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Abstract

The present study addresses the influence of variations in material properties along the multi-filament yarn on the
overall response in the tensile test. In Part I (Chudoba, Vořechovský and Konrad 2006), we have described the applied
model and studied the influence of scatter of material characteristics varying in the cross-section with no variations
along the filaments. In particular, we analyzed the influence of varying cross-sectional area, filament length and delayed
activation. Inclusion of these effects has lead to a better interpretation of the experimental data, especially with respect
to the gradual stiffness activation, post-peak behavior and some form of size effect. In the present paper, the length-
related distributions of local stiffness and strength are included in terms of theoretical considerations and by applying
the Monte Carlo type simulation of random fields. Such an approach allows us (1) to demonstrate the strong need for
including length scale to random fluctuation of strength along the filaments and (2) to combine several sources of ran-
domness in a single analysis so that their significance can be evaluated from the tensile test response.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The present work has arisen from the need to evaluate the variations of material properties in a AR-glass
multi-filament yarn used in the production of textile-reinforced concrete. The heterogeneous nature of both
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Nomenclature

A cross-sectional area
COV coefficient of variation
E Young�s modulus
E[. . .] mean value
D[. . .] variance
Pf probability of failure
Q�

n maximum tensile force of n-filament yarn normalized by n

Raa autocorrelation function
e yarn strain
kr,E limiting ratio due to the spatially varying stiffness
l nominal length of the test specimen
lq autocorrelation length
m Weibull modulus (shape parameter)
p number of material points used to discretize a filament in the bundle
n number of filaments in the bundle
nsim number of simulations
s scale parameter of Weibull distribution
Gn cumulative distribution function of normalized yarn strength Q�

n
Mi set of material points of ith filament
f(l) length effect due to the spatially varying strength
rr,E(l) length effect due to the spatially varying stiffness
l�r; l

� mean bundle strength for large n according to Daniels
l�r;n bundle MSEC for n according to Smith
l�r;n;l bundle MSEC with autocorrelation length for r
l�r;n;l;E bundle MSEC with autocorrelation length for r and E
r stress, strength
h activation strain (slack)
n filament breaking strain
h random nature
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the reinforcement and the matrix calls for thorough study of several sources of randomness that must be
accounted for simultaneously.

In the preceding paper (Chudoba et al., 2006), we have analyzed the influence of variations in the fila-
ment characteristics on the total response of a multi-filament bundle in the tensile test. The study included
variations in three parameters influencing the stiffness and stress evolution of a bundle during the loading in
different ways: filament diameter, filament length and delayed activation of individual filaments. In spite of
the differences in the form of the calculated load–strain curve, the variations in the three studied parameters
have a common effect: the peak force gets reduced with a decreasing yarn length, i.e. in an opposite direc-
tion of length dependency compared to the statistical size effect in the classical sense (e.g. Weibull, 1939;
Epstein, 1948; Bažant and Planas, 1998). The description of this reverse size effect is essential for the correct
modeling of the bundle performance in the crack bridges occurring in cementitious composites.

Up to this point, our study of variations in the filament parameters has been focused on variations across
the bundle. In the present study, we focus on the effect of the spatial distribution of the material character-
istics including their autocorrelation structure, in particular the strength r and E-modulus. In this case, we



Table 1
Material parameters identified from the yarn tensile test and used for numerical simulations

Tensile strength, r E-modulus, E Breaking strain, n ¼ r=E

Mean value r ¼ 1:25 GPa E ¼ 70 GPa njE = 1.786%
Standard deviation 0.3125 GPa 10.5 GPa 0.4464%
COV 0.25 0.15 0.25

In case of Weibull distribution (Eq. (16)) FX(x; s,m) the parameters m, s are:
Shape parameter mr = 4.5422 mE = 7.9069 mnjE ¼ 4:5422
Scale parameter sr = 1.369 GPa sE = 74.373 GPa snjE ¼ 1:9557%
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consider the randomness of the strength distribution as a stationary random process. In particular, we use a
Monte Carlo type simulation method named Latin Hypercube Sampling (Iman and Conover, 1980, 1982)
combined with orthogonal transformation of covariance matrix (e.g. Novák et al., 2000; Olsson and
Sandberg, 2002; Vořechovský and Novák, 2003) to represent random fluctuations of filament properties.
For the repeated evaluation of the randomized response we use the SFR algorithm described in Chudoba
et al. (2006).

By including both cross-sectional and length-related variations in the modeling framework we are able to
capture the whole loading and failure process during the test, including the size effect. An independent rep-
resentation of the mentioned sources of randomness in the model allows us to focus the analysis on the
separate effects in the test one after the other. Following the described calibration procedure, the influence
of the considered sources of randomness on the overall response can be traced back in a systematic way.

In the paper, we first present the applied method of capturing the size effect due to the strength fluctu-
ations along a single filament and relate the results to the local (classical) Weibull and non-local Weibull
strength-based models in Section 2. After that in Section 3, we analyze the size effect due to the variations
of the strength along the parallel system of filaments using both the stochastic numerical simulations and
the analytical and numerical models due to Daniels�s (1945), Phoenix and Taylor (1973) and Smith (1982).
The effect of the randomized stiffness along the bundle is added in Section 4. Finally, in Section 5 the sto-
chastic model is applied to the performed tests on AR-glass yarns with the demonstration of the systematic
calibration procedure for identifying the material parameters and their statistical characteristics.

