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Abstract: In this article, a novel method for the exten-
sion of sample size in Latin Hypercube Sampling (LHS)
is suggested. The method can be applied when an initial
LH design is employed for the analysis of functions g
of a random vector. The article explains how the statisti-
cal, sensitivity and reliability analyses of g can be divided
into a hierarchical sequence of simulations with subsets
of samples of a random vector in such a way that (i) the
favorable properties of LHS are retained (the low num-
ber of simulations needed for statistically significant esti-
mations of statistical parameters of function g with low
estimation variability); (ii) the simulation process can be
halted, for example, when the estimations reach a cer-
tain prescribed statistical significance. An important as-
pect of the method is that it efficiently simulates subsets of
samples of random vectors while focusing on their corre-
lation structure or any other objective function such as
some measure of dependence, spatial distribution unifor-
mity, discrepancy, etc. This is achieved by employing a
robust algorithm based on combinatorial optimization of
the mutual ordering of samples. The method is primarily
intended to serve as a tool for computationally intensive
evaluations of g where there is a need for pilot numerical
studies, preliminary and subsequently refined estimations
of statistical parameters, optimization of the progres-
sive learning of neural networks, or during experimental
design.

1 INTRODUCTION

Statistical sampling is of interest not only to statisti-
cians but also to practitioners in a variety of research
fields such as engineering, economics, design of experi-
ments, and operational research. The evaluation of the
uncertainty associated with analysis outcomes is now
widely recognized as an important part of any model-
ing effort. A number of approaches to such evaluation
are in use, including differential analysis (Cacuci, 2003;
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Tamás, 1990; Rabitz et al., 1983; Frank, 1978; Katafygi-
otis and Papadimitriou, 1996; Brza ̧kała and Puła, 1996),
neural networks (Zhou et al., 2013; Fuggini et al., 2013;
Graf et al., 2012; Panakkat and Adeli, 2009; Adeli
and Park, 1996), fuzzy set theory and fuzzy variables
(Reuter and Möller, 2010; Sadeghi et al., 2010; Anoop
et al., 2012; Hsiao et al., 2012), variance decomposi-
tion procedures (Li et al., 2001; Rabitz and Ali, 1999),
and Monte Carlo (i.e., sampling-based) procedures
(Sadeghi et al., 2010; Yuen and Mu, 2011; Hammers-
ley and Handscomb, 1964; Rubenstein, 1981; Kalos and
Whitlock, 1986; Sobol’, 1994). Another common task
is to build a surrogate model to approximate the orig-
inal, complex model, for example, a response surface
(Myers et al., 2004; Myers, 1999; Andres, 1997; Sacks
et al., 1989; Mead and Pike, 1975; Myers, 1971), a sup-
port vector regression or a neural network (Novák and
Lehký, 2006). The surrogate model is based on a set
of carefully selected points in the domain of variables;
see, for example Dai et al. (2012). Simulation of random
variables from multivariate distributions is also needed
in the generation of random fields (Vořechovský, 2008).

Conceptually, an analysis can be formally repre-
sented by a deterministic function, Z = g(X), which
can be a computational model or a physical experiment
(which is expensive to compute/evaluate) and where Z
is the uncertain response variable or a vector of outputs.
In this article, Z is considered to be a random variable
(vector). The vector X ∈ R

Nvar is considered to be a ran-
dom vector of Nvar marginals (input random variables
describing uncertainties/randomness).

Other than the multivariate normal distribution, few
random vector models are tractable and general, though
many multivariate distributions are well documented
(Johnson, 1987). A review of the available techniques
for the simulation of (generally non-Gaussian) corre-
lated vectors are listed in a paper by Vořechovský and
Novák (2009). The information on the random vector
X is therefore usually limited to marginal probability
density functions (PDFs), fi (x) (i = 1, . . . , Nvar), and a
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correlation matrix, T (a symmetric squared matrix of the
order Nvar):

T =

X1

X2
...

X Nvar

X1 X2 . . . X Nvar⎛
⎜⎜⎜⎜⎜⎜⎝

1 T1,2 · · · T1,Nvar

... 1 · · · ...

...
...

. . .
...

sym. · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠ (1)

Suppose the analytical solution to the transformation
g(X) of the input variables is not known. The task is
to perform statistical, sensitivity, and possibly reliability
analysis of g(X) given the information above. In other
words, the problem involves the estimation of statisti-
cal parameters of response variables and/or theoretical
failure probability.

Statistical and probabilistic analyses can be viewed
as estimations of probabilistic integrals. Given the joint
PDF of the input random vector fX (x), and the function
g(X), the estimate of the statistical parameters of g (·) is,
in fact, an approximation to the following integral:∫ ∞

−∞
. . .

∫ ∞

−∞
S [g(X)] fX (X) dX1 dX2 · · · dX Nvar (2)

where the particular form of the function S [g (·)] de-
pends on the statistical parameter of interest. To gain
the mean value, S[g (·)] = g (·), higher statistical mo-
ments of the response can be obtained by integrat-
ing polynomials of g (·). The probability of failure is
obtained in a similar manner; S [·] is replaced by the
Heaviside function (or indicator function) H [−g(X)],
which equals one for a failure event (g < 0) and
zero otherwise. In this way, the domain of integra-
tion of the joint PDF above is limited to the failure
domain.

Many techniques have been developed in the past to
approximate such integrals. The most prevalent tech-
nique is Monte Carlo simulation (MCS). MCS is popu-
lar for its simplicity and transparency and is also used as
a benchmark for other (specialized) methods. In Monte
Carlo-type techniques, the above integrals are numeri-
cally estimated using the following procedure: (1) draw
Nsim realizations of X that share the same probabil-
ity of 1/Nsim by using its joint distribution fX (x) (the
samples are schematically illustrated by the columns in
Figure 1); (2) compute the same number of output re-
alizations of S[g (·)]; and (3) estimate the results as
statistical averages. The disadvantage of crude MCS
is that it requires a large number of simulations (i.e.,
the repetitive calculation of responses) to deliver sta-
tistically significant results. This becomes unfeasible
when the analysis requires time-consuming evalua-

tion (in the form of a numerical or physical exper-
iment). In this respect, minimization of the number
of simulations is essential. This can be obtained in
two ways: (1) sampling should be highly efficient so
that the desired accuracy level is attained with a min-
imal number of simulations and, (2) sampling conver-
gence should be easily quantified so that the analysis
can be halted once suitably accurate results have been
obtained.

