did not increase the mesh density for 
models of large specimens. Rather, we kept the same number of finite elements for all sizes in order to save computational 
time. 
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Figure 6. Comparison of results in size effect plot.  

The resulting nominal strengths for all sizes obtained by nonlinear stochastic FEM are plotted and compared to experiments in 
Fig. 6. We see that starting from size C the size dependence on mean nominal strength is predominantly statistical and we 
were not able to model it by deterministic model alone, see e.g. [23]. We also included mean nominal strengths for sizes F, H 
and J obtained by Weibull integral (Eqs. 6 and 7). Weibull solution is a straight line and represent he asymptotic size effect of 



structures caused solely by spatial strength randomness. Above the plots we sketch the size regions for different 
computational techniques used for modeling of random strength. 
The very thick curve in Fig. 6 (denoted as 3) is the curve resulting from combination of all three effects described here. The 
curve has been obtained by applying the dimensionless reduction factor rσ due to weak strip on results obtained by nonlinear 
stochastic FEM (layer thickness tw = 2 mm, reduction rt = 0.5). This was a simple solution to estimate the final results of model 
featuring all effects. Unfortunately this simple approach is not correct because it applies reduction of weak layer to final mean 
of all results of simulation with random fields. Generally this can not be done because the sources of size effect interact. To get 
consistent result, on should model the local strengths by random field and apply the reduction in the layer to each realization of 
a field). This would help the specimens to initiate crack in surface layer more often. However, the full set of time consuming 
simulations would be necessary. One can immediately see that the strength of size A is not reproduced correctly (even though 
the scatter is). We believe that partly this can be improved by considering the plane strain conditions and most importantly the 
fact that the thickens (0.1 m) is larger than the width of the beam and in 3D model the crack would often initiate from front or 
back surfaces of the specimen (see illustration in Fig. 1 left). This effect certainly results in decreased strength of specimen A.  
In our study the correlation length lr has been set to a value nearly equal to the thickness of a specimen. At this length the 
variation of local strength is just becoming significant and may distort results of very small specimens. The authors of 
experiments also reported that due to casting of the beams the front layers have different material properties than to back 
layers. We model these effects in 3D models, but the results are beyond the scope of this paper and 3D effects are neglected 
in this study [24].  

Conclusions 
 

The performed numerical simulations of random responses of tensile tests with dog-bone specimens with rotating boundary 
conditions performed by van Vliet and van Mier are in good agreement with the published data. Based on comparison of 
trends of nominal strength dependency on structural size we conclude that the numerical model featuring several scaling 
lengths is capable of capturing the most important mechanism of failure. In particular, we have shown that a portion of the 
experimentally obtained size effect can be captured at deterministic level with the help of deterministic length represented by 
crack band width in our model. Secondly, next strength dependence on size in large beams is modeled by autocorrelated 
random strength field. The important statistical length scale is introduced in a form of the autocorrelation length of the field. 
The asymptotic size effect form caused by random strength is the classical Weibull power law. By random sampling of the 
local strength field we were able to model also the random scatter of resulting nominal strengths. The last effect presented 
here is the weak boundary layer of constant width. This weakened layer results in reduction of strength of small specimens 
which contrasts with trends of the two previous size effects. The presented study documents the well known fact that an 
experimental determination of material parameters (needed for rational and safe design of structures) is very difficult for 
quasibrittle material such as concrete. 
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