Consistently with Part I (Chudoba et al., 2006), we define the set of reference parameters according to
Table 1. From here on, in all computations these parameters: (i) obey the appropriate PDF when consid-
ered random (ii) or are constants equal to the mean values otherwise. If all parameters are constant the
bundle force T as a function of bundle strain e is directly expressed as T(e) = M0(e) = nEAeH(n � e), where
n denotes the number of filaments, e stands for the bundle strain and H(z) is the Heaviside (unit step) func-
tion; H(z) = 1 for z P 0 and zero elsewhere. The breaking strain in such a perfect bundle is 1.786%. For
simplicity we assume constant filament diameter of 26 lm (circular cross-section). The material parameter
values are obtained from the laboratory tests on AR-glass multifilament yarns. We emphasize that the
results are not limited to this type of material.
2. Random strength along the filament

In the randomization of the material properties of the simulated yarn we distinguish the variability over
the filaments i 2 h1, . . . ,ni in the yarn sections and the variability of stiffness and strength parameters over
the material points of each filament Mi, j 2 h1, . . . ,pi. In the latter case of the spatial randomization (along
the filament) it is necessary to account for distance-dependent autocorrelation of properties at two sampling
points. Further, in case of strength randomization it is particularly necessary to correctly reflect the lower
tail of the distribution in order to capture its minima.
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In order to address these issues we analyze the correspondence between the two possible approaches to
spatial randomization of the strength:

• The filament is idealized as a chain of independent random parts/sub-chains with a given length and,
therefore, can be simulated by independent identically distributed (IID) random variables. This kind
of spatial strength randomness corresponds with the derivation of the Weibull integral (Eq. (1)) for
the failure probability Pf.

• The other possible approach is to include autocorrelation along the filament and represent randomness
of material parameters by one-dimensional random field (random process). This can be supported by the
argument that there must exist some distance in which the fluctuation of parameters is correlated. This
distance is independent of filament length and is a constant.

Due to the direct link between the strength randomization using the IID random variables and the
Weibull distribution of Pf with a known asymptotic behavior we will use it to verify the ability of the
stochastic model to cover the tails of the strength distribution.

2.1. Spatial strength randomization using IID

Since we are dealing with strength of a fiber, we are interested particularly in the minima of strength real-
ization over the filament length. It is well known from the theory of extreme values of IID that there are
three and only three possible asymptotic (non-degenerate) limit distributions for minima (Fisher and
Tippett, 1928) satisfying the condition Fn(x) = [1 � (1 � F(x))n]. In order to avoid degeneration we look
for the linear transformations with constants an and bn (depending on n) such that the limit distributions
L(x) = limn!infty Ln(anx + bn) = limn!11 � [1 � Ln(anx + bn)]

n. Since we are using the Weibull elemental
distribution the extreme values (minima) belong to the domain of attraction of Weibull distribution, and
the sequences of constants an and bn satisfying the recursive relation are known (see e.g. Gnedenko,
1943; Gumbel, 1958; Castillo, 1988).

Using the weakest-link model together with the Weibull-type function for concentration of defects, the
probability of failure Pf at a given level of stress r is expressed as the so-called Weibull integral (Weibull,
1939):
P f rð Þ ¼ 1� exp �
Z
l

r
s0

� �m dl
l0

� �
; ð1Þ
where the Malacuya brackets stand for positive part h•i = max(•, 0). For a given Weibull modulus (shape
parameter) m, we have a length l0 with the corresponding scale parameter of random strength distribution
s0. In the case of a single filament, the failure stress r is a positive constant so that we can rewrite Eq. (1) as
�ln (1 � Pf) = l/l0(r/s0)

m. The strength level for a chosen level of Pf can now be expressed as a function of
the filament length l:
r lð Þ ¼ s0½� lnð1� P fÞ�1=m
l0
l

� �1=m

: ð2Þ
This size effect equation is a power law represented as a straight line in the double-log plot of l vs. r with the
slope �1/m and passing through s0 at l0 (see Fig. 1d). The analytical determination of the mean strength
requires an integration over Pf and leads to an expression employing the Gamma function C:
r lð Þ ¼ s0C 1þ 1=mð Þ l0
l

� �1=m

: ð3Þ



(a) (b) (c) (d)

Fig. 1. Weibull scaling.
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The corresponding coefficient of variation (COV) of filament strength distribution is a constant indepen-
dent of the filament length given solely by the Weibull modulus m:
COV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 1þ 2=mð Þ
C2 1þ 1=mð Þ

� 1

s
: ð4Þ
Now, in order to establish the correspondence with the strength randomization by IID we visualize the
important property of the Weibull distribution (Eq. (1)): the scale parameter of the Weibull distribution
can be adjusted by for any length l1 to deliver the same Pf as for the original reference length l0:
s1
s0

¼ l1
l0

� ��1=m

: ð5Þ
The length l0 is sometimes referred to as ‘‘representative’’ but its choice is arbitrary so that we call it ‘‘ref-
erence length’’ throughout the paper.

The two chains displayed in Fig. 1b have the same length lf and different reference lengths l0 and l1 with
corresponding scale parameters s0 and s1 complying with Eq. (5). Probability density function is denoted by
PDF and cumulative density denoted by CDF. The diagram in Fig. 1a shows the scaled strength distribu-
tions corresponding to l0 and l1. For a given stress level both distributions yield the same value of Pf as
shown in Fig. 1c.

As a consequence the size effect r(l) obtained from Eq. (2) is identical for both reference lengths l0, l1 and
the scale parameters s0, s1, respectively. This can be seen on the example of the median size effect (Pf = 0.5)
displayed in double-logarithmic plot in Fig. 1d. This demonstrates the inherent feature of the Weibull dis-
tribution in the context of the weakest-link model already revealed in Eq. (5): it is arbitrarily scalable with
respect to the reference length l0.

This feature must be kept in mind when assessing the applicability of the independent identically distrib-
uted random variable simulations. Regarding the chain segments of ith fiber in Fig. 1b as sampling points
of an IID random variable simulation we may reproduce the size effect with the slope �1/m from Fig. 1b
numerically in the following way:

(1) assign to each segment j 2 h1,p = l/l0ia value of random strength rj following the distribution in
Fig. 1a,

(2) determine the filament strength by finding the minimum segment strength minj2MiðrjÞ,



440 M. Vořechovský, R. Chudoba / International Journal of Solids and Structures 43 (2006) 435–458
(3) repeat (1) and (2) in nsim number of simulations and evaluate the mean filament strength,
(4) perform the step (3) for all the filament lengths l of interest.

Realizing that the reference length of one segment l1 is arbitrarily scalable, we may perform this random-
ization with arbitrary segment length, including very small l1 ! 0 with the scaling parameter s1 ! 1 and
still obtain the same size effect. However, such a randomization has nothing to do with the real spatial dis-
tribution of strength along the filament. Obviously, the strength must remain bounded for short segments.
Otherwise, it would be theoretically possible to measure an arbitrarily high strength with very short
specimens.