Since g (·) is expensive to compute (or otherwise eval-
uate), it is advantageous to use a more complicated
sampling scheme. The selection of sampling (integra-
tion) points should be optimized so as to maximize the
amount of important information that can be extracted
from the output data. Note that when sampling from
random vectors, it is important to control correlations
or some other dependence patterns between marginals
(copulas, etc.) as many models are sensitive to correla-
tions among inputs.

A good choice is one of the “variance reduction
techniques,” a stratified sampling strategy called Latin
Hypercube Sampling (LHS). LHS was first suggested
by W. J. Conover, whose work was motivated by the
time-consuming nature of simulations connected with
the safety of nuclear power plants. Conover’s original
unpublished report (Conover, 1975) is reproduced as
appendix A of Helton and Davis (2002) together with
a description of the evolution of LHS as an unpub-
lished text by R. L. Iman (1980). LHS was formally pub-
lished for the first time in conjunction with Conover’s
colleagues (McKay et al., 1979; Iman and Conover,
1980).

It has been found that stratification with proportional
allocation never increases variance compared to crude
MCS, and can reduce it. McKay et al. (1979) showed
that such a sample selection reduces the sampling vari-
ance of the statistical parameters of g(X) when g(·)
is monotone in each of the inputs. Iman and Conover
(1980) showed that for an additive model in which all
the inputs have uniform density functions, the variance
of the estimated mean converges at O(N−3

sim) for LHS,
which is significantly better than O(N−1

sim), which is ob-
tained for crude MCS. Later, Stein (1987) showed that
LHS reduces the variance compared to simple random
sampling (crude MCS) and explained that the amount
of variance reduction increases with the degree of ad-
ditivity in the random quantities on which the function
g(X) depends.

The LHS strategy has been used by many authors in
different fields of engineering and with both simple and
very complicated computational models (Duthie et al.,
2011; Marano et al., 2011; Hegenderfer and Atamturk-
tur, 2012; Chudoba et al., 2013). LHS is especially suit-
able for statistical and sensitivity calculations. However,
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Fig. 1. Left: Extension of sample size with correlation control over the extended part. Right: Estimated correlation matrix with
highlighted entries affected by a swap.

it is possible to use the method for probabilistic assess-
ment if curve fitting is employed. LHS has also been
successfully combined with the importance sampling
technique (Olsson et al., 2003) to minimize the variance
of estimates of failure probability by sampling impor-
tance density around the design point (the most proba-
ble point on limit state surface g(X) = 0). Optimal cov-
erage of a sample space consisting of many variables
with a minimum of samples is also an issue in the theory
of design of experiments, and LHS and related sampling
techniques have their place in that field.

When using LHS, the choice of sample size is a prac-
tical difficulty. A small sample size may not give accept-
able statistically significant results, while a large sam-
ple size may not be feasible for simulations that take
hours to compute. Examples of such complicated com-
putations include models in computational fluid dynam-
ics, crashworthiness models based on the finite element
method, and models used in the statistical analysis of
nonlinear fracture mechanics problems (Bažant et al.,
2007; Vořechovský and Sadı́lek, 2008; among others),
see also the numerical example in this article. In many
such computer analyses it is impossible to determine the
sample size needed to provide adequate data for statisti-
cal analysis a priori. Therefore, the ability to extend and
refine the design of an experiment may be important. It
is thus desirable to start with a small sample and then
extend (refine) the design (using more samples during
the estimation of integrals) if it is deemed necessary.
One needs, however, a sampling technique in which pi-
lot analyses can be followed by an additional sample
set (or sets) without the need to discard the results of
the previous sample set(s). The problem is depicted in
Figure 1, where the extension of the sampling plan is
illustrated by empty circles.

Note that in crude MCS the continuous addition of
new sample subsets to an existing set can be performed
without any violation of the consistency of the whole
sample set. However, if some kind of variance reduc-

tion technique is used (such as LHS), one has to proceed
with special care.

This article describes a simple technique for the sam-
ple extension of an LH-sample. The article is based
on an earlier publication by the author Vořechovský
(2006), which saw minor updates in Vořechovský (2009,
2012b). A related extension technique for LHS was de-
veloped at the same time by Tong (2006), but it does
not consider correlated variables. Another related pa-
per was produced by Sallaberry et al. (2008), who de-
scribed a method for doubling the sample size (by repli-
cating the samples) in LHS while employing a form
of correlation control over the input random variables.
Later, a related technique appeared in the literature
Qian (2009) under the name nested Latin hypercube de-
sign. A nested LH-design with two layers is defined as
being a special LH-design that contains a smaller LH-
design as a subset. The need to extend the sample size
in LHS (to “inherit an existing LH-sample”) also arose
during the building of a sparse polynomial chaos expan-
sion for stochastic finite element analysis (Blatman and
Sudret, 2010). Their technique, however, may not yield
a true LH-sample with uniformly represented probabil-
ities.

The present article starts with a review of standard
LHS in Section 2. The development of the refinement
technique for a single random variable is presented
in Section 3. Section 4 extends the approach to mul-
tivariate cases by employing an advanced correlation
control algorithm. The rest of the article presents nu-
merical convergence studies and a comparison of the
performance of the refinement technique with that of
standard LHS.

