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The Audze–Egl ̄ajs (AE) criterion was developed to achieve a uniform distribution of experimental points 

in a hypercube. However, the paper shows that the AE criterion provides strongly nonuniform designs 

due to the effect of the boundaries of the hypercube. We propose a simple remedy that lies in the as- 

sumption of periodic boundary conditions. The biased behavior of the original AE criterion and excellent 

performance of the modified criterion are demonstrated using simple numerical examples focused on (i) 

the uniformity of sampling density over the design space and, (ii) statistical sampling efficiency measured 

through the ability to correctly estimate the statistical parameters of functions of random variables. An 

engineering example of reliability calculation is presented, too. 
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1. Introduction 

This article considers the choice of an experimental design for

computer experiments. The choice of experimental points is an im-

portant issue in planning an efficient computer experiment. The

methods used for formulating the plan of experimental points are

collectively known as Design of Experiments (DoE). DoE is a cru-

cial process in many engineering tasks. Its purpose is to provide

a set of N sim 

points (a sample) lying inside a chosen design domain

that are optimally distributed; the optimality of the experimental

points depends on the nature of the problem. Various authors have

suggested intuitive goals for good designs, including “good cover-

age”, the ability to fit complex models, many levels for each fac-

tor, and good projection properties. At the same time, a number of

different mathematical criteria have been put forth for comparing

designs. 

There are two main application areas for DoE methods in the

area of computer experiments. First, DoE is often used for evaluat-

ing the effects of different parameters of a function while search-

ing for a response surface. The choice of location for the evalua-

tion points or plan points is important in order to obtain a good

approximation of the response surface. A surrogate model that ap-

proximates the original, complex, model, can be e.g. a response

surface [32] , a support vector regression or a neural network [25] .
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he surrogate model is based on a set of carefully selected points

n the domain of variables. The process of finding optimal exper-

mental points might be performed adaptively, i.e. in several se-

uential steps, where the location of the additional points in every

tep are based on result achieved so far [49] . 

Second, the selection of the sampling points is even more im-

ortant when evaluating approximations to integrals as is per-

ormed in Monte Carlo simulations (numerical integration), where

qual sampling probabilities inside the design domain are required.

hese integrals may, for example, represent variables being esti-

ated in uncertainty analyses. The evaluation of the uncertainty

ssociated with analysis outcomes is now widely recognized as an

mportant part of any modeling effort. A number of approaches to

uch evaluation are in use, including neural networks [6] , variance

ecomposition procedures [27,42] , and Monte Carlo (i.e. sampling-

ased) procedures [16,46] . 

In both applications mentioned above, it is convenient when

he probability that the i th experimental point is located inside

ome chosen subset of the domain equals to V S / V D , with V S be-

ng the subset volume and V D the volume of the whole domain

for unconstrained design V D = 1 ). Whenever this is valid, the de-

ign criterion will be called uniform . Even though such uniformity

s conceptually simple and intuitive on a qualitative level, it is

omewhat complicated to describe and characterize it mathemati-

ally. Although some problems do not require this uniformity, it is

he crucial assumption in Monte-Carlo integration and its violation

ay (as will be demonstrated below) lead to significant errors. 

http://dx.doi.org/10.1016/j.advengsoft.2016.07.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
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The process of finding the experimental points can be under-

tood as an optimization problem: we are searching for a design

hat minimizes an objective function, E . After an initial set of ex-

erimental points have been generated (typically via a pseudo-

andom generator), some modifications of them are performed in

equential steps to find the minimum of the objective function.

everal optimization algorithms can be utilized; simulated anneal-

ng [57] will be employed in this paper. The chosen optimization

lgorithms may strongly affect the number of optimization steps

nd therefore the time to achieve the minimum, as well as the

bility to find the global minimum among many extremes (local

inima). However, the quality of the design is controlled by a cho-

en objective function (or design criterion). 

Several criteria (objective functions) have been developed and

sed [21] , e.g. the Audze-Egl ̄ajs (AE) criterion [1] , the Euclidean

axiMin and MiniMax distance between points [22] , Modified

2 discrepancy [8] , Wrap-Around L 2 -Discrepancy [7] , Centered L 2 -

iscrepancy [9] , the D −optimality criterion [50] , criteria based on

orrelation (orthogonality) [54,55,57] , Voronoi tessellation [45] , the

criterion introduced in [31] , dynamic modeling of an expanding

attice, designs maximizing entropy [48] , integrated mean-squared

rror [47] , and many others. Some authors believe that in order to

btain a versatile (robust) design, several criteria should be used

imultaneously [13] . 

It should be also noted that an experimental design can be also

btained via so-called “quasi-random” low-discrepancy sequences 

deterministic versions of MC analysis) that can often achieve rea-

onably uniform point placement in hypercubes. One such exam-

le is the Niederreiter sequence [37] . Actually, fairly uniform point

istributions can be produced by Halton [15] and Sobol’ [51] se-

uences despite the flexibility of sample size selection: the points

re added one-at-a-time to the design space. For resolving re-

ponse probabilities, the Hammersley and modified-Halton meth-

ds were found in [44] using several test problems to perform only

lightly better than Latin Hypercube Sampling. However, when the

yperspace dimension N var becomes moderate to large and/or N sim 

ecomes high, usually these sequences suffer from spurious sam-

le correlation [10,19] . These deterministic techniques are not fur-

her exploited in the paper. 

Several authors have proposed a combination of uniformity cri-

eria with Latin Hypercube Sampling (LHS) [5,20,30] as a represen-

ative of variance reduction techniques (these designs are some-

imes named optimal LHS). Tang [53] has introduced orthogonal-

rray-based Latin hypercubes to improve projections on higher di-

ensional subspaces, the space-filling properties of which were

upposedly improved in [26] by using the Audze-Egl ̄ajs criterion

without explicitly citing [1] ). LHS is a type of stratified sampling

echnique; the coordinates of N sim 

experimental points (simula-

ions) are sampled from N sim 

equidistant subintervals of length

/ N sim 

so that every subinterval contains one and only one point.

HS guarantees the uniform distribution of experimental points

long each dimension where it is used, typically along all N var di-

ensions. The frequently used version of LHS limits the selection

f coordinates along each variable to fixed set of values, most often

he centers of the intervals (called LHS-median in [57] ) with coor-

inates (i − 0 . 5) / N sim 

for i ∈ 〈 1 , 2 , . . . , N sim 

〉 . Such a type of LHS

ill be used in this paper. When optimizing an existing LH sam-

le, discrete domain consisting of interval centers is prescribed for

ach variable, so the remaining task is to perform pairing (chang-

ng mutual orderings = shuffling) in order to minimize the DoE

riterion. 

The design of experiments is typically performed in a hyper-

ubical domain of N var dimensions, where each dimension/variable,

 v , ranges between zero and one ( v = 1 , . . . , N var ). Sometimes, ad-

itional constraints are required and the design of experiments is

erformed in a constrained domain and becomes more compli-
ated [33,41] . In this paper, the design domain is a classical N var -

imensional unit hypercube. This design domain is to be covered

y N sim 

points as evenly as possible. 

This paper is focused on the performance of the widely used

udze-Egl ̄ajs (AE) criterion and its improvement. It is shown that

he original AE criterion provides designs that are not uniform . The

ppendix provides a simple explanation for this bias that arises

rom the presence of hypercube boundaries. Therefore, a remedy

eading to uniform designs that involve the assumption of period-

city is introduced. The remedy does not increase computational

omplexity and is extremely easy to implement in source codes

hat already contain an evaluation of the original AE criterion.

hree simple numerical examples are performed to show that (i)

he sampling bias in the original AE criterion leads to errors in the

stimation of moments of statistical models and (ii) the improved

eriodic criterion provides correct values with low variance. Fi-

ally, a finite element model with a nonlinear constitutive law for

oncrete beam loaded in bending, featuring four random variables,

hows the bias in calculation of probability of failure when the

riginal AE criterion is used. 