This discrepancy calls for the introduction of a length scale at which the assumption of IID at the neigh-
boring sampling points must be abandoned. The anticipated shape of the size effect law reflecting the real
spatial distribution of strength for short reference lengths is plotted in Fig. 1d as a dashed line.

2.2. Spatial strength randomization using stationary random process

The length scale gets conveniently introduced in the form of an autocorrelation structure of the strength
random field. From here on any applied random field will be stationary homogeneous and ergodic with
autocorrelation function:
RaaðDdÞ ¼ exp � j Dd j
lq

� �r� �
; ð6Þ
where lq is positive parameter called correlation length of the random field. With decreasing distance d a
stronger statistical correlation of a parameter in space is imposed. By setting the power r = 2 we construct
the so called squared exponential autocorrelation function or bell-shaped or Gaussian autocorrelation
function.

Advanced simulation techniques for the simulation of underlying random variables (Latin Hypercube
Sampling) are coupled with an efficient implementation of orthogonal transformation of covariance matrix
needed for discrete representation of random fields (vectors). Latin Hypercube Sampling method is usually
used for cheap estimation of first statistical moments of response by means of simulations. This Monte
Carlo type method has been tested to converge to correct results for extremes of random variables and
the required number of simulations needed to capture the statistics of extremes accurately has been found,
too (Vořechovský, 2004, in preparation).

A method by Vořechovský (submitted for publication) with the possibility of cross-correlated random
fields has been applied to obtain material parameters reflecting the input probability distributions. For
accurate generation of uncorrelated Gaussian random variables needed for the expansion of a field the opti-
mization technique simulated annealing has been used (Vořechovský and Novák, 2002). A comparison of
efficiency of different random variable simulation techniques needed for expansion of stochastic fields with
a detailed error assessment has recently been published by Vořechovský and Novák (2003).

The numerical evaluation of the size effect remains the same as described in the previous section, except
that the strength randomization must account for the autocorrelation. Examples of the simulated random
strength field realizations are shown later in the paper in Fig. 7 for three filament lengths.

Since the most important value of the random strength process is its global minimum throughout the
filament/process length, we used very dense discretization of the field. In particular, 15 discretization points
were used within the autocorrelation length. Clearly, this imposes a limit for modeling of filaments,
let alone yarns, because such dense grids cannot be handled by today�s computers in spite of their fast devel-
opment. Fortunately, such detailed modeling of minima of long process is not necessary if we know its
asymptotic properties (as will be shown later).
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The calculated mean size effect curve (mean minima vs. length) qualitatively follows the dashed line
shown in Fig. 1d. While the right asymptote is that of the size effect obtained from the IID randomization,
the left asymptote becomes constant at the level of the mean of strength distribution. This means that for
very long filaments (l� lq), the influence of autocorrelation between neighboring points becomes negligible
and the extremes of the field become identical to extremes of IID. On the other hand, for very short fila-
ments (l � lq) the spatial fluctuations in strength become insignificant, the random strength field is replaced
by a single random variable.

The transition zone between the two asymptotes is of special interest. It is an occasional practice (e.g.
Bažant et al., 2005, 2004) to avoid the more expensive random field simulations by defining the mean size
effect as a bilinear curve consisting of the two described asymptotes with an intersection at [lq,l0]. In such
an approach the Weibull distributed IID randomization (with COV given by the Weibull modulus in Eq.
(4)) is performed with the chain segments of the length l0. Random elements larger than l0 (considered a
known material parameter) are assigned with random mean strength scaled according to Eq. (5). However,
elements smaller than l0 are assigned with the mean l0 being equal to the mean strength of the filament of
zero length and also being the mean corresponding to the length l0. In other words, the Weibull power law
gets limited by a constant level of mean strength for elements smaller than l0. Then, the mean strength of a
filament with the length l = l0 lies exactly on the intersection of the two introduced asymptotes, see Fig. 1d.
While this approach gives a good approximation of the field extremes (minima) for long filaments (large
structures), it obviously leads to an overestimation of the mean strength for lengths l � lq (see
Fig. 4(left)). The reason is that the spatial correlation is too high and strongly influences the random
strength field.

In order to introduce the statistical length scale in the Weibull power law for the size effect, we modify
Eq. (2) by introducing the length-dependent function f(l) as a replacement of (l0/l)

(1/m) in the following
form:
r lð Þ ¼ s0 � ln 1� P fð Þ½ �1=mf ðlÞ ¼ sðlÞ � ln 1� P fð Þ½ �1=m; ð7Þ
where s(l) = s0f(l), because formally we associate the length dependence of strength with the scale parameter
s. By solving Eq. (7) for Pf we see that f(l) affects only the scale but not the shape of Weibull strength dis-
tribution (CDF = Pf = 1 � exp[�r/(s0 f(l))]

m). The coefficient of variation of Weibull distribution depends
on m (similarly to the Weibull IID case) and is length-independent. Therefore, it is again given by Eq. (4).

The mean size effect can be written in analogy with Eq. (3) as
r lð Þ ¼ s0C 1þ 1=mð Þf ðlÞ ¼ sðlÞC 1þ 1=mð Þ: ð8Þ
The calculated mean of minima of one Weibull random process (single filament) covering the whole range
of lengths is plotted in the upper curve of the top left diagram in Fig. 4. The three introduced zones of the
statistical size effect are denoted: single random variable (l/lq ! 0), autocorrelated random field (l/lq � 1)
and the set of independent identically distributed random variables (l/lq ! 1).

We suggest to approximate the size effect obtained numerically using Eq. (7) with f(l) expressed by one of
the following formulae:
f lð Þ ¼ l
lq

þ lq
lq þ l

� ��1=m

ð9Þ
or
f lð Þ ¼ lq
lq þ l

� �1=m

: ð10Þ
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This approach is done intuitively by asymptotic matching (left and right asymptotes are advocated above
by the reasoning; and for the transitional sizes we use a smooth ‘‘interpolation’’). The numerically obtained
mean of minima lies in between these two approximations. The function f(l) is exploited to derive an ana-
lytical formula for combined energetic-statistical size effect of quasibrittle structures failing at crack initia-
tion (its statistical term) in Bažant et al. (2005).