2 STANDARD LHS

LHS is a special type of MCS which uses the stratifica-
tion of the theoretical probability distribution functions
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Fig. 2. Sample selection for a single random variable in LHS.

of individual marginal random variables in such a way
that the region of each random variable Xi is divided
into Nsim contiguous intervals of equal probability, in-
dexed by j = 1, . . . , Nsim, in consistency with the corre-
sponding distribution function Fi ; see Figure 2. This is
achieved by dividing the unit probability interval into
Nsim probability intervals of identical length (probabil-
ity), 1/Nsim. Each jth interval is bounded by the lower
probability bound π j−1 and upper probability bound π j ,
where

π j = j/Nsim, j = 1, . . . , Nsim (3)

The corresponding interval over the values of variable
Xi , from which one representative x j must be selected,
is bounded (see Figure 2) so that x j ∈ 〈ξi, j−1, ξi, j 〉, where

ξi, j = F−1
i (π j ) ,

i = 1, . . . , Nvar,

j = 1, . . . , Nsim
(4)

There are several alternative ways of selecting the
sample values from these intervals (Vořechovský and
Novák, 2009). One such option is to generate a ran-
dom sampling probability for each interval bounded by
〈π j−1, π j 〉 and perform an inverse transformation of the
distribution function, such as the one in Equation (4).
Another option is to select the mean value from each
interval (the centroid of the shaded area in Figure 2)
as in (Keramat and Kielbasa, 1997; Huntington and
Lyrintzis, 1998):

xi, j =

∫ ξi, j

ξi, j−1

x fi (x) dx∫ ξi, j

ξi, j−1

fi (x) dx

= Nsim

∫ ξi, j

ξi, j−1

x fi (x) dx (5)
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Fig. 3. Illustration of a random trial in the correlation control
algorithm—a swap of samples j and k of variable X2.

In this article, the most commonly used strategy is
preferred: the median of each interval is selected by tak-
ing the following set of sampling probabilities:

p = {
p1, p2, . . . , p j , . . . , pNsim

}
: p j = j − 0.5

Nsim
(6)

These sampling probabilities form a regular grid over
the unit probability region; see the solid circles in
Figure 2. They can be used to form an Nvar × Nsim ma-
trix P of sampling probabilities Pi, j , where each row
is a permutation of the vector of sampling probabili-
ties p. The samples of arbitrary continuously distributed
variable Xi ∼ P (Xi ≤ x) ≡ Fi (x) are selected using the
inverse transformation of the probabilities (entries) in
matrix P:

xi, j = F−1
i (Pi, j ) ,

i = 1, . . . , Nvar,

j = 1, . . . , Nsim
(7)

These samples then form a sampling plan: a matrix of
the dimensions Nvar × Nsim that contains the values se-
lected from X ; see the solid circles in Figure 1 for a di-
agram of the sampling plan for four random variables
and four simulations. Another example of a sampling
plan but with two random variables and six simulations
can be found in Figure 3.

At the beginning of the process, sampling proba-
bilities p from Equation (6) are sorted in ascending
order. They form rows in P . In LHS it is necessary to
minimize the difference between the target correlation
matrix, T, and the actual correlation matrix, A, which
is estimated from the generated sample. The difference
between these two matrices can be quantified by a
suitable matrix norm (see, Vořechovský and Novák,
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2009). This matrix norm can be minimized by changing
the mutual ordering of the samples in the sampling
plan; see the illustration of a swap in Figure 3. Many au-
thors use random permutations to diminish undesired
correlation between variables, though this method has
been shown (Vořechovský, 2012a) to deliver relatively
large errors in correlation with small sample sizes.
Therefore, Vořechovský and Novák (2009) proposed
a combinatorial optimization algorithm based on simu-
lated annealing to control correlations among sampling
plan rows. This rank optimization method seems to be
the most efficient technique for exercising correlation
control over samples of univariate marginals with
fixed values. In the following study it is shown how
the algorithm may also be exploited to optimize the
ranking of the extended part of the sampling plan; see
the empty circles in Figure 1.

Let us assume that the initial LH-sampling plan al-
ready exists and that the task is to add new simula-
tions to it so that the aggregated sample will be a true
LH-sample. It is proposed that this be achieved in two
steps: (1) the extension of the sample for each univari-
ate marginal variable Xi , i = 1, . . . , Nvar, and (2) the op-
timization of the order of the added samples for each
variable to control the dependence pattern of the whole
sample (i.e., to control the spatial distribution of the
points). These two steps are described in the following
two subsections.

3 SAMPLE SIZE EXTENSION ALGORITHM:
UNIVARIATE SAMPLING

In this section, a particular design for an aggregated
sample set denoted as HLHS is described and proposed.
The abbreviation stands for hierarchical Latin Hyper-
cube Sampling. In this method, the previously selected
sampling probabilities from Equation (6) constitute the
parent subset, pold. Its child subset, padd, is constructed
in such a manner that each sampling probability of
pold will “generate” t offspring sampling probabilities.
The additional subsets themselves are not LH-samples.
However, if such a subset is combined with the previous
subset, one obtains an exact LH-sample set, ptot. The
size of the preceding LH-sample can be arbitrary.

The extension of the sample for each random variable
can be performed for arbitrary distribution Fi because
this distribution function transforms the desired density
into a uniform distribution over the interval 〈0, 1〉. Since
the property of the one-dimensional uniformity of sam-
pling probabilities is going to be preserved in HLHS,
the problem is reduced to finding a regular grid over the
unit probability interval 〈0, 1〉. If the aggregated sam-
ple is truly an LH-sample with uniformly distributed

sampling probabilities, the extended sample size must
be obtained either by (1) replicating the same sampling
probabilities or by (2) adding new sampling probabili-
ties in such a way that the aggregated vector of sampling
probabilities will form a regular grid. The second option
has been selected for HLHS because it is argued that
designs should be “noncollapsing.” When one of the in-
put variables has (almost) no influence on the black-
box function g(·), two design points that differ only in
this parameter will “collapse,” that is, they can be con-
sidered as being the same sampling point that is evalu-
ated twice. This is not a desirable situation. Moreover,
as shown by Hansen et al. (2012), a replicated sample
(a sample obtained with identical sampling points that
have been mutually reordered) may not bring any addi-
tional information. Therefore, two design points should
not share any coordinate values when it is not known
a priori which parameters are important. The proposed
HLHS method fulfills this requirement.