. Review of the original AE criterion 

The AE criterion was developed by Audze and Egl ̄ajs [1] . The

uthors claimed that the criterion may be understood to express

he potential energy of a system of particles with repulsive forces

etween each pair of them; minimization of this potential en-

rgy optimizes the spatial arrangement of the points. The repul-

ive forces between pairs of points are functions of their dis-

ance. The Euclidean distance, L ij , between points (realizations)

 i = 

(
u i, 1 , u i, 2 , . . . , u i, N var 

)
and u j in N var -dimensional space can be

xpressed as a function of their coordinates 

 i j = L 
(
u i , u j 

)
= 

√ 

N var ∑ 

v =1 

(
u i, v − u j, v 

)2 = 

√ 

N var ∑ 

v =1 

(
�i j, v 

)2 
(1)

here 

i j, v = | u i, v − u j, v | (2)

s the distance between two points measured along (or projected

nto) axis/dimension v (difference in variable U v ); | X | stands for

he absolute value of X . Each variable U v ranges between zero and

ne, therefore �ij, v has the same limits: �ij, v ∈ 〈 0, 1 〉 . The Audze-

gl ̄ajs criterion is defined using the squared Euclidean distances

etween all pairs of experimental points as 

 

AE = 

N sim ∑ 

i =1 

N sim ∑ 

j= i +1 

1 

L 2 
i j 

(3) 

Several authors claim that the force interactions mimic gravita-

ional forces. For example, Bates et al. [3] claim that “if the mag-

itude of the repulsive forces is inversely proportional to the dis-

ance squared between the points” then Eq. (3) represents poten-

ial energy. Similar statements are to be found in [11,18,58,59] . In

24] , the authors, in contrast, claim that the AE criterion “is equal

o the minimum of potential energy of repulsive forces for the

oints with unity mass if the magnitude of these repulsive forces

s inversely proportional to the distance between the points”. We

isagree with both these explanations. If the criterion quantifies

he potential energy of a system of particles, the repulsive force

etween pairs of particles must be equal to the negative derivative

f the contact potential energy with respect to distance 

 i j = −
d E AE 

i j 

d L i j 

= −
d 

1 
L 2 

i j 

d L i j 

= 

2 

L 3 
i j 

(4) 
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Fig. 1. Swap (exchange) of coordinates i and j of variable U 2 in the sampling plan 

(left); in a bivariate scatterplot (middle); affected elements in a square symmetrical 

matrix T of inverted squared pair distances between the points (right). 
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Therefore, the AE criterion assumes that the repulsive forces be-

tween particles are inversely proportional to the distance between

them raised to the third power . One can develop similar criteria

based on another force-distance relation, e.g. with F i, j = 1 / (L i j ) 
2 ,

which would result in the potential energy (and corresponding de-

sign criterion) 1/ L ij . 

Note that with increasing power in the criterion Eq. (3) , the

contribution of short distances tends to be increasingly emhasized.

The limit of the criterion in Eq. (3) as the power approaches in-

finity corresponds to a simple dependence on the shortest dis-

tance (the distance between the closest pair of points). This can

be shown by calculating the limit of the p th root of the E AE with

increased power p using the following equality: lim p→∞ 

p 

√ ∑ 

i X 
p 
i 

=
max X i 

lim 

p→∞ 

p 

√ ∑ 

i � = j 

1 

L p 
i j 

= max 
i � = j 

1 

L i j 

= 

1 

min 

i � = j 
L i j 

(5)

To minimize the energy with increased power (which corresponds

to minimization of the p th root of it), one would need, at the limit,

to maximize the minimum over the distances in the design do-

main, i.e. the MaxiMin criterion would be recovered. Note that the

φ criterion proposed by Morris and Mitchell (see Eq. (2.1) in [31] )

is a generalization of the AE criterion with a fixed p as a positive

integer, as used in our Eq. (5) . 

2.1. Selected existing applications of AE criterion 

The AE criterion has been utilized by many authors. The authors

of [43] identified the elastic properties of composites by exploiting

a response surface built using points obtained by DoE optimized

with the AE criterion. The AE criterion has been proposed as one

of the criteria to be used for the optimization of experimental de-

signs for metamodeling [2] . The AE criterion has also been used

for planning the experimental design for the identification of the

elastic properties of composite plate [24] . The original AE criterion

has been used as one of the criteria employed in the optimization

of the sample size extension of an existing LH sample [56] and im-

plemented in FReET software [38] . 

One of the possible applications of the AE criterion is in the op-

timization of samples used in Monte Carlo numerical integration,

e.g. statistical analyses of functions involving random variables. AE

criterion can be used when optimizing samples obtained by crude

Monte Carlo Sampling (independent sampling on the 〈 0, 1 〉 inter-

val). It is well recognized that such a crude Monte Carlo Sampling

does not perform well when it comes to uniformly spreading out

the experimental points with respect to the target density function.

This is a pronounced issue especially for small sample sizes. An im-

provement in reducing the variance of estimated statistics can be

achieved by LHS. The AE criterion can then be employed in combi-

nation with the LHS strategy, the concept for which appeared in

Bates et al. [3] and Husslage et al. [18] . Later, Fuerle and Sienz

[11] used the LHS-AE combination for sampling from constrained

design spaces (unit hypercubes reduced in size via the removal of

infeasible regions). This method has been applied to the problem

of optimizing carbon-fiber bicycle frames [12] . Further, Latin Hy-

percube design with the ordering of point coordinates optimized

using the AE criterion was suggested in [3] , and its computer im-

plementation named M-Explore (an extension of Radioss software)

has been published in [4] . In [28] the authors recommend opti-

mizing LHS based on the AE criterion rather than the minimum

distance criterion. LHS designs optimized using AE have been ap-

plied to a variety of problems such as the optimization of bread-

baking ovens [23] , structural system parameter identification us-

ing the finite element method [35] , the construction of a response
urface with the exploitation of proper generalized decomposition

14] , and the solution a problem concerning system identification

n vehicle-structure interaction [34] . 

. Optimization of a sample using the AE criterion 

In sampling analyses, the preparation of a sample is, in fact, the

reparation of a sampling plan, i.e. a matrix of size N sim 

× N var .

ig. 1 left shows a sampling plan for two variables and six simula-

ions in the form of a table. When combining sampling strategies

ith given coordinates for each separate variable (as in the case of

HS), the only way to optimize the sample with respect to a par-

icular criterion (correlation, AE criterion) is to change the mutual

rdering of these coordinates. In this paper, we focus on LHS, in

hich each variable (dimension) has N sim 

fixed coordinates (e.g.

enters of N sim 

equidistant intervals). To minimize E AE , one can

earch among all ( N sim 

! ) N var −1 possible mutual orderings of these

xed coordinates. We use simulated annealing optimization [57] to

earch for a good solution; however other techniques such as ge-

etic algorithms can be effectively utilized [3,59] . It involves the

ubsequent swapping of the coordinates of a pair of points (see the

xchange of coordinates in Fig. 1 middle). The element-exchange

ithin a column (a variable) simply interchanges two entries se-

ected for a given variable and therefore such an operation main-

ains the LHS property. However, this swap affects selected entries

n the distance matrix ( Fig. 1 right) and always leads to a change

n the value of the optimized function (non-collapsing design due

o LHS sampling). Such a swap is accepted whenever it decreases

he value of the optimized function. In cases when the swap leads

o an increase in the criterion, its acceptance depends on a cooling

chedule , i.e. (i) on how much the value is worse than the one be-

ore the swap, (ii) on a generated value for a uniform random vari-

ble and, (iii) on the temperature of the system (the temperature

s decreasing during the process). Details regarding this heuristic

ptimization algorithm can be found in [57] . 