It should be mentioned, that another commonly applied way of introducing the length scale into the
framework of the Weibull integral of Pf is to introduce the dependence between the sampling points of a
strength randomization using IID indirectly by averaging the instantaneous stresses in the neighborhood
of a material point (called non-local Weibull integral), see e.g. (Bažant and Xi, 1991; Bažant and Novák,
2000). However, in our case of a uni-axial stress state and elastic-brittle filaments, the stress level is constant
along the filament so that no averaging can be performed. In our opinion, this reveals an inconsistency in
combining the stress averaging and the Weibull form of the Pf in order to introduce some kind of spatial
correlation. The problem is that the key concept in deriving the Weibull integral of Pf is the independency
of the failure probability Pf,1 of a subelement on its neighbors (survival probabilities are multiplied), see
Weibull (1939). The approach of averaging misuses the length scale introduced in phenomenological terms
to mimic autocorrelation in the process zone. However, it does not necessarily reflect the statistical length
scale associated with material randomness.
3. Random strength along filaments within the bundle

Having demonstrated the correspondence between the stochastic simulation and the classical Weibull
theory we proceed in a similar way in the validation of the stochastic model for the bundle of n parallel
filaments. Again, we shall first focus on the randomization of strength using both the random process
and the simulation of independent identically distributed random variables, in order to allow for the com-
parison with the classical model of n parallel fibers formulated by Daniels�s (1945). The comparison will be
performed by means of the size effect both for the numerical (Section 3.1) and for the asymptotic analytical
(Section 3.2) forms of the Daniels�s model for the distribution of the normalized bundle strength
Q�

n ¼ sup½T ðeÞ=n�.

3.1. Comparison with Daniels�s numerical recursion

Daniels�s (1945) considered a system of n independent parallel fibers stretched between two clamps with
equal load sharing. Filaments i 2 h1, . . . ,ni share the identical distribution function of strength FX(x) =
Fi(x) = Pi(X 6 x). Apart from the random strength all other parameters are constant. The maximum tensile
force of a filament given as Q(h) = X = Ar(h) (h stands for random nature) gets randomized for the indi-
vidual filaments: Q(i) and ordered (Q(i) 6 Q(i+1)) so that the marginal probability density function of Q(i) can
be obtained in terms of fX(x) and FX(x) as (see e.g. Gumbel, 1958):
fi xið Þ ¼ i
n

i

� �
½F X ðxiÞ�i�1½1� F X ðxiÞ�n�ifX ðxiÞ: ð11Þ
The maximum tensile force of the bundle is given by
Q�
n ¼ max

16i6n
QðiÞ �

n� iþ 1

n

� �
: ð12Þ
Here, the yarn load is measured in terms of load per filament, i.e. 1/n times the total load on the system. The
distribution of Q�

n was investigated by Daniels�s (1945) under the assumption that filament strengths are



M. Vořechovský, R. Chudoba / International Journal of Solids and Structures 43 (2006) 435–458 443
independent and identically distributed random variables with known common distribution function.
Daniels�s (1945) showed the distribution function of the maximum tensile force of the bundle with (IID)
filaments to be:
Fig. 2.
Carlo s
are ske
mean f
Gn xð Þ ¼ P Q�
n 6 x

� 	
¼
Xn
i¼1

�1ð Þiþ1 n

i

� �
F X xð Þ½ �iGn�i

nx
n� i


 �
; ð13Þ
where G0(x) � 1 and G1(x) = FX(x). The distribution functions Gn(x) obtained from this recursive formula
for n = 1, 4, 8, 16 filaments are shown as dotted curves in the top diagram of Fig. 2 for forces higher than
700 N for better legibility.

In Fig. 2, we show the results of the stochastic simulation using the IID randomization of the filament
strength for the bundles with up to 800 filaments. As plotting positions of the simulations we use
i/(nsim + 1). Both the analytical and numerical results show the gradual change of the yarn strength distri-
bution from Weibull to asymptotically Gaussian for bundles with growing number of filaments n specified
in the circle. It can be seen that the agreement between the simulation and the recursive Daniels�s formula is
perfect. Nevertheless, the determination of failure probabilities at the low level of stress using Monte-Carlo
method requires large number of simulations. On the other hand, the recursive formula does not require
any additional computational effort for small probabilities. However, as n becomes larger than 32 the recur-
sion becomes very demanding and then the only way to estimate the probability distribution is to use sto-
chastic simulation. In addition, the stochastic simulation combined with the SFR algorithm delivers not
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only the strength distribution but is also able to trace the whole loading process as shown in the three
diagrams at the bottom of Fig. 2.

3.2. Comparison with available asymptotic results

For the verification of the asymptotic convergence of stochastic simulation with independent identically
distributed random filament strength we shall exploit the fact that for n ! 1 the distribution function
Gn(x) converges to normal distribution (Daniels�s, 1945). In particular, Daniels obtained positive constants
l�
r and c�r such that

ffiffiffi
n

p ðQ�
n � l�

rÞ=c�r tends to a normal random variable with zero mean and unit standard
deviation. In other words, for large n the distribution function of the normalized bundle strength, Gn(x) can
be approximated as
Table
Influen

B
T

A(l): e
B(l): m
C(l): s
D(l): m
E(l): s
F(l): p
Gn xð Þ ¼ P Q�
n 6 x

� 	
� U

x� l�
r

c�r

ffiffiffi
n

p� �
; ð14Þ
where U(Æ) stands for standard normal cumulative density. The parameters of distribution (the mean value
and variance of the bundle strength) are: l�

r ¼ E½Q�
n� ¼ x� 1� F ðx�Þ½ �, c�r

� 	2
=n ¼ D½Q�

n� ¼ x�ð Þ2F ðx�Þ 1�½
F ðx�Þ�. The result is valid under the conditions that the value x* maximizing the function l(x) = x[1 � F(x)]
is unique and positive and limx!1l(x) = 0, so l�

r ¼ lðx�Þ ¼ sup½lðxÞ�; x P 0 and for unit yarn stiffness. We
remark that some authors use the symbols l* and r* for l�

r and c�r, respectively.
By reformulating the problem in random breaking strain n rather than filament strength as done by