Let us use the following notation:

ptot = pold ∪ padd (8)

where pold is the existing LH-sample with Nold simula-
tions, padd is the extension of the LH-sample with Nadd

simulations, and ptot is the aggregated vector of sam-
pling probabilities with Nsim simulations:

Nsim = Nold + Nadd (9)

Let t denote the refinement factor, where t is a positive
even integer. The added sample size is

Nadd = t Nold (10)

so that

Nsim = Nold + Nadd = (t + 1)Nold (11)

The smallest possible value of t is two, which means that
double the already sampled values are added to the cur-
rent set; see Figure 4 left. The total sample size is then
Nsim = 3Nold. Since the sample can be refined repeat-
edly (hierarchically), the slowest addition (t = 2) leads
to the following sample size after r extensions:

Nsim = 3r Nold (12)

In order to achieve the uniform distribution of sam-
pling probabilities in p ≡ ptot given in Equation (6), the
sampling probabilities that were already used in set pold

must be ignored. In particular, to obtain padd, all indices
j = 1, . . . , Nsim that follow the equality

( j − 1)(mod(t + 1)) = t/2, (13)

must be ignored as they are already present in
pold. Here, pold is the modulo operation; a(modb) is
the remainder of the Euclidean division of a by b.
When, for example, t = 2, the following indices are
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Right: One step in the extension of sample size with the refinement factor t = 4 and an initial design with two samples.

elpmasdloehtlauqetessiyarra’p’nixedni//;dloN=xditni size
for( int j=1 ; j <= Nsim ; j++ ){ //loop over all indices

if( (j-1)%(t+1) == t/2 ) continue; //skip this ’old’ sampling probability
p[idx] = (double) (j-0.5) / Nsim; //new sampling probability
idx++; //increase index by one

}

Fig. 5. Fragment of C code responsible for computation of the additional sampling probabilities padd.

skipped: j = 2, 5, 8, 11, . . . while the remaining indices
j = 1; 3, 4; 6, 7; 9, 10; . . . are used to obtain padd. The
fragment of C code in Figure 5 shows a cycle that fills
the vector of sampling probabilities ptot with the addi-
tional part padd.

In order to illustrate the regular distribution of the
sampling probabilities, Figure 4 (left) shows the situa-
tion for an initial design with just one simulation (N0 =
1) and the refinement factor t = 2. Figure 4 (right) il-
lustrates the situation for Nold = 2 and t = 4 (four off-
springs). This can be advantageous in cases when, after
performing Nold analyses, the analyst plans to extend the
sample size more rapidly than just by doubling the pre-
vious number. Or, for example, quadrupling Nold may
be more desirable than doubling it and immediately af-
ter that doubling Nsim again.

4 SAMPLE SIZE EXTENSION ALGORITHM:
MULTIVARIATE SAMPLING AND CONTROL

OVER DEPENDENCE

The proposed concept of the HLHS method for a sin-
gle variable can be easily extended to a multivariate set-
ting. Suppose the problem to be analyzed via sampling
features Nvar variables. The initial LHS design, with
Nold sampling probabilities pold, has already been per-
formed (sample ordering has already been optimized
to conform to the target dependence structure). Sup-
pose also that this design has already been utilized

and the Nold results with function g(X) are obtained.
The points in the existing design must therefore remain
unchanged.

Now, the new sampling probabilities padd are avail-
able via the application of the refinement of the
grid of sampling probabilities (see the preceding sec-
tion). These new sampling probabilities will be used in
Equation (7) to obtain the additional sample. The only
problem is thus to achieve the optimal reordering of the
additional sample set for each random variable (row) in
such a way that the aggregated sample matches the tar-
get multivariate structure as much as possible. It is pro-
posed that the optimal pairing (dislocation of the points
in Nvar-dimensional space) be achieved by application
of the above-mentioned combinatorial optimization al-
gorithm described in Vořechovský and Novák (2009).

In fact, the algorithm performs the same kind of job as
in the preceding design with Nold points. The only differ-
ence is that mutual ordering can only be changed for the
new sampling points, that is, the points with the indices
Nold < j, k ≤ Nsim; see Figure 1. This can be achieved
very easily in the above-mentioned algorithm by speci-
fying the lower bounds on the indices j, k for swapped
values.

Of course, when optimizing the mutual ordering of
the additional sample set, the objective function (e.g.,
the correlation error) also takes into account the pre-
ceding, old sample set. In this way, any possible errors in
correlation that may have appeared in the old (smaller)
design are automatically reduced because the algorithm
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for correlation control compensates for them while op-
timizing the ordering of the new sampling probabilities.

A valuable aspect of this approach is that the
marginal distributions of the original random vectors re-
main intact, and the algorithm merely provides a key
to re-ordering the elements of the original random vec-
tors. In this sense, the proposed algorithm is a truly
“distribution-free” algorithm, as it does not depend on
the distribution functions featured in the problem.

Let us focus on the common situation case in which
the correlation error is the objective function to be min-
imized and the correlation estimator is either Pearson
linear or Spearman’s rank correlation coefficient. In
both cases, correlation between a pair of variables, X
and Y , represented by vectors of Nsim values x j and y j ,
can be calculated as the dot product of two vectors. This
can be shown using the linear Pearson’s correlation;
computation of the Spearman correlation takes place in
an identical manner, except that the sample set is re-
placed by integer ranks; see, for example, Vořechovský
(2012a). The linear Pearson’s correlation estimator for
the data representing a pair of random variables is given
by:

ρxy =

Nsim∑
j=1

(x j − x) (y j − y)√
Nsim∑
j=1

(x j − x)2

√
Nsim∑
j=1

(y j − y)2

(14)

For the correlation control algorithm, the values can be
temporarily standardized by subtracting the mean value
and dividing this by the standard deviation. After that,
the correlation coefficient reads:

ρxy =

Nsim∑
j=1

x j y j

(Nsim − 1)
(15)

If all the values in the sample sets are further divided
by

√
Nsim − 1, the correlation can be computed simply

as the dot product:

ρxy =
Nsim∑
j=1

x j y j =
Nold∑
j=1

x j y j

︸ ︷︷ ︸
fixed ordering

+
Nsim∑

j=Nold+1

x j y j

︸ ︷︷ ︸
ordering to be optimized

(16)

Any swap of a pair of values with indices j, k of any
variable i only influences the Nvar − 1 correlations in
the estimated correlation matrix A because the affected
variable i has correlations with Nvar − 1 variables; see
Figure 1 (right). To update each of these Nvar − 1 corre-
lation coefficients, one multiplication and three subtrac-
tions must be computed:

ρupd
xy = ρxy − x j y j − xk yk + x j yk + xk y j

= ρxy − (x j − xk) (yk − y j ) (17)

Therefore, the actual number of simulations does not
influence the speed of the algorithm and the fact that
part of the sample is fixed is not a problem.