Regarding implementation details and the speed of execution

f the AE criteria, we should mention the fact that complete eval-

ation of the energy norm ( Eq. (3) ) is not necessary after every

wap of a pair of point coordinates. For small to moderate N sim 

, it

s worthwhile to save the symmetrical matrix of inverse squared

istances, T : T i j = 1 /L 2 
i j 
, into computer memory. The value of the

E criterion is simply the sum of the elements in the upper tri-

ngle of matrix T . Each swap of two coordinates in the sampling

lan necessitates update of 2 × ( N sim 

− 2) entries in matrix T . For

oth swapped points, i and j , there are always N sim 

− 2 updated

istances. The following four distances remain unchanged: L ii , L jj ,

 ij and L ji , see Fig 1 right. Before updating the T matrix, the modi-

ed entries can be subtracted from the norm (energy), then T gets

pdated and the changed terms are added to the norm. Compu-

ation of the AE criterion by summing all entries of the triangular

atrix T is only needed after a certain number of swaps to avoid

ounding errors. 
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Fig. 2. The considered design domain – a unit hypercube ( N var = 3) divided into 

bins of equal volumes. Boxes with N sim = 4 experimental points are highlighted. 
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. Biased design 

The supposed uniformity [1,3,17,18,21,24,28,58,59] of the original

E design is critically evaluated in this section. As mentioned in

ntroduction, the probability that the i th experimental point will

e located inside some chosen subset of the domain must be equal

o V S / V D , with V S being the subset volume and V D the volume of

he whole domain (for unconstrained design V D = 1 ). 

Since we are using LHS, the coordinates of the points are known

nd the whole unit hypercube of volume V D = 1 N var = 1 can be

ivided into N sim 

N var bins of the same volume using the grid of

quidistant coordinates along each dimension, see Fig. 2 . A uniform

esign is achieved if the probability of filling each of these bins is

dentical. In order to perform a numerical test of AE-optimized LHS

esigns, N run designs (sampling plans of dimensions N var × N sim 

)

ave been simulated and optimized. After generating the N run de-

igns, the total number of sampled points is N sim 

N run . The aver-

ge number of points inside one bin should be for uniform de-

ign f a = N sim 

N run / N sim 

N var = N run / N sim 

N var −1 . For each bin, we now

ount the actual frequency of occurrence of the points inside that

in, f . Finally, we define a variable f̄ (a normalized frequency) that

an be calculated for each bin using the ratio 

f̄ = f 
1 

f a 
= f 

N sim 

N var −1 

N run 
(6) 

n ideal design criterion should produce f̄ = 1 for all of the bins. 

The results of the numerical study are shown in Figs. 3 top

nd 4 top for various numbers of points N sim 

and dimensions N var 

n 2D images. The number of repetitive optimized designs used,

 run = 10 7 , is high enough to reveal unwanted patterns. The shade

f gray color represents the f̄ value at individual LHS points (bins).

he first dimension (variable) is associated with the horizontal

xis, the second variable with the vertical axis, and the third vari-

ble (if present) is captured by repetitive 2D images (slices) pro-

uced for different values of the third coordinate. Similarly, the

ourth dimension (if present) is shown by repetitive views of 3D

lots made for different values of the fourth coordinate. 

The figures clearly show the non-uniformity of point density

n the design domain when the original AE criterion is used for

ptimization. In 2D space, the corners are not sampled at all,

ut there is an area of highly probable points close to them fol-

owed again by an improbable region. A similar behavior is ob-

erved in 3D and 4D spaces, where the corners of the domain

re always sampled poorly. The plot for N var = 3 shows a forma-

ion resembling a sphere with an empty interior (low N sim 

) or

ith a less-accentuated second interior sphere (higher N sim 

). For

 var = 4 , a similar hypersphere forms. Generally, the tendency to

void the corners of the hypercube is apparent. The more coordi-

ates that reach its extremes (0 or 1) at the corner/edge, the more

ronounced the effect, i.e. in 3D, corners are more “repellent” than

dges. 
The fact that LHS design optimized with the AE criterion does

ot cover corners in 2D domains was also noticed in [59] , the au-

hors of which wrote: “One of the shortcomings of LH DoEs is

hat it is not possible to have points at all the extremities (corner

oints) of the design space due to the rule of one point per level”.

s a remedy, the authors of [59] used fixed points in the corners

f the design domain to solve the problem. Our paper shows that

his explanation of the problem is wrong because the problem is

n the criterion itself; the solution of fixing the corner points is not

onsistent with the requested properties of the design. Appendix A

rovides proof that the original AE criterion delivers a non-uniform

istribution of points over the design space, and thus explains the

ource of the bias. 

While Figs. 3 top and 4 top show the density of the point oc-

upation of bins from N run = 10 7 AE-optimized LHS designs, Fig. 5

eft shows just one run - a single LH-sample set optimized in 2D

nd 3D domains. The irregularity of point coverage (empty corners)

s accentuated by periodic repetition of the unit square in the plot.

he middle column shows a regular LHS design optimized using

he “PAE” criterion proposed below in this paper. The right column

hows an LHS design obtained with a correlation (orthogonality)

riterion [57] , i.e. a criterion frequently used in practice; these LH-

amples are denoted as COR designs. The main purpose of the fig-

re is to once again demonstrate the empty corners that are not

ampled when using the original AE formulation. All of the designs

n Fig. 5 are LHS designs and therefore the 1D projections of points

re perfectly uniform (they form a grid of equidistant points). From

 visual comparison of 2D AE (and PAE) and COR designs, it is clear

hat the dispersion is much better for PAE. The reason is that in 2D

esigns, the visualized 2D lengths between points are directly sub-

ect to optimization. On the other hand, the three projections of

D designs seem to show similar degree of clustering for both PAE

nd COR designs. The reason is that the AE (and PAE) criterion op-

imizes the 3D distances and not the 2D projections of distances.

he 2D scatter-plots are not sufficient to reveal the better disper-

ion of PAE over COR in higher dimensions. AE and PAE criteria

ptimize N var -dimensional lengths and LHS itself guarantees per-

ect 1D spacings. To get LHS designs with a uniform distribution of

oints in all possible projections into spaces of dimensions from 2

o N var − 1 , the criterion would have to consider all of these pro-

ections. 

After the above demonstration of the undesired non-uniformity

f the AE criterion, the paper continues with a description of

 very simple and computationally cheap remedy that provides

niform designs while keeping the concept of the AE criterion (the

nalogy between the point distribution and minimizing the energy

f a system of charged particles) unchanged. 

. The AE criterion in periodic space 

The remedy proposed here, which leads to uniform designs, is

ased on periodic repetition of the unit hypercube ( Fig. 2 ) con-

aining experimental points along all directions/variables of the

esign domain; see Fig. 6 for N var = 2 . We consider periodic im-

ges of the i th point to have coordinates u i, v + k i, v where the di-

ension/variable is denoted v ∈ { 1 , 2 , . . . , N var } and k is an arbi-

rary integer. When k equals zero for all v , we obtain the orig-

nal point placed inside the design domain. The ideal would be

o optimize the potential energy of such an infinite periodic sys-

em based on the original formulation of the AE criterion. One can

ee that the whole system of pairs of points is just an image –

epeated infinitely many times – of a basic system containing all

airs where at least one of the points belongs to the original set

f points. Therefore, it is sufficient to deal with the basic system

nly. 
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Fig. 3. LHS designs using the original Audze–Egl ̄ajs (AE) criterion (top row) and the proposed PAE criterion (bottom row). Relative frequencies f̄ calculated from N run = 10 7 

designs in the space of N var = 2 variables for different numbers of simulations N sim . 
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Within the basic system (at least one of the points in each pair

lies in the original hypercube), let us imagine a set of two points

and all its periodic images, u i + k i and u j + k j . Pairs between the

original point and its periodic image can apparently be ignored,

because they have constant distances and therefore do not influ-

ence the minimization of potential energy. We can further limit

ourselves only to pairs between the original point u i and all peri-

odic images of the second point u j + k, because the distance be-

tween any omitted pair L (u i + k, u j ) is repeated in the considered

pair of distance L (u i , u j − k) . Among all these pairs, the pair with

the shortest distance contributes the most to the E AE value. The

proposed simplification lies in considering only the shortest dis-

tance, L i j , among all these pairs; see the very thick line in Fig. 6 for

the case of N var = 2 . 