Phoenix and Taylor (1973) the Daniels�s result can be interpreted in more transparent fashion. With E-
modulus constant, the distribution of breaking strain is obtained by dividing the random strength by E,
see the last column in Table 2, sr ¼ Esn, mr = mn. In this case the function l(e) = lr(e) = ln(e) represents
the normalized asymptotic mean yarn load–strain function for n ! 1 and reads (a derivation misprinted in
(Daniels, 1989)):
lnðeÞ ¼
Z 1

0

qðe; nÞdF nðnÞ ¼ EAe
Z 1

0

Hðn� xÞdF nðnÞ ¼ EAe
Z 1

n�x
fnðnÞdn ¼ EAe½1� F nðeÞ�; ð15Þ
where q(e,n) is the constitutive law of a filament (see Part I) and Fn(e) [fn(e)] is the CDF [PDF] of filament
breaking strain, respectively. As noted later by Daniels (1989) such formulation in strains is more flexible
and allows one to prove the asymptotic normality of peak load sup[u(e)] under more relaxed conditions
(e.g. random elastic modulus, see later).
2
ce of randomness in material parameters on the measured load–strain diagrams with increasing length

A F

1
D

E

C

e [%]

[N] Fixed distributions

lkðiÞ A(i) lhðiÞ m, sn, f(l) E(i),j

volution of initial stiffness (Æ) (Æ) (�) (Æ) (Æ)
ean peak load (+) (Æ) (+) (�) (+)
catter of peak load (Æ) (Æ) (�) (�) (�)
ean stiffness (+) (Æ) (+) (Æ) (Æ)

catter of stiffness (�) (Æ) (�) (Æ) (�)
ost-peak range (�) (Æ) (�) (�) (�)
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If we consider Weibull distribution (with s and m representing the scale and shape parameters,
respectively)
Fig. 3
indepe
F X ðx; s;mÞ ¼ 1� exp �ðx=sÞm½ � ð16Þ

to be a distribution of random filament strength (with parameters s = sr, m = mr = mn); the parameters of
asymptotically normal yarn strength can be easily obtained in terms of forces as
x� ¼ A � sr � m�1=m ¼ EAe�;

l�
r ¼ x� � c;

c�r ¼ x� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 1� cð Þ

p
; c ¼ exp �1=mð Þ:

ð17Þ
In this case the result of asymptotic normality of strength Q�
n is valid in the central region of the distribu-

tion. Clearly, if the strength of filaments is Weibull (limited from left by a zero threshold) the tail of Q�
n

cannot become Gaussian (Q�
n must have a Weibull tail). However, the distance from the mean value (central

part) to the tail measured in the number of standard deviations gets so large with high n that the tail gets
practically unimportant.

Taking a closer look at the asymptote one can observe slowness of convergence (as n�1/6). It should be
pointed out that Gn(x) is quite straight on normal probability papers even for small n so in that respect the
approximation is good. Also the variance of numerically obtained Gn(x) is very close to that predicted by
Daniels�s result. However, the error in mean value (shift) disappears extremely slowly with growing n. The
reason is that for small number of filaments n the maximum Q�

n can be reached at wide range of e, not just
e*. As n ! 1 the action point e shrinks from the wide range to e* only.

Smith (1982) found a way to eliminate the gap between the real Gn(x) and Daniels�s normal approxima-
tion by adjusting l�

r to l�
r;n using the actual (finite) number of filaments n in the following way:
l�
r;n ¼ l�

r þ n�2=3b�k: ð18Þ
For full derivation, see Smith (1982). In case of Weibull FX(x) the parameter b* = sr Æm
�(1/m+1/3) exp

[�1/(3m)] and the coefficient k = 0.996. The error of approximation is then at most Oðn�1=3 _ð log nÞ2Þ which
is an excellent improvement, mainly for small numbers of filaments in the bundle. For n ! 1 the Smith�s
prediction l�

r;n converges to Daniels�s l�
r.
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In accordance with Part I, the bundle strength corresponding to normalized forces l�
rl

�
r;n) is given as

M�
r ¼ nl�

r (M�
r;n ¼ nl�

r;n, respectively). The strength randomization of 1600 filaments by IID is displayed
both in the linear plot and normal probability paper in Fig. 3 and its best fit by a Gaussian distribution
is compared to Daniels�s and Smith�s analytical results, respectively. In our case the Weibull modulus is
mG 4.54 (see Table 1), value typical for glass or polymer fibers (COVr = 0.25). For the example of a yarn
with n = 1600 filaments the mean value of normal approximation of maximum bundle force predicted by
Daniels�s is M�

r ¼ 668:7 N and Smith�s refined value is M�
r;n ¼ 672:1 N. Our numerical simulation by Monte

Carlo delivers the average bundle strength 672.7 N so the Smith�s refinement is an excellent performer. The
standard deviation of the yarn strength is numerically estimated to be equal to 9.674 N and Daniels�s for-
mula provides c�r �

ffiffiffi
n

p ¼ 8:297 N. For the sake of comparison, plots of Daniels�s approximation, Smiths�s
refinement and the Monte Carlo simulations on a probability paper are plotted in Fig. 3. The analytical
formula due to Daniels�s (1945) results in mean strength shifted far from the exact one for small bundles.

3.3. Size effect of bundles for variable number of filaments n

In the stochastic simulations, we used the response tracing algorithm based on the superposition of the
filament response (SFR) described in the previous paper by Chudoba et al. (2006) together with simulation
of random process needed for spatial randomization of strength. From here on we will use the abbreviation
MSEC for mean size effect curve (a curve in the bi-logarithmic plot of size vs. mean bundle strength). In
Fig. 4(left) we have plotted the MSEC for various numbers of filaments in the randomized bundle. The
right scale in Fig. 4(left) shows the efficiency of the bundle depending on the number of filaments n and
the yarn length l. It looks like the parallel curves are only shifted downwards with increasing n. The inter-
section of the horizontal asymptote with the inclined IID asymptote seems to happen always at the auto-
correlation length lq that propagates unchanged to bundles with growing n. This is an important property
because it indicates that the size effect can be expressed as a product of the length effect and of the effect of
increasing n. In order to document this we formulate the bundle strength depending on its length in analogy
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with Eq. (7) by associating the length dependence of breaking strength with the scale parameter sn(l) =
sn Æ f(l) in the Weibull distribution Fn(e; sn(l),mn) given in Eq. (16). After substituting this length-dependent
distribution into Eq. (15) we obtain the mean load–strain diagram:
ln e; lð Þ ¼ EAe exp � e
snf lð Þ