Once the ordering of the additional part of the sample
is optimized, the resulting sampling plan uses the same
sampling probabilities as a sample that would be simu-
lated at Nsim by classical LHS, that is, in one step. The
only source of different performance may lie in the fact
that the optimization of mutual ordering has been per-
formed for the two subsamples successively. It can be
expected that, the performance of the aggregated sam-
ple set determined during the estimation of the statisti-
cal characteristics of the studied function g(), can only
be equally as good as in standard LHS at the same sam-
ple size. It can be expected that HLHS only provides
just slightly worse results than LHS when the sample
size Nold is extremely small. This is because the corre-
lation errors (and also other measures, such as spatial
uniformity) decrease with increasing sample size.

The following paragraph is focused on the case in
which the shuffling algorithm controls correlations. As
shown by Vořechovský and Novák (2009) and also in
Vořechovský (2012c), the subsequent addition of sam-
ples has no negative impact on the quality of the corre-
lation structure of the resulting sample set. This is also
true for random ordering (see Vořechovský, 2012a). It
should be noted that when Nsim ≤ Nvar, which can eas-
ily happen especially in initial designs, the estimated
correlation matrix, A, is singular and positive semidef-
inite. The associated correlation error drastically de-
creases when Nsim exceeds Nvar. In these situations, the
average error in correlation is approximately N−5/2

sim Nvar

with the coefficient of variation 1/Nvar (Vořechovský,
2011). More information on this issue can be found in
Vořechovský (2012c).

This potential error, a problem stemming from the
lower flexibility available due to successive sampling,
is visualized in Figure 6. The figure shows the evolu-
tion of a bivariate sample selection in HLHS with uni-
formly distributed variables (or sampling probabilities).
The left-hand side shows the selection with uncorre-
lated variables (T = 0), while the middle column has
T = −0.9. Both cases start with the initial design featur-
ing only one sampling point, and the extensions double
the old sample size. During the first extension, there are
only two ways to pair the two new coordinates, leading
either to perfect positive or negative dependence. Dur-
ing extension no. 2, this dependency is efficiently sup-
pressed by balancing the correlation. However, if the
correlation control algorithm would have the freedom
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to pair all the sampling probabilities, the result would
be slightly better. This problem disappears very quickly
as the sample size increases. Yet, for small sample sizes,
the flexibility provided by HLHS may be offset by a
small decrease in the ability to fulfill the correlation cri-
teria.

It can be argued that a good design for a computer
experiment should provide information about all sec-
tors of the experimental region. Uneven designs can
yield predictors that are very inaccurate in sparsely ob-
served parts of the experimental region. It can be seen

that there are several unexplored regions and also clus-
ters of points in Figure 6 (left). The reason why this
happens is that the objective function to be minimized
in the pairing phase of the proposed technique is the
correlation error alone, without other criteria. In or-
der to deliver more uniform coverage of the probabil-
ity space, another criterion can be used, for example, in
linear combination with the correlation criterion. There
are several standard criteria (Husslage, 2006; Husslage
et al., 2011) that can be employed which are known from
low-discrepancy sequences, minimax and maximin de-
signs, Audze-Eglais design, or space-filling designs. The
extension of the proposed algorithm to these criteria is
straightforward. Figure 6 shows the evolution of a bi-
variate sample selection in HLHS with uniformly dis-
tributed variables, where the objective function for op-
timization (minimization) is the Audze-Eglais criterion
(potential energy U) (Bates et al., 2003):

U =
Nsim∑
j=1

Nsim∑
k= j+1

1

L2
j,k

, L2
j,k =

Nvar∑
i=1

(xi, j − xi,k)2 (18)

where L j,k is the distance between points j and k ( j �= k)
in Nvar-dimensional space.

5 NUMERICAL EXAMPLES: FUNCTIONS
OF RANDOM VECTORS

The following text documents the convergence of esti-
mates of various functions with increasing sample size.
In particular, the proposed HLHS method is compared
to standard LHS and also to crude MCS. In all three of
the compared techniques, the same algorithm for cor-
relation control is employed. The goal is to show the
extent to which the flexibility in the selection of the ini-
tial sample size in HLHS influences the performance at
the final sample size Nsim compared to classical LHS if
calculated also for Nsim.

It is impossible to explore all existing functions. Sev-
eral test functions have been selected to represent the
possible functions that may appear in practice. For all
these functions, the ability to estimate the mean value
μZ and standard deviation σZ of the transformed vari-
able Z = g(X) is presented.

In MCS the selection of sampling probabilities is ran-
dom (it depends on sequences generated by a pseu-
dorandom number generator). In LHS and HLHS the
sampling probabilities are deterministic. However, in all
three sampling techniques the pairing algorithm based
on simulated annealing depends on a pseudorandom
number generator. That is why all the results (μZ and
σZ ) are calculated repeatedly with different random
number generator settings (seeds) and the averages and
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sample standard deviations (sstd) are presented. This
gives the reader an idea regarding the variability of
the obtained estimates. Of course, MCS always delivers
greater variance of estimated μZ and σZ than LHS and
HLHS, which are variance reduction techniques. The
number of runs with identical Nsim, from which the av-
erage and sstd are calculated and plotted as error bars,
is 100.

The studies with HLHS are performed with various
numbers of simulations in the initial design (N0) and the
design is usually hierarchically refined many times until
Nsim reaches approximately 6,000. The refinement fac-
tor t is always set to the minimum possible value, 2.