The shortest distance L i j between point u i and all possible im-

ages of point u j is given by the expression 

L i j = min 

k 
[ L 

(
u i , u j + k 

)
] = min 

k 

( 

√ 

N var ∑ 

v =1 

[�i j, v + k v ] 2 

) 

(7)

The problem of searching for the shortest distance can be solved

for every coordinate separately thanks to the equalities 
 i j = min 

k 

( 

√ 

N var ∑ 

v =1 

[�i j, v + k v ] 2 

) 

= 

√ √ √ √ min 

k 

( 

N var ∑ 

v =1 

[�i j, v + k v ] 
2 

) 

= 

√ 

N var ∑ 

v =1 

min 

k v 

(
[�i j, v + k v ] 2 

)
(8)

here the former equality is valid because the square root function

s monotonic and the summation of squares is always positive. The

atter equality applies because the optimized parameters k v are

resent separately in separate summands. The problem of finding

he nearest image in N var -dimensional space is therefore reduced

o N var separate searches of the nearest images in one-dimensional

paces. All the 1D problems always have the form [�i j, v + k v ] 2 . The

ptimal k v clearly yields 

 v = 

{
0 if �i j, v ∈ 〈 0 , 0 . 5 〉 

−1 if �i j, v ∈ ( 0 . 5 , 1 . 0 〉 (9)
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Fig. 4. LHS designs using the original Audze–Egl ̄ajs (AE) criterion (top row) and the proposed PAE criterion (bottom row). Relative frequencies f̄ calculated from N run = 10 7 

designs in the space of N var = 3 and 4 variables for different numbers of simulations N sim . 
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nd the minimum of each 1D problem ( v = 1 , . . . , N var ) can be ex-

ressed as 

 �i j, v ] 
2 = min 

k v 

(
[�i j, v + k v ] 

2 
)

= [ min 

(
�i j, v , 1 − �i j, v 

)
] 2 (10)

inally, the shortest distance between two points in the periodic

pace has the following form 

 i j = 

√ 

N var ∑ 

v =1 

[ �i j, v ] 2 = 

√ 

N var ∑ 

v =1 

[ min 

(
�i j, v , 1 − �i j, v 

)
] 2 (11) 

The simplification made in ignoring all pairs between point u i 

nd all possible images of point u j except the nearest one affects

he potential energy value. To show in which way the value is

odified we present a simple numerical study. Each calculation of

otential energy based on the shortest distance only is compared

o the potential energy when considering several of the closest im-

ges of the second point, u j , in the pair. The number of considered

earest images is controlled by parameter k max . Additional k max 

ayers of images around the nearest point/image are used. The to-

al energy can be expressed as 

(k max ) = 

∑ 

k∈K(k max ) 

1 ∑ N var 

v =1 

(
�i j, v + k v 

)2 
(12) 
here K(k max ) is a set of all vectors of length N var of integers

anging from −k max to k max . When k max = 0 , Eq. (11) is recovered.

or k max > 0, the formula considers (2 × k max + 1) N var images of

he nearest point j contained in k = 1 , . . . , k max surrounding lay-

rs of hypercubes around the nearest image (one can imagine k max 

ayers of onions). Fig. 6 shows all nine pairs i, j for N var = 2 when

 max = 1 . The thick line shows the distance to the nearest image

layer k = 0 ) and the dashed lines show the next layer around this

earest image. 

The study was performed for N var ∈ {1, 2} and the results are

hown in Fig. 7 . One can see that the difference appears for larger

istances between the points; for short distances the majority of

he potential energy comes from the closest pair and the difference

s negligible. The proposed simplification of the full periodic space

o the shortest distance only accentuates the pairs with shorter

istance, i.e. one can think about the simplification as a modi-

cation of the repulsive force-distance relationship between the

oints. 

When k max reaches infinity, infinitely many periodic repeti-

ions are considered. Though images in distant layers (high k ) do

ot contribute much to the criterion as the distance between the

oints becomes high, the number of such images in the k th layer

rows rapidly. Our calculations suggest that for N var > 1, the en-

rgy in Eq. (12) tends to infinity with increasing k max . 
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Fig. 5. Comparison of optimized LH-sampling points selected from uniform density with independent marginals, optimized via three criteria. Top row: 2D domain, N sim = 24 . 

Bottom row: 3D domain, N sim = 64 (the three different projections of points are plotted in a single bivariate scatterplot with different symbols). Left: original AE criterion 

[1,3] ; middle: proposed PAE criterion; right: correlation criterion [57] . 
Fig. 6. Periodic space, the shortest distance L i j and all pairs in the first layer around 

point u i . 

Fig. 7. Difference in the potential energy of a system when considering the first 

k max periodic images; top: N var = 1 , bottom: N var = 2 . 
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o  
. Uniformity of the proposed Periodic Audze-Egl ājs criterion 

Motivated by the observation described in the previous section,

n improvement of the AE criterion is proposed. To distinguish be-

ween the original AE formulation [1] and the proposed one based

n periodic space, we will call the new formulation the Periodic
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udze-Egl ̄ajs (PAE) criterion. The proposed PAE criterion has the

ollowing form 

 

PAE = 

N sim ∑ 

i =1 

N sim ∑ 

j= i +1 

1 

L 
2 

i j 

, 

L 
2 

i j = 

N var ∑ 

v =1 

[ min 

(
�i j, v , 1 − �i j, v 

)
] 2 (13) 

y comparing Eq. (13) with the original formulation in Eq. (3) one

an see that the only difference between them lies in selecting

he minima between ( �ij, v ) and (1 − �i j, v ) along each coordinate

 ∈ 〈 1, N var 〉 instead of using the coordinate difference ( �ij, v ) di-

ectly. Technically, this improvement is very easy to implement in

omputer programs and the additional computer time necessary to

erform the comparison and selection of the minima is inconsider-

ble. We suggest using the effective algorithm based on the matrix

 described in Section 3 . 

Figs. 3 and 4 bottom clearly demonstrate that the new formu-

ation provides uniform designs; the figures provide a direct com-

arison with the biased behavior of the AE criterion (the same nu-

erical example settings were used for the AE and PAE demon-

tration). 