� �m� �
: ð19Þ
The asymptotic mean peak load l�
nðlÞ is attained at the stationary point e*:
dln e; lð Þ
de

¼ 0 ! e� lð Þ ¼ f lð Þm½ ��1=msn:
Substituting the strain e* into Eq. (19) we obtain the mean size effect of the bundle strength (compare with
Eq. (17)):
l�
n lð Þ ¼ ln e�; lð Þ ¼ EA � m�1=msn exp �1=mð Þ � f lð Þ ¼ l�

rf lð Þ: ð20Þ
Indeed, with regard to the Daniels�s assumption of common strength distribution of independent filaments
that applies for any length we may express the normalized and total Weibull bundle strength in dependence
on l and n using Eq. (18) as
l�
r;n;l ¼ l�

r;n � f ðlÞ; M�
r;n;l ¼ l�

r;n;l � n: ð21Þ
In other words both effects can be evaluated independently using either analytical formulation or stochastic
SFR simulation. Subsequently, they can be composed using Eq. (21) into a combined size effect surface. An
example of such a surface constructed with f(l) given in Eq. (10) and with mean bundle strength M�

r;n cal-
culated numerically with the SFR algorithm is plotted in Fig. 4 right. Obviously, with n ! 1 the surface
Eq. (21) reduces to the curve M�

rf ðlÞ. This demonstrates that the mean strength is asymptotically indepen-
dent of the number of filaments n.

Regarding the strength variability of the yarn we note that COV of strength depends on Weibull modulus
m irrespective the length. Fig. 4(left) bottom presents effective values of the Weibull modulus mCOV com-
puted for different numbers of filaments from COV by solving Eq. (4). Of course, only for the case of a
single-filament-bundle the value mCOV really represents a shape parameter of Weibull strength distribution.
On the other hand, COV decreases for growing n with the rate 1=

ffiffiffi
n

p
. To summarize, while the weakest-link

model (series coupling and extending in length) leads to the decrease of mean and constant COV, the yarn
(parallel coupling and increasing n) results in asymptotically constant mean and fast decay of COV.

With the two first statistical moments available it remains to comment on the distribution of the
strength. In case of a single filament, the PDF of Q�

1 remains Weibull. With increasing n the probability
distribution of Q�

n gradually changes to Gaussian (Daniels�s, 1945), see Fig. 4(right).
4. Interaction of random stiffness and strength along the bundle

4.1. Random E-modulus and strength along a single filament

Spatial fluctuation of E(v) along a single filament is considered as autocorrelated random process. Its
effect can be included in the numerical model described in Part I using equidistant discretization of ith fil-
ament with p number of points. The effective E-modulus is obtained by static condensation as (see Fig. 6)
EðiÞ ¼ p
Xp
j¼1

E�1
ðiÞ;j

 !�1

: ð22Þ
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448 M. Vořechovský, R. Chudoba / International Journal of Solids and Structures 43 (2006) 435–458
We notice that the fluctuations get smeared for long filaments (l/lq ! 1) and the effective material stiffness
converges to its limiting value E1. In other words, the scatter E(i) vanishes for very long filaments. For very
short filaments l� lq the effect of scatter might be significant because E(v) is constant along the filament
and the random process reduces to a random variable E(i) with the distribution GE(E). The evolution of
the random variable E(i) over the length is automatically captured by the transformation given in Eq. (22).

The variations of E-modulus cannot be considered independently of the failure threshold of a filament.
The parameters E, r and n are interrelated through the constitutive law. By keeping these parameters con-
stant one at a time we can visualize three types of dependencies between them as shown in the first row of
Fig. 5. These cases are examples of one-parameter randomization of the constitutive law. The case of con-
stant E shown in Fig. 5a with linear transformation between random strength r and breaking strain n has
been considered in modeling the scatter of strength in Sections 2 and 3. Two other special cases with con-
stant n and r are shown in Fig. 5b and c, respectively. In order to connect the considered cases to a physical
interpretation of reality we add grids of idealized material structure illustrating the source variations ren-
dering the displayed effects. Here we assume that an increase of grid density in transversal direction in-
creases the cross-sectional strength and increase of grid density in any direction increases the material
stiffness. For completeness, the case depicted in Fig. 5a is illustrated by interrupted bindings (flaws) in
the material grid not affecting the material stiffness. The asymptotic behavior of these three cases is elab-
orated further in Section 4.2.

In order to be able to simulate real material behavior we have to abandon the assumption of a constant
parameter and assume two random inputs, possibly correlated (two-parameter randomization). Examples
of uncorrelated, negatively correlated and positively correlated E-modulus and r are shown in Fig. 5d–f.
Unfortunately, there is no sound basis for choosing any kind of this correlation. The dependency between
E-modulus and strength stems from variations in the micro-structure of the material that are generally un-
known. Therefore, in the study of their simultaneous effect in Section 4.3 we shall stick to the general case of
two uncorrelated random variables or processes.
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4.2. One-parameter randomization of the constitutive law along the bundle

The numerical study using the randomized E-modulus in the bundle has been performed with n-variate
uncorrelated 1D fields (processes). For comparison an isolated strength randomization has been performed
as well. The parameters of applied normal distributions of randomized E-modulus and r are summarized in
Table 1. The spatial randomization has been performed with common squared-exponential autocorrelation
function (Eq. (6)) both for E-modulus and for strength r.

Similarly to Part I the yarn performance is illustrated qualitatively using the load–strain diagram on a
yarn with 16 filaments only. The real number of filaments in the yarn is approximately 100-times higher. In
order to have the resulting forces in the figures comparable to the real values, the forces are given in cN. Of
course, the true maximum force of 1600 filament bundle cannot be obtained by scaling up the results from
the small bundle. Nevertheless, the small bundle can be effectively used to study the effects of random stiff-
ness, strength and their interactions with varying length. The simulation of real yarns is post-poned to
Section 5.2.