5.1 The sum of Gaussian random variables

The distribution of the sum

gsum(X1, X2) = X1 + X2 (19)

of two jointly normally distributed variables, X1 and
X2, with Pearson’s correlation ρ, is normal with a mean
value of μsum = μX1 + μX2 and a variance of σ 2

sum =
σ 2

X1
+ σ 2

X2
+ 2σX1σX2ρ. Two cases are considered regard-

ing Pearson’s correlation, an independent case (ind) and
a correlated case (cor) with ρ = −0.9. With no loss of
generality, standardized variables are considered so that

μind
sum = μcor

sum = 0 (20)

σ ind
sum =

√
2 ≈ 1.414 214 (21)

σ cor
sum = 1/

√
5 ≈ 0.447 214 (22)

5.2 The product of independent Gaussian random
variables

The PDF of the product

gprod(X1, X2) = X1 X2 (23)

of two independent standard normally distributed vari-
ables, X1 and X2, is

fprod (z) = 1
π

K0 (|z|) (24)

where Kn(x) is the modified Bessel function of the sec-
ond kind. Integrating the above PDF over (−∞,∞)
for statistical moments provides the analytical zero
mean and unit variance. Note that in a nonstandardized
and correlated case, the mean value μprod = μX1μX2 +
ρσX1σX2 and the variance σ 2

prod = μ2
X1

σ 2
X2

+ μ2
X2

σ 2
X1

+
σ 2

X1
σ 2

X2
(1 + ρ2) + 2ρμX1μX2σX1σX2 .

5.3 The minima of independent Weibull random
variables

The distribution of the minima (extremes):

gmin(X1, X2) = min(X1, X2) (25)

of n = 2 independent and identically distributed
Weibull variables, X1 and X2, with Weibull modulus m
and scale parameter s, is Weibullian, with the shape pa-
rameter m (the coefficient of variation of the result re-
mains unchanged from that of X) and the scale param-
eter sn = s · n−1/m . The mean value of X involves the
Gamma function �: μX = s � (1 + 1/m). The coefficient
of variation reads

covX =
√

� (1 + 2/m) /�2 (1 + 1/m) − 1 (26)

The mean value and standard deviation of the trans-
formed variable are

μmin = sn�

(
1 + 1

m

)
= s · n−1/m · �

(
1 + 1

m

)
(27)

σmin =
√

s2
n · � (1 + 2/m) − μ2

min (28)

For the selection of scale parameter s = 1 and shape
parameter m = 12 the results are

μmin ≈ 0.904 501, σmin ≈ 0.091 550 (29)

This may be applied, for example, to the strength of a
series system (the weakest link model).

5.4 The sum of the cosines of a pair of independent
Gaussian random variables

Consider the sum of the cosines of two independent
standard Gaussian variables, X1 and X2

gcos(X1, X2) =
Nvar∑
i=1

cos(Xi ) (30)

The mean value and variance of this transformation
equal μcos = Nvar exp (−1/2) , σ 2

cos = −Nvar exp (−1) +
Nvar [1 + exp (−2)] /2. In the case of Nvar = 2, the ap-
proximate values are: μcos ≈ 1.213 061, σcos ≈ 0.632 120.

5.5 The sum of the squares of independent Gaussian
random variables

The distribution of the sum of the squares

gsqr(X) =
Nvar∑
i=1

X2
i (31)
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of independent standard Gaussian variables Xi , i =
1, . . . , Nvar is an χ -squared distribution with the mean
value and standard deviation

μsqr = Nvar , σsqr =
√

2Nvar (32)

5.6 The sum of the exponentials of independent
Gaussian random variables

Consider the sum of the exponentials of independent
standard Gaussian variables Xi , i = 1, . . . , Nvar:

gexp(X) =
Nvar∑
i=1

exp
(−X2

i

)
(33)

The mean value and standard deviation of the trans-
formed variable are

μexp = Nvar

√
3/3 ≈ 0.577 35Nvar (34)

σexp =
√

Nvar

√√
5/5 − 1/3 ≈ 0.337 46

√
Nvar (35)

6 RESULTS AND DISCUSSION

In this section, the results obtained with the six test func-
tions are discussed. The convergence has been studied
with (1) just a pair of random variables (Figure 7) and
(2) two functions have been selected to show the de-
pendence of the convergence on the number of vari-
ables Nvar; see Figure 8. In all the plots, the analytical
solutions to which the results converge are denoted by a
hatched line. In most of the plots, the results for HLHS
are obtained for the initial sample size N0 = 3 (the lines
with empty circles begin at Nsim = 3).

In both multiplots, the left-hand side presents the
convergence of the estimated mean value and the right-
hand plots present estimates of standard deviations.

In all the cases, the performances of LHS and HLHS
in estimating the mean value are practically identical.
The estimated mean value has almost no scatter (the
variance of the estimate is reduced to practically zero).
The plots also show that MCS estimates have relatively
large variance that reduces with increasing sample size.
The average estimates of LHS and HLHS are usually
slightly biased at very small sample sizes (Nsim � 10).

In Figure 7 (left), the penultimate function gsqr has
been evaluated with various initial sample sizes, N0. The
plots of mean value estimates overlap, and therefore it
can be concluded that the number N0 has no impact on
the estimated mean value.

Figure 8 (left) also shows that the variance of MCS
in estimating the mean value depends on the number of

random variables (even though the convergence rate is
independent of Nvar).

The situation is slightly different in the case of esti-
mated standard deviation. It can be seen that the conver-
gence of HLHS is slightly worse than that of LHS at the
same (small) sample size. There are two reasons for this.
First, when the sample size is very small, the correlation
coefficient of the initial design in HLHS can be far from
that which is desired. Even if the HLHS method com-
pensates for the errors upon adding new sample points,
a correlation coefficient obtained from standard LHS
with a larger sample produced all at once may be bet-
ter. This potential error in correlation (the uniformity
of coverage of the sampling region with respect to the
joint PDF) may distort the estimates.