The source of uniformity actually lies in the invariance of PAE

ith respect to translation . If all the points in periodic space are

hifted by an arbitrary vector, the PAE value remains unchanged.

herefore, when generating the experimental points, even if there

s a tendency to form some pattern, the pattern is always ran-

omly shifted and sampling becomes uniform . It is simple to show

he invariance with respect to translation; it can be proven sep-

rately using 1D problems because the �i j, v is already invariant

nder translation by arbitrary r v . Let us imagine two points with

he coordinates x i, v and x j, v with �i j, v = | x i, v − x j, v | ; see Eq. (2) . As

he coordinates x i, v + r v and x j, v + r v are simultaneously translated

y r v , nothing happens until both of them remain in the inter-

al 〈 0, 1 〉 because the projected distance remains constant �+ 
i j, v =

i j, v . When one of the points exceeds the domain boundary given

y value 1 (or 0), the exceeding point becomes a periodic im-

ge and the original point enters the domain through the oppo-

ite side. The projected distance between the shifted pair of points

ecomes �+ 
i j, v = 1 − �i j, v . However, the periodic projected distance

emains the same 
+ 
i j, v = min (�+ 

i j, v , 1 − �+ 
i j, v ) 

= min (1 − �i j, v , 1 − 1 + �i j, v ) (14) 

= min (1 − �i j, v , �i j, v ) = �i j, v 

herefore, even if the whole design is shifted by a random distance

 v in any direction v , the proposed periodic criterion remains un-

hanged. 

. Sets of optimal solutions 

The relative frequency maps presented in Figs. 3 and 4 need

ome additional comments. The Figures were obtained with a

euristic combinatorial optimization algorithm that does not nec-

ssarily deliver arrangements corresponding to the global mini-

um of the objective function. In fact, the N run solutions used

o plot the histograms have been obtained with a set of param-

ters (called cooling schedule, see Vo ̌rechovský and Novák [57] )

hat deliver solutions in relatively short time. The cooling sched-

le strongly influences how close the final AE criterion (objective

unction) is to its global minimum. 

For low numbers of sampling points, N sim 

, and a low di-

ensionality of the design space, N var , it is easy to check all

( N !) N var −1 possible mutual permutations and select the one(s)
sim 
elivering the lowest possible value of the objective function. For

xample, the case with N sim 

= 9 and N var = 2 has only two opti-

al solutions (one can be obtained from the other by flipping the

esign around the central horizontal or vertical line). The lower

ound on LHS-AE design equals E AE (9 , 2) = 156 . 735 . The frequency

ap obtained with these two best possible designs as well as these

wo optimal designs are plotted in Fig. 8 left. Acceptance of all so-

utions having AE criterion less or equal to 158, 159, 160 or 175

eads to 4, 8, 16 or 6794 possible solutions, respectively. The fre-

uency maps for these solutions are shown in Fig. 8 center (only

he symmetrical quarters of the design space are plotted). By fur-

her relaxation of the acceptance level of AE with respect to its

ower bound, the pool of solutions gets richer and the maps ap-

roach uniform distribution. 

Let us note that there is no acceptance level that delivers figure

dentical to Fig. 3 top left. The reason is that the heuristic algo-

ithm does not consider all possible solutions satisfying the condi-

ion with equal probability (while the exhaustive search does). The

lgorithm merely delivers solutions obtained with a certain cool-

ng schedule and the solutions satisfying an acceptance level are

ot equally likely to be discovered. 

Similarly, the other tested configurations can be shown to de-

iver sharper frequency maps that document the nonuniformity of

he coverage of the design space, e.g. for N sim 

= 9 and N var = 3

xists 24 optimal solutions with criterion E AE (9 , 3) = 78 . 653 . Ex-

austing all possible configurations in larger dimensions and for

arger N sim 

becomes too computationally demanding, though. 

On the other hand, the proposed periodic version of the cri-

erion provides sets of optimal solution that always provide uni-

orm distribution. The reason lies in the invariance of the PAE with

espect to translation (see Section 6 ); accepting one design im-

lies acceptance of all its possible shifts. Note that when using

HS, there are N sim 

N var possible shifts. Set of optimal solutions for

HS-PAE design for N sim 

= 9 and N var = 2 contains 324 possible so-

ution ( E PAE (9 , 2) = 245 . 732 ), among which only four are unique.

his means that all 324 optimal designs can be obtained by shift-

ng one of these 4 unique solutions in one or two directions. The

requency map and unique solutions are shown in Fig. 8 right. The

our unique solutions are surprisingly not symmetrical. Neverthe-

ess, every optimal solution (including the four unique ones) has

ts symmetrical plans obtained by shifting one of these unique so-

utions. For N sim 

= 9 and N var = 3 the PAE criterion provides 648

ptimal solutions with criterion E PAE (9 , 3) = 131 . 143 . 

. Application to statistical analyses of functions of 

ndependent random variables 

As mentioned above, one of the frequent uses of DoE is in sta-

istical sampling for Monte Carlo integration. We present the ap-

lication of statistical sampling to the problem of estimating sta-

istical moments of a function of random variables. In particular,

 deterministic function, Z = g ( X ) , is considered, which can be

 computational model or a physical experiment. Z is the uncer-

ain response variable (or generally a vector of the outputs). The

ector X ∈ R 

N var is considered to be a random vector of N var con-

inuous marginals (input random variables describing uncertain-

ies/randomness) with a given joint probability density function

PDF). 

Estimation of the statistical moments of variable Z = g ( X ) is, in

act, an estimation of integrals over domains of random variables

eighted by a given joint PDF of the input random vector f X ( x ).

e seek the statistical parameters of Z = g ( X ) in the form of the

ollowing integral: 

[ S [ g ( X ) ] ] = 

∞ ∫ 
−∞ 

. . . 

∞ ∫ 
−∞ 

S [ g ( x ) ] d F X ( x ) (15)
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Fig. 8. Relative frequencies f̄ calculated of LH-sample sets with Audze-Eglajs (AE) criterion and its proposed periodic version (PAE) for N sim = 9 and N var = 2 . These maps 

are constructed from sets of optimal solutions (left for AE, right for PAE), or all solutions having AE criterion lower than 158, 159, 160 and 175 (center). The scatterplots of 

designs plotted at the bottom are two optimal designs for AE and four unique optimal designs for PAE. 
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where d F X ( x ) = f X ( x ) · d x 1 d x 2 · · · d x N var 
is the infinitesimal proba-

bility ( F X denotes the joint cumulative density function) and where

the particular form of the function S [ g ( · )] depends on the statis-

tical parameter of interest. To gain the mean value, S[ g ( ·) ] = g ( ·) ;
higher statistical moments of the response can be obtained by in-

tegrating polynomials of g ( · ). The probability of failure (an event

defined as g ( · ) < 0) is obtained in a similar manner; S [ · ] is re-

placed by the Heaviside function (or indicator function) H [ −g ( X ) ] ,

which equals one for a failure event ( g < 0) and zero otherwise.

In this way, the domain of integration of the PDF is limited to the

failure domain. 

In Monte Carlo sampling, which is the most prevalent statistical

sampling technique, the above integrals are numerically estimated

using the following procedure: 

(i) draw N sim 

realizations of X that share the same proba-

bility of occurrence 1/ N sim 

by using its joint distribution

f X ( x ) (the points are schematically illustrated by the rows in

Fig. 1 left); 

(ii) compute the same number of output realizations of S [ g ( · )];

and 

(iii) estimate the desired parameters as arithmetical averages.

We now limit ourselves to independent random variables in

vector X . The aspect of the correct representation of the tar-

get joint PDF of the inputs mentioned in item (i) is abso-

lutely crucial. Practically, this can be achieved by reproduc-

ing a uniform distribution in the design space (unit hyper-

cube) that represents the space of sampling probabilities. 