In particular, randomness of either E or r was simulated as 16-variate Gaussian random process (16
uncorrelated random processes) discretized using vectors with p number of material points j 2 Mi for each
filament i = 1, . . . , 16. The simulated random process for three ratios between the nominal length and the
autocorrelation length l/lq is shown in the first row of Fig. 7. The left scale in the first row shows values
of the tensile strength r while the scale on the right presents values of the E-modulus. The sample of
Fig. 7. Comparison of the three random fields with different correlation lengths and load deflection diagrams of 16 filament yarn with
fields applied to r and E.
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nsim = 50 realizations of the random field is plotted representing the properties of one filament in a bundle
of 16 (filaments). Due to the identical autocorrelation structure the realizations of E and r are qualitatively
similar. The performed 50 bundle realizations might not be sufficient for reliable estimation of statistics,
especially when higher statistical moments of the response (or even reliability) are targeted. We must keep
in mind that nsim must be significantly increased to ensure that the samples represent high-dimensional
space of independent Gaussian random variables needed for expansion of the fields in case of long speci-
mens (l/lq ! 1). Besides the calculated load–strain curves for random strength r and E-modulus, Fig. 7
shows the mean value and standard deviation of the resulting peak force together with the sketch of the
corresponding PDF.

The results obtained with the randomized strength are shown in the second row of Fig. 7 and demon-
strate once again the reduction of maximum tensile force with an increasing nominal length l. Except of
the reduction of the maximum load we observe the reduced scatter of the response for short specimens
which is a classical feature of the statistical size effect. With regard to the previous studies of size effect
due to random strength we note that the three chosen ratios l/lq 2 h1,100i (the first row in Fig. 7) fall into
the transition zone between the random variable case and the IID case for each filament discussed in
Section 2.2 (see Fig. 4).

The effect of fluctuating E-modulus is shown in the third row of Fig. 7. The response curves reveal a
scatter of stiffness that gets (i) amplified for short yarns (or larger autocorrelation lengths) and (ii) vanishes
for long yarns (see Section 4.1). Regarding the bundle strength we observe the opposite size effect because
short filaments do not attain their peak load simultaneously.

In order to capture the maximum effect of variation in stiffness occurring for l/lq ! 0 on bundle strength
we study the case of Ei,j = E(i) both analytically and numerically. The variability of E(i) is given by the PDF
gE(E) or the CDF GE(E). The asymptotic mean load–strain diagram is plotted for (a) constant filament
strength r or (b) constant breaking strain n. These two cases are illustrated in Fig. 8 using 16 filaments
in a yarn and Weibull distributed E-modulus with parameters specified in Table 1. For comparison we plot
the asymptotic mean load–strain diagram for n infinite following the approach of Phoenix and Taylor
(1973), see Section 3.2 in Part I. The diagram is generally computed as lE eð Þ ¼

R1
0

q eð ÞdGE Eð Þ. In case
(a) in Fig. 8a (corresponding to Fig. 5c) the mean response reads
Fig. 8
asymp
filame
lEjr eð Þ ¼ Ae
Z 1

0

EH r=E � eð ÞdGE Eð Þ:
In case (b) (corresponding to Fig. 5b) the mean diagram equals to l0(e), a response of a perfect yarn with
mean properties:
(a) (b)

. Filament and yarn response in case of Weibull distributed E-modulus. Comparison of case with 16 filament yarn and
totic behavior with n!1. The filaments� diagrams are plotted with respective forces on the right scale. Left: case with constant
nt strength. Right: case with constant breaking strain.
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lEjn eð Þ ¼ AeH n� e
� 	 Z 1

0

EdGE Eð Þ ¼ EAeH n� e
� 	

:

This case is equivalent to the random A studied in Part I.

4.3. Two-parameter randomization of the constitutive law along the bundle

In order to describe the size effect of real bundles in its complexity we consider the randomness of
strength (or breaking strain) and E-modulus simultaneously. As concluded in Section 4.1 the random fields
of E and r along each filament are uncorrelated and filaments are independent. The asymptotic behavior
for l ! 0 and l ! 1 can be expressed analytically provided n ! 1.

In particular, the mean load–strain diagram of very short bundles can be solved for both E-modulus and
strength r considered as random variables with distributions GE(E) and Gr(r):
lr;E eð Þ ¼
Z 1

0

Z 1

0

q e; r;Eð ÞdGE Eð ÞdGr rð Þ ¼ Ae
Z 1

0

Z 1

0

H
r
E
� e


 �
EdGE Eð ÞdGr rð Þ: ð23Þ
Unfortunately, this expression features ratio of two random variables and cannot be generally simplified.
For very long bundles we get rid of this ratio by realizing that E-modulus gets homogenized over the fila-
ment length so that the random strength can be transformed to random breaking strain n (see Fig. 5a). The
corresponding mean load–strain diagram is identical to that in Eq. (15). In case of Weibull distribution of
random breaking strain: Gn (n) = FX(n; sn,mn), n = r/E1, we can write ln;EðeÞ ¼ AE1e exp½�ðe=snÞ�mn .

In a similar way, it would be possible obtain the covariance of any pair of strains ei, ej (Phoenix and
Taylor, 1973). With the known mean value and variance of the bundle strength evaluated at e* we actually
know the whole distribution function. This conclusion results from the following arguments.

The original Daniels�s proof of asymptotic normality of bundle strength distribution has been derived
under the assumption of equal (deterministic) stiffness. In the strain-based setting (Phoenix and Taylor,
1973) the asymptotic normality has been demonstrated by Phoenix (1974, 1975, 1979) under less strict
assumptions than those used by Daniels�s (1945). Later Daniels�s (1945) elaborated more on the asymptotic
distribution of strength using his former results on extremes of Gaussian processes. Also Hohenbichler
(1983) has shown that the asymptotic normality is valid under certain weak dependencies between filament
strengths and for independent filaments but with general force–displacement relations. Based on the pro-
cedure of Hohenbichler and Rackwitz (1983) the exact distribution can be determined from the system reli-
ability results. The procedure is based on the transformation of two pairs of input random variables
(filament strength r and a corresponding breaking strain) into standardized space of uncorrelated normal
variables and computed the reliability using first order reliability method (FORM). Even though the
asymptotic distribution is known for many cases, this result is not always a good approximation for small
to medium-size yarns (in terms of n). This is because the convergence to the asymptotic distribution is very
slow. For general description of the size effect we employ the numerical approach.