The second reason lies in the different method of se-
lecting sampling probabilities used in LHS and HLHS,
namely the difference between selecting the mean val-
ues of intervals (Equation 5) and selecting the medi-
ans (Equation 6). As explained and documented by
Vořechovský and Novák (2009), selection of the mean
values yields samples with smaller error in sstd (and the
arithmetical averages [aave] match the mean values ex-
actly). This method is therefore preferable when using
LHS. In the proposed HLHS method, however, sam-
pling is performed using the medians, as then the sam-
pling probabilities form a regular grid that can be easily
refined.

In Figures 7 (right) and 8 (right), it can be seen that
the average of the estimated standard deviation is usu-
ally biased for all three methods when Nsim is small.
Moreover, Figure 8 (right) shows that the bias in the
standard deviation estimated by LHS and HLHS de-
pends on Nvar. The more random variables there are,
the greater the bias.

Figure 7 (top row) compares the convergence for the
estimates of a sum of two random variables that are ei-
ther independent or highly (negatively) correlated. It
can be seen that the quality of estimates obtained with
LHS and HLHS does not depend on the correlation be-
tween the input variables. However, the average esti-
mate of MCS is somewhat biased for small Nsim in the
correlated case.

While efficient sampling strategies, such as optimized
LHS, may allow a target accuracy to be reached with a
minimal number of simulation runs, the ability to halt
the simulations when sufficient accuracy has been at-
tained also reduces the computational cost. So, given
the choice of a sampling method for studying a com-
puter model, a natural yet difficult question is how
many simulation runs to use. This issue is addressed in
Schuyler’s (1997) article on “how many trials is enough”
and also in Gilman’s (1968) brief survey on stopping
rules. A detailed discussion on measuring the sampling
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Fig. 9. Three point bending of notched concrete specimens. Left: Geometry. Right: Typical calculated diagram and the definition
of output variables.

convergence in MCS, LHS, and replicated LHS with the
aim of assessing the accuracy with which decisions can
be made on when to halt the simulation process can be
found in a recent paper by Janssen (2013).

To conclude, the performance of the proposed HLHS
method is almost identical to that of standard LHS when
carried out with the same number of model evaluations.
The small decrease in the accuracy of HLHS is, for prac-
tical problems involving time-consuming model evalua-
tions, balanced by the great advantage of HLHS, which
is its ability to increase the sample size adaptively based
on current progress.

The fact that the sample size increases relatively
quickly upon the addition of a new sample is the
price paid for the perfect uniformity of marginal vari-
able sampling probabilities. If the sample size increase
presents a significant problem, the algorithm can be
easily adjusted to deliver only replications of the sam-
pling probabilities combined with the shuffling of mu-
tual ranks so as to avoid repetitions of the same points
in the sample space of all random variables. This can
be solved for uncorrelated cases, and statistical corre-
lation can later be induced by using the Nataf (1962)
model (exploiting Cholesky transformation or orthogo-
nal transformation using eigenvalues of the target cor-
relation matrix T).

7 NUMERICAL EXAMPLE:
FRACTURE-MECHANICS ANALYSES

The following numerical example is included to illus-
trate the application of the suggested technique to a re-
alistic problem involving complex analysis. The prob-
lem of the initiation and growth of cracks in notched
concrete specimens loaded in three point bending has
been selected. Three material properties are considered
as random variables—tensile strength ft, Young’s mod-
ulus E , and fracture energy Gf. The analysis aims at es-

timating the mean value, standard deviation, and also
the PDF of two response variables, namely the peak
force, Fmax, and the crack mouth opening displacement
(CMOD) corresponding to the peak force, cmax. The
shape of the concrete specimens and the inputs and re-
sponse variables are depicted in Figure 9. The selected
concrete specimen shape has been tested experimen-
tally (Hoover et al., 2013) as a part of a larger experi-
mental setup focused on the size effect phenomenon.

The simulated response of specimens is calculated
by employing nonlinear finite element analysis as im-
plemented in the OOFEM software package (Patzák,
2000; Patzák and Bittnar, 2001; Patzák and Rypl, 2012).
OOFEM is an Object Oriented Finite Element Solver
with an impressive range of options and good docu-
mentation. The progressive failure that is crack growth
is modeled by employing the isotropic damage model
for tensile failure (Idm1) implemented in the OOFEM
program. This isotropic damage model assumes that
stiffness degradation is isotropic, that is, stiffness mod-
uli corresponding to different directions decrease pro-
portionally and independently of the loading direction.
Equivalent strain, which serves as a scalar measure of
the strain tensor, is defined according to the Mazars
model; the definition is based on the norm of the posi-
tive part of the strain. Since the growth of damage leads
to softening and induces localization of the dissipative
process, attention must be paid to proper regularization.
The model is local, and the damage law with exponen-
tial softening is adjusted according to the element size
(crack-band approach).

The analyses are relatively time consuming, partly
due to the fine mesh used. The band of ligament ele-
ments above the notch of width 1.5 mm are squares of
approximately the same size, and therefore there is a
row of 123 finite elements. In the rest of the domain,
squared elements of size 4.3 mm are used so that the
depth of the specimen is discretized into 50 finite ele-
ments. The same element size is used for the steel blocks
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Fig. 10. Convergence of estimated moments (standardized by the values from Table 1) of input and output variables. Left:
Arithmetical averages (aave). Right: Sample standard deviations (sstd).

supporting the specimen and also for the block at the
top of it (block dimensions: 27.5 × 17.2 mm). Each anal-
ysis takes approximately one hour on a modern PC.

As with the numerical examples presented in Section
5, three types of Monte Carlo analysis were performed,
namely crude Monte Carlo Sampling (MCS), standard
LHS, and the proposed HLHS method. The analyses
with MCS and LHS were performed with all the sample
sizes Nsim that appear in progressively extended sam-
ple sizes in HLHS: Nsim = 3(i) = 1, 3, 9, 27, 81, 243, 729
(i = 0, . . . , 6). Therefore, the least number of simula-
tions in total were performed with HLHS, where the
total sample size equalled 729. The total number of eval-
uations of the model performed with LHS and MCS
was the sum of all the sample sizes,

∑
3i = 1, 093. Since

the simulations are time consuming, only one run of
all the sets of simulations has been performed for each
technique, and so information on the statistical scat-
ter of estimated parameters is not available. The pre-
sented numerical examples mimic the situation for
which HLHS is designed: the user progressively adds
time-expensive simulations with the intention of keep-
ing the total number of model evaluations low. The evo-
lution of the target estimated statistical parameters, pos-
sibly accompanied with the testing of hypotheses at the
target significance level, gives a hint as to the sample
size which will be revealed as sufficient.