Assume now a vector random variable U that is selected from

a multivariate uniform distribution in such a way that its indepen-

dent marginal variables U v , v = 1 , . . . , N var , are uniform over inter-

vals (0; 1). A vector with such a multivariate distribution is said to

have an “independence copula” [36] 

(u 1 , . . . , u N var 
) = P(U 1 ≤ u 1 , . . . , U N var 

≤ u N var 
) 

= 

N var ∏ 

v =1 

u v (16)

These uniform variables can be seen as sampling probabilities:

F X v = U v . The joint cumulative distribution function then reads

F X ( x ) = 

∏ 

v F X v = 

∏ 

v U v , and d F X ( x ) = 

∏ 

v d U v . The individual ran-
om variables can be obtained by inverse transformations 

 X 1 , . . . , X N var 
} = { F −1 

1 (U 1 ) , . . . , F 
−1 

N var 
(U N var 

) } (17)

nd similarly the realizations of the original random variables are

btained by the component-wise inverse distribution function of

 point u (a realization of U ) representing a sampling probability 

 = { x 1 , . . . , x N var 
} = { F −1 

1 (u 1 ) , . . . , F 
−1 

N var 
(u N var 

) } (18)

With the help of this transformation from the original to a uni-

orm joint PDF, the above integral in Eq. (15) can be rewritten as 

[ S [ g ( X ) ] ] = 

1 ∫ 
0 

. . . 

1 ∫ 
0 

S [ g ( x ) ] d C(u 1 , . . . , u N var 
) 

= 

∫ 
[0 , 1] N var 

S [ g ( x ) ] 

N var ∏ 

v =1 

d U v (19)

o that the integration is performed over a unit hypercube with

niform unit density. 

We now assume an estimate of this integral by the follow-

ng statistic (the average computed using N sim 

realizations of U ,

amely the sampling points u i (i = 1 , . . . , N sim 

)) 

[ S [ g ( X ) ] ] ≈ 1 

N sim 

N sim ∑ 

i =1 

S [ g(x i ) ] (20)

here the sampling points x i = { x i, 1 , . . . , x i, v , . . . , x i, N var 
} are se-

ected using the transformation in Eq. (18) , i.e. x i, v = F −1 
v (u i, v ) , in

hich we assume that each of the N sim 

sampling points u i (i =
 , . . . , N sim 

) were selected with the same probability of 1/ N sim 

. Vi-

lation of the uniformity of the distribution of points u i in the unit

ypercube may lead to erroneous estimations of the integrals. We

ill show that the original definition of the AE criterion suffers

rom this problem. 

This section continues with three numerical examples present-

ng three transformations of standard independent Gaussian ran-

om variables X v , v = 1 , . . . , N var . The non-uniformity of the orig-

nal AE criterion and also the improved performance of the pro-

osed PAE criterion will be demonstrated by showing the ability

f the optimized samples to estimate the mean value, standard de-

iation, skewness and excess kurtosis (denoted as μZ , σ Z , γ Z and

) of the transformed variable Z = g ( X ) . 
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Fig. 9. Z sum : convergence of the estimated standard deviation σ sum for various 

numbers of variables N var with increasing sample size N sim . 
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.1. Numerical examples 

We consider three functions (transformations of input random

ariables): 

 sum 

= g sum 

(X ) = 

N var ∑ 

v =1 

X 

2 
v (21) 

 exp = g exp ( X ) = 

N var ∑ 

v =1 

exp 

(
−X 

2 
v 
)

(22) 

 prod = g prod (X ) = 

N var ∏ 

v =1 

X v (23) 

here the input variables X v , v = 1 , . . . , N var are independent stan-

ard Gaussian variables. 

The first random variable Z sum 

has a chi-squared distribution

also chi-square or χ2 -distribution) with N var degrees of freedom.

he standard deviation of this distribution is well known: σsum 

=
 

2 N var . The chi-squared distribution slowly converges to a Gaus-

ian distribution as N var grows large. 

The second random variable Z exp has the exact statistical mo-

ents derived in Appendix B. The approximate standard devia-

ion is σexp ≈ 0 . 337 461 
√ 

N var and approximate skewness is γexp ≈
0 . 305 281 / 

√ 

N var . 

The third variable Z prod has a probability density function sym-

etrical about zero. The exact form of the PDF together with for-

ulas for the first four statistical moments are derived in Ap-

endix C. The standard deviation of Z prod equals: σprod = 1 and the

xcess kurtosis equals: κprod = 3 N var − 3 . 

.2. Discussion of results 

The quality of sampling is measured through the difference be-

ween the theoretical and estimated statistical parameters of Z .

ince the placement of N sim 

design points into an N var -dimensional

ypercube is random (it depends on sequences generated by

 pseudo-random number generator), the estimated statistical pa-

ameter can also be viewed as a realization of a random variable.

he simulated annealing algorithm [57] has been used for the opti-

ization of the mutual ordering of LH samples for three DoE crite-

ia: AE, PAE and COR (Pearson’s correlation coefficient). A relatively

igh number of N run = 10 3 designs were optimized for the same

ettings (criterion, N sim 

and N var ) and the mean value and standard

eviation of the estimated statistical parameters have been plotted

n the form of graphs – dependencies on the sample size N sim 

; see

igs. 9–11 . The graphs show the exact solution for each selected

tatistical parameter via a dashed line. The average result of its es-

imation is plotted by a solid line surrounded by a scatter-band

epresenting the average ± one standard deviation. Such graphs

ive an idea about the convergence of the average estimation and

lso the variance of the estimation. Crude Monte Carlo results are

ot presented as the estimates exhibit a large variance. In LHS, the

ariability of the estimate is never higher than in crude Monte

arlo sampling because the selection of sampling probabilities is

eterministic and the only variability arises from random mutual

airing. 

The ability to estimate the mean value is purposely not pre-

ented. The reason is that samples optimized with all three criteria

COR, AE and PAE) provide exactly the same estimates of μsum 

and

exp . These estimates have no variability as the functions are ad-

itive and, in the LHS method, the averages are independent of the

utual ordering of coordinates. For the last function, g prod , the es-

imated mean values are slightly different (different variances) but

he results for the second and fourth central moments are much
ore convincing. The product function g prod ( X ) is selected inten-

ionally because the results are extremely sensitive to variations

etween different LHS designs. That is why the results ( σ prod and

prod ) exhibit a large amount of variability. 

The general trends are as follows: 

• The AE criterion yields, on average, erroneous estimates (with

almost no variability) for the studied statistical characteristics

of the investigated three g functions. The error becomes pro-

nounced for higher N var . Increasing the sample size N sim 

does

not help. Both the incorrect means and the low variance of es-

timates are consequences of non-uniform sampling: some re-

gions are under-represented (such as corners) and others are

over-represented (as documented in Figs. 3 and 4 where the

AE-optimized sampling points occur only in hyper-spheres in-

side the hypercube). 
• The PAE criterion yields a uniform distribution of points and

therefore the estimators converge to the exact values. 
• The COR criterion yields a uniform distribution of points for

N sim 

→ ∞ ; however, for small N sim 

the algorithm selects from

a limited number of optimal arrangements [55] that are not

uniform. 
• Estimates obtained with PAE are, on average, never worse than

with COR – in most of the cases they are better. Also, the vari-

ance of the estimates obtained with PAE is usually lower than

that gained from COR. In other words, the estimates converge

faster with smaller variance. 

The best of the three methods seems to be the PAE criterion.

ne can argue that for the product function in N var = 5 dimen-

ions, the variance of PAE estimates are as high as in the case of

OR. However, this is an inevitable consequence of the high sensi-

ivity of the function selected. For example, the placement of just

ne point into a corner of the hypercube ( u equals either 0.5/ N 
i sim 
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Fig. 10. Z exp : convergence of estimated σ exp and γ exp with increasing sample size N sim . The insets visualize the PDF of Z exp . 

Fig. 11. Z prod : comparison of the convergence of estimated σ prod and κprod with increasing sample size N sim . 
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show almost no variance in the case of AE and COR criteria. This is 
or 1 − 0 . 5 / N sim 

) results in an extremely high or low result for the

estimated product g . We remind the reader that the original AE

criterion suppresses these regions completely. 

The results of skewness γ exp show the strange behavior of AE-

optimized designs. We believe that this strange behavior is again

a consequence of the AE criterion forcing the points into a subre-
ion inside the hypercube. The subregion changes its shape grad-

ally with increasing N sim 

and the estimates gradually evolve into

ifferent values. 

The estimates of the standard deviation of all three functions

 σ sum 

, σ exp and σ prod ) obtained for very small sample sizes N sim 
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Fig. 12. Evaluation of failure probability of a concrete beam. Top: sketch of the 

model and dimensions; center: scheme of the calculation; bottom: histograms of 

estimated failure probability obtained with samples of N sim = 100 and based on 

N run = 10 0 0 repetitions. 
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o  
ecause the heuristic algorithm of simulated annealing is still able

o check all ( N sim 

!) N var −1 different designs (mutual orderings). For

he AE and COR criteria, the optimal designs form a small num-

er of (nonuniform) structures and the estimates of the statistical

arameters are identical (the number of COR-optimal solutions has

een studied in [55] ). The PAE criterion, however, does not lead

o such strange structures and the parameters are estimated better

on average) but with higher variance. 

The graphs in Figs. 9–11 present the results for LHS-optimized

esigns. The same trends have been observed for MC-AE and MC-

AE designs in which the sets of coordinates for each variable have

een sampled by crude Monte Carlo and the pairing have later

een optimized by AE or PAE. The only difference is that MC sam-

les produce higher variance of the estimators. 

The presented inability of LHS-AE optimized samples to deliver

nbiased estimates of the desired statistical parameters is more

ronounced when the optimization of samples discovers the best

ossible solutions, see Section 7 . The fact that the cooling sched-

le was used with relatively mild requirements helped the LHS-AE

amples to show themselves as better than they really are. This

ffect is pronounced for higher N sim 

and N var where the designs

sed for integration must be far from actual optimal designs. This

s documented in Fig. 9 , N var = 5 where there is an additional curve

btained using poor optimization settings. 

. Engineering example 

The examples analyzed in Section 8.1 are simple and it is easy

o solve the transformations analytically. In order to demonstrate

he differences between sampling plans generated by AE and PAE

n some complex engineering problem, the paper presents analysis

f the failure probability of a concrete beam loaded in three-point-

ending. Fig. 12 shows a computational model of the beam with

epth 0.1 m, span 0.8 m and thickness 0.04 m. Four independent

andom variables ( N var = 4 ) are considered: the elastic modulus E
with mean μE = 30 GPa), tensile strength f t ( μ f t 
= 3 MPa), frac-

ure energy G F ( μG F 
= 80 Jm 

−2 ) and load action P ( μP = 1 . 4 kN).

ll the random input parameters are assumed to be normally dis-

ributed with the coefficient of variation of 20%. The loading capac-

ty of the beam, P max , is obtained using OOFEM software [39,40] ,

he non-linear finite element solver. The isotropic damage model

ith Mazar’s equivalent strain [29] and linear softening is used.

he nonlinear calculation represents a function – transformation

f three random variables: P max = g P max 
(E, f t , G F ) . The loading force

s compared to the load capacity and either failure ( P max < P ) or

uccess is detected via indicator function I [ P max < P ] returning

 when the condition is fulfilled, and zero otherwise. The failure

robability, p f , is estimated based on N sim 

= 100 simulations as 

p f ≈
1 

N sim 

N sim ∑ 

i =1 

I[ P max (E, f t , G F ) < P ] (24)

o get idea about the variance of such estimator, the calculation

f p f is repeated N run = 10 0 0 times and Fig. 12 bottom shows

he histogram of the estimated 10 0 0 failure probabilities. When

he LH-sampling plan is optimized with the original AE formula-

ion, the calculation is wrong and predicts, on average, too high

p f 
= 0 . 1622 . Using the proposed periodic version (PAE), the mean

p f 
is 0.1400 which corresponds to the reference case of random

H-sampling plan without any optimization (RAND), with the same

ean of 0.1400. One can also see that the RAND estimator has

omewhat greater variance than the proposed PAE estimator (the

oefficient of variation in the RAND case is 0.171 compared to 0.134

btained with PAE). This variance reduction confirms that the PAE-

ptimized design has a better selection of integration points com-

ared to a random ordering. The original AE formulation delivers

rong results. 

0. Conclusions 

It has been shown that the original Audze-Egl ̄ajs criterion used

or optimization of the Design of Experiments provides a non-

niform experimental point distribution. Even though this feature

s not important in several applications of Design of Experiments,

t is the crucial property in numerical Monte-Carlo type integra-

ion. Similarly, the correlation criterion of optimization (COR) also

ields nonuniform coverage of the design domain; however, the

roblem disappears when sample size N sim 

increases. Violation

f uniformity leads to significant errors in integral estimates, as

emonstrated in this paper. Since the widely used AE criterion

amples more frequently in some subregions of the design domain

hile leaving other areas under-represented, numerical integration

sing the AE criterion provides incorrect results. 

A simple remedy based on considering the periodicity of the

esign space was proposed, and it was demonstrated that the

odified version – the Periodic Audze-Egl ̄ajs (PAE) criterion – pro-

ides a truly uniform distribution of points in the design domain.

he PAE and AE criteria have the same computational complex-

ty, so no additional effort is associated with considering the pro-

osed scheme. The proposed PAE criterion is invariant with respect

o shifts of the whole sample in any direction. 

The numerical studies presented in this paper were performed

ith Latin Hypercube Samples (optimized using different criteria).

owever, the criticism of the AE criterion and the remedy using

he proposed PAE criterion also holds for crude Monte Carlo Sam-

ling (independent sampling on the 〈 0, 1 〉 interval). 

The proposed PAE criterion controls the optimality of point

istribution in N var -dimensional space. Additionally, using LHS

a stratified sampling scheme) guarantees a perfectly regular grid

f points projected into separate dimensions v = 1 , . . . , N var . The
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optimality of the projections into higher dimensional subspaces

(dimensions 2 , . . . , N var − 1 ) is not considered by the PAE. 

The proposed criterion is implemented in FReET software [38] .

It has also been implemented for the optimization of a sample in

the sample size extension of an existing LH sample (a method pro-

posed in [56] ). 
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Appendix A. Non-uniformity of the original AE criterion 

In this appendix, we propose an argument explaining the ten-

dency of the original AE criterion to produce a non-uniform dis-

tribution of points in the design space. Let us assume an existing

design ( N var = 2 ) that is considered to be uniform. The coordinates

along each individual direction are fixed, but the mutual ordering

can be changed. These coordinates can be obtained by MC or LH

sampling or any other convenient method. Suppose that there ex-

ist a point a = (u a, 1 , u a, 2 ) in the bottom left corner, i.e. there is no

point with lower horizontal coordinate ( U 1 ) or lower vertical coor-

dinate ( U 2 ). Consider also the point b = (u b, 1 , u b, 2 ) with the second

lowest horizontal coordinate U 1 . We will show that it is more con-

venient (in a statistical sense) to swap the first coordinate of a and

b so that in the new configuration point ā will move outside the

corner and point b̄ will have minimal U 1 . Therefore, the AE crite-

rion will systematically choose designs with empty corners. 