Table 1 summarizes the input variables that are con-
sidered to be random variables, together with the pa-

Table 1
Description of input and output variables

Variable Mean Std.
Type name and unit value dev. c.o.v. PDF

Input E (GPa) 36.5 5.48 0.15 Normal
ft (MPa) 4.38 0.88 0.2 Normal
Gf (N/m) 60 18 0.3 Normal

Output cmax (μm) 107� 17.3� 0.16� Gumbel�

Fmax (kN) 4.43� 0.83� 0.19� Normal�

Stars designate results based on numerical estimations. c.o.v. = coef-
ficient of variation.

rameters of the random variables. The table also dis-
plays estimates of the statistical moments of the two
output variables. The distribution functions of the out-
put variables are best fits selected from a list of distri-
bution functions available in FReET software (Novák
et al., 2003; Novák et al., 2014) using the goodness-of-fit
(Kolmogorov-Smirnov) test. The three input variables
were considered correlated; the correlations appear in
Figure 11.

Figure 10 presents the convergence of estimated sta-
tistical parameters of the input [output] variables to
the target [accurate] values. In particular, the figure
presents the convergence of the aave and sstd, both
standardized by the exact values. It can be seen that
in the case of MCS (bottom row), the estimations vary
for various sample sizes (compared with the variance
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Fig. 11. Top right matrix: Evolution of bivariate scatterplots obtained via HLHS accompanied with the values of Spearman rank
order correlation. Symbol sizes correspond to the numbers of sampling size extensions. Bottom left: Evolution of a bundle of

calculated force (CMOD) diagrams obtained via HLHS. The thick lines correspond to initial simulations

expressed using the error bars in previous examples);
the error can easily reach 10%. LHS and HLHS both
yield much better results than MCS. The accuracy for
LHS and HLHS is about the same. Reasonable results
for the standard deviation can already be obtained for
Nsim = 81 (the fourth extension of the sample size). The
sample averages of the inputs are identical and exact
in these two techniques (symmetrical sampling) but the
sstd evolve in a slightly different way. The reason is that
while HLHS starts by sampling the mean value (Equa-
tion 5), the medians of intervals are used (Equation 6)
for the sample size extension in order to guarantee the
even distribution of new sampling probabilities. The re-
sults obtained with LHS are gained with sampling the
mean values of intervals (see also the discussion in Sec-
tion 6). Otherwise, the techniques yield almost identical
results. Note, however, that in LHS exhausting all previ-
ous sample sizes until the fourth extension in pilot sets
would require Nsim = 1 + 3 + 9 + 27 + 81 = 121 model
evaluations, while in HLHS only 81 evaluations would
need to be performed.

The evolving bundle of diagrams calculated with
HLHS is also interesting; see bottom left in Figure 11.
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Fig. 12. Evolution of empirical histograms of output
variables obtained via HLHS.

The initial simulation with the mean values is depicted
by a thick line, while the second level adds two thin-
ner curves, etc. The scatterplots in Figure 11 show the
evolving selection of sampling points for all pairs of
input and also output variables. This information pro-
vides control over input correlations and also serves as
an important source of information on (1) the depen-
dence patterns between inputs and outputs and also (2)
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between the two output variables. For example, it con-
firms the intuitively acceptable fact that the CMOD at
peak load, cmax, exhibits perfect negative dependence
on the E modulus. On the other hand, the peak force
Fmax is strongly correlated with both tensile strength ft

and fracture energy Gf. This information can also be vi-
sualized while extending the sample size, and the sig-
nificance of the calculated sensitivities (in the form of
correlations) can easily be calculated.

The estimated PDF of the outputs may be impor-
tant information which can be gained using empirical
histograms. The evolution of these histograms is visual-
ized in Figure 12. Better information on the tails can be
obtained by adding more sampling points. This can be
done easily just by extending the sample size in HLHS.

8 CONCLUSIONS

The article proposes a technique for the sample size ex-
tension of an LH-sample in which the new sample points
are selected based on the locations of the available sam-
ple points (without exploiting information from the ob-
tained results). It is shown that the proposed adaptive
technique HLHS yields a result approximately equally
as good as that obtained from standard LHS for the
same number of model evaluations. The computational
advantage lies in the possibility to begin with a small
sample and extend it if necessary. The method is de-
signed for small sample sets (from tens to a maximum
of thousands of simulations) that can be extended and
merged together to constitute a consistent sample set
and preserve the capability to provide the variance re-
duction of estimates at the same time.

It is proposed that the desired correlation or other
types of multivariate structure description (copulas, dis-
crepancy, space-filling criteria) be induced by the previ-
ously developed combinatorial optimization technique.

Adaptive refinement can be performed as long as
some stopping criteria are met. The criteria for termi-
nation can be especially (1) the user’s decision based,
for example, on material or computing resources; and
(2) the statistical significance of an arbitrary parameter.

The typical application of the proposed HLHS is in
situations involving a computer-based model in which it
is impossible to find a way (either closed form or numer-
ical) of performing the necessary transformation of vari-
ables, and where the model is expensive to run in terms
of computing resources and time. Examples of applica-
tions include simulations of random fields, the design of
physical or computer experiments, pilot numerical stud-
ies of complicated functions of random variables, the
progressive learning of neural networks, etc.

The method is implemented in FReET software
(Novák et al., 2003; Novák et al., 2014).
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Nataf, A. (1962), Détermination des distributions de proba-
bilités dont les marges sont donnés, Comptes Rendus de
L’Académie des Sciences, 225, 42–3.
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Vořechovský, M. (2012c), Optimal singular correlation matri-
ces estimated when sample size is less than the number of
random variables, Probabilistic Engineering Mechanics, 30,
104–16.
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