The situation is sketched in Fig. 13 left: the two gray areas A
and B represent regions containing the remaining points. The to-

tal value of the AE criterion for the original design is given by

(i) pairs between points in the gray areas: AA , B B and AB ; (ii)

pairs between point a and the gray areas: a A , a B; (iii) pairs be-

tween point b and the gray areas: bA , bB; (vi) pair ab . The AE

criterion value for the modified design is given by the same struc-

ture, except points a and b are replaced by ā and b̄ . Therefore: 
Fig. 13. On the non-uniformity of designs op
• The contribution of all pairs within domains AA , B B and AB
remains unchanged; 

• The contribution of pair ab equals the contribution of the mod-

ified pair ā ̄b because both pairs have the same distance; 
• We suppose that the contribution of a set of pairs a A ( bA ) sta-

tistically equals to contribution of a set b̄ A ( ̄a A , respectively);

These two areas are supposed to have a uniform distribution of

points and after the coordinate exchange the situation is sym-

metrical with respect to the horizontal axis through the center

of region A 

• The only difference then comes from a set of pairs in bB, which

is changed to b̄ B, and a B, which is changed to ā B. 

Now, we need to show that E AE (bB) + E AE (a B) > E AE ( ̄b B) +
 

AE ( ̄a B) . If this holds, we prove that the modified design is prefer-

ble and the AE criterion avoids the corner point a . We will

emonstrate validity of even stronger statement, namely that this

s valid for any point from B. Let c be an arbitrary point from re-

ion B at coordinates 
(
u b, 1 + �bc, 1 , u b, 2 + �bc, 2 

)
; we can show that

 

AE (bc) + E AE (ac) > E AE ( ̄b c) + E AE ( ̄a c) . Rewriting the AE contribu-

ions of considered pairs, we would like to show that 

1 

L 2 ac 

+ 

1 

L 2 
bc 

> 

1 

L 2 
ā c 

+ 

1 

L 2 
b̄ c 

(25)

Let us denote coordinate differences between points b and a as

1 and �2 , see Fig. 13 . We now substitute symbols A, B and C for

he following distances 

L 2 bc = �2 
bc, 1 + �2 

bc, 2 = A 

L 2 
b̄ c 

= 

(
�bc, 1 + �1 

)2 + �2 
bc, 2 

= A + 2�bc, 1 �1 + �2 
1 ︸ ︷︷ ︸ 

B 

= A + B 

 

2 
ā c = �2 

bc, 1 + 

(
�bc, 2 + �2 

)2 

= A + 2�bc, 2 �2 + �2 
2 ︸ ︷︷ ︸ 

C 

= A + C 

 

2 
ac = 

(
�bc, 1 + �1 

)2 + 

(
�bc, 2 + �2 

)2 

= A + B + C (26)
timized using the original AE criterion. 
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a  

F

w

A

 

a  

[

w  

v  

w  

s  

t  

p

 

r  

a  

f  

l  

0  

e  

T  

3

a

R

 

 

 

 

 

 

 

 

 

 

ubstituting these symbols into Eq. (25) 

1 

A + B + C 
+ 

1 

A 

> 

1 

A + C 
+ 

1 

A + B 

(27) 

nd rearranging this yields (A + C)(A + B ) > A (A + B + C) which, af-

er expanding and subtracting identical terms on both sides, yields

he final inequality 0 < BC . Since all deltas are positive, this is

 valid statement and therefore Eq. (25) is also valid. We have

roven that the optimization based on AE prefers to avoid corner

oints. 

We can also show that not only corners but any point with

ome extreme coordinate U i is attracted towards the center along

he remaining coordinates. The proof for N var = 2 is almost the

ame, except we now consider six gray areas ( Fig. 13 right).

witching a → ā and b → b̄ leads to the following changes in

E contributions (pairs within gray areas are omitted): bC = b̄ A ,

A = b̄ C, a C = ā A , a A = ā C, bD = b̄ B, bB = b̄ D, a D = ā B, a B =
¯
 D, a F = b̄ F , bF = ā F , however a E + bE > ā E + ̄b E . The last in-

quality term can be simply proven in exactly the same way as

he proof concerning the corner point. 

The proof is based on the assumption that when a given point

s in the same distance from a center of a gray area, it also makes

he same contribution to the AE criterion. This is of course not sat-

sfied exactly; it is an expectation that should be approximately

alid for a uniform design with a larger number of points in a gray

rea. A similar proof can also be obtained for other points, not only

hose with extreme coordinates. The assumption that AE design is

niform [1,3,17,18,21,24,28,58,59] is disproved. 

ppendix B. Statistical moments Z exp 

Generally, in order to determine the mean value, standard de-

iation, skewness and excess kurtosis, one can use the k th central

oments defined as 

 k = 

∞ ∫ 
−∞ 

. . . 

∞ ∫ 
−∞ 

[ g ( x ) − μ] 
k d F X ( x ) (28) 

n the case of function g () defined in Eq. (22) , the mean value μ
the first raw moment) equals 

exp = N var 

√ 

3 

3 

≈ 0 . 577 350 N var (29)

he central moments can be calculated analytically 

 2 = N var 

√ 

5 / 5 − N var / 3 

 3 = N var 

√ 

7 / 7 − N var 

√ 

15 / 5 + 2 N var 

√ 

3 / 9 

 4 = 

14 

15 

N var ( N var − 1) + 

2 

√ 

5 

5 

N var ( N var − 2) 

− 4 

21 

N var 

√ 

21 (30) 

Given these central moments, the standard deviation, skewness

nd excess kurtosis read 

exp = 

√ 

c 2 = 

√ 

N var 

√ √ 

5 

5 

− 1 

3 

≈ 0 . 337 461 

√ 

N var 

γexp = 

c 3 

c 3 / 2 
2 

= 

1 

21 

15 √ 

N var 

(
45 

√ 

7 − 63 

√ 

15 + 70 

√ 

3 

)
(
3 

√ 

5 − 5 

)3 / 2 

≈ −0 . 305 281 √ 

N var 
κexp = 

c 4 

c 2 
2 

− 3 = 

30 

7 

· 42 

√ 

5 − 10 

√ 

21 − 49 

N var 

(
3 

√ 

5 − 5 

)2 

≈ −1 . 337 875 

N var 
(31) 

The PDF of transformation g exp slowly converges towards

 Gaussian distribution. The PDF is visualized using insets in

ig. 10 . It is nonzero in unit-length intervals from zero to N var 

here it has N var branches. 

ppendix C. Probability density of Z prod 

The product of independent standard Gaussian random vari-

bles cannot be obtained in closed form, but it was derived in

52] using the Mellin transform to read 

f prod (z) = 

1 

(2 π) N var / 2 
G 

N var , 0 
0 , N var 

( 

z 2 

2 

N var 

∣∣∣∣∣
−

0 , 0 , . . . , 0 ︸ ︷︷ ︸ 
N var zeros 

) 

(32) 

here G is the Meijer G-function. In the case of two random

ariables ( N var = 2) , this density simplifies to f prod (z) = 

1 
π K 0 (| z| ) ,

here K 0 ( · ) is the zeroth order modified Bessel function of the

econd kind. The PDF is visualized in Fig. 14 . It can be seen that

he distribution has relatively heavy tails, which renders the error

roduced by the AE method more pronounced. 

Due to the symmetry of the PDF of variable Z = Z prod , all odd

aw moments equal zero; specifically the mean value μZ = 0 and

lso the skewness γZ = 0 . The even raw moments can be evaluated

rom the standard normal distribution by computing the abso-

ute moments, since it is known that E[ | Z| m ] = 

∏ N var 
i =1 

E[ | X v | m ] , m =
 , 1 , 2 , . . . The standard normal probability density reads f v (x v ) =
xp (−x 2 v / 2) / 

√ 

(2 π) and therefore E[ | X v | m ] = 

∫ ∞ 

−∞ 

| x v | m f v (x v ) d x v .

he first two even raw moments of Z are: E[ Z 2 ] = 1 and E[ Z 4 ] =
 

N var , for which the kurtosis of Z reads βZ = E [ Z 4 ] / (E [ Z 2 ]) 2 = 3 N var 

nd the excess kurtosis of Z is κZ = 3 N var − 3 . 
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