Having described the asymptotic cases we propose to bridge the transition between short and long yarns.
We want to express the mean size effect curve in the form
l�
r;E;n;l ¼ l�

r;n � f ðlÞ � rr;EðlÞ; ð24Þ
where rr,E(l) approximates the relative strength reduction due to the simultaneous scatter of E and r. For
this purpose we suggest the approximation of relative strength reduction in the form
rr;EðlÞ ¼ kr;E 1þ lq
1
l þ Lp

 !
; Lp ¼ lq

kr;E
1� kr;E

; ð25Þ
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where kr,E is the ratio between the bundle strength of short yarn (l � lq) with (i) both E and r random and
(ii) random r:
kr;E ¼ lim
l!0

l�
r;EðlÞ
l�
rðlÞ

: ð26Þ
We note that the left and right asymptotes of rr,E(l) are horizontal and, thus, preserves the asymptotic prop-
erties of the MSEC due to the scatter of strength discussed in Section 3.

As a final remark we add that the discussed effects should generally be considered in interaction with the
scatter of delayed activation h and of the relative distance of clamps k occurring and thoroughly studied in
Part I. This would be true if the autocorrelation length is shorter than the effective filament length. This
means that in the case of a crack bridge the autocorrelation length would have to be of order of millimeters
or less. As will be shown in the next section, this is not the case for the tested yarns so that this kind of
interaction can be disregarded.
5. Application to the experiment

Putting the results from Part I and from the present paper together allows us to account for all the con-
sidered sources of disorder in the yarn and in the distortions of the test setup within a single computational
model. With the stochastic simulation framework at hand we now proceed with the simulation of the tensile
test on yarns and filaments with varied length in order to quantify the significance of the included sources of
randomness in a real material.
5.1. Testing of single filament

The most natural way of identifying the distributions of the filament strength and stiffness is to test single
filaments with varied length. These experiments have been performed by carefully extracting single fila-
ments from the AR-glass 2400 tex yarns on the testing machine (Fafegraph ME).

However, the tensile test on AR-glass filament has turned out infeasible as far as the measured strength
was concerned. The problem was that the measured maximum forces were obviously distorted due to the
damage of the glass in the clamps as documented by the big portion of specimens that broke in the vicinity
of the clamps. As a result, lower strength has been measured than actually available.

Nevertheless, some information could be extracted from the test results since the positions of break
(either free length, or clamp) have been recorded for all specimens. Surprisingly enough, no size effect could
be observed on the filaments that broke in the free length on all tested lengths l = 0.01, 0.018, 0.030, 0.055,
0.10 m. The explanation for this has been delivered later by the simulations of the bundle tests. As docu-
mented further, all the tested filaments fall into the range l < lq (see Fig. 10) with negligible fluctuations of
strength and, consequently, without significant size effect.

Fortunately, the measurement of stiffness provided reliable data, especially thanks to the careful docu-
mentation of the association between the specimens and the measured response and also of the original
positioning of specimens along the filament. Due to the large differences between the filament diameters
in the bundle but low fluctuations over its length, it turned out to be very important to quantify the stiffness
separately for each group of specimens stemming from the same filament. We appointed the scatter of stiff-
ness solely to E-modulus and quantified the parameters of the distribution GE(E) as specified in Table 1.
The cross-sectional area has been considered constant and has been set to the mean value of diameter deter-
mined from the micrographs of the yarn cross-section (see Chudoba et al., 2006, Fig. 6).
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Clearly, a good testing of isolated filaments is desirable for its statistical characterization, but the design
of a reliable testing set up is by no means trivial. Except of the mentioned distortions, also problems with
capturing the influence of coating and of the pre-selection of ‘‘better’’ (stronger) specimens during their
extraction from the bundle would have to be addressed.

5.2. Tensile test on a bundle

Because of the difficulties with determining r using the tensile test on filament, we had to identify the
sought distributions with the help of the stochastic simulation of the tests on bundles. Before starting with
the calibration procedure we summarize the influence of the individual sources of imperfection on the bun-
dle load strain diagram. For this purpose, we characterize the bundle response by six attributes illustrated
in the right figure of Table 2. The signs (+), (�) or (Æ) denote the positive, negative or neutral tendency in the
change of the attributes A-F for increased bundle length. The tendencies are reported for fixed distributions
of differences in filament length lk(i), area A(i), activation displacement lh(i), strength (given by m, sn,f(l)) and
E-modulus.

For example, the first row indicates that the observed evolution of stiffness in the beginning of loading is
affected only by filament slack and that it diminishes for longer specimens (because we keep the slack length
constant). As a consequence, this effect can be considered in an isolated way and the distribution of slack
Gh(h) can be calibrated separately from the other parameters as it has been done in the companion paper
(Chudoba et al., 2006). The identification of G(h) has been performed for the average evolution of initial
stiffness, see Fig. 15 of Part I.

For the sake of simplicity, h has not been randomized for each filament. Instead of this, the slack has
been assigned to the filaments deterministically following the slack density Gh(h) in each bundle realization
equally. In this way, only the mean load–strain curve gets reproduced with no scatter in the initial part of
the curve (attribute A in Table 2). This little methodological transgression resulted in slightly reduced scat-
ter of peak load as can be seen in Fig. 9. In addition, the reduced scatter of peak load can partly be ap-
pointed to constant A used in simulations. Nevertheless, neither of these simplifications affects the mean
load–strain diagrams. The results of the simulation in comparison with experiments are shown in Fig. 9
without and with the delayed activation. Both filament tensile strength r and E-modulus were represented
by Weibull distributed random process with the autocorrelation structure given in Eq. (6). These two prop-
erties were assumed mutually independent and independency was assumed also among filaments. The
parameters of distributions of E and r found to best fit the experiments are listed in the middle columns
of Table 1. Following the conclusions from Part I the remaining parameters have not been randomized:
k could be neglected and A has been set constant along and across the bundle. Thus, the identification pro-
cedure has been performed for three distributions of the most significant properties: Gr(r) and GE(E) with
the corresponding autocorrelation length and Gh(h).

The correspondence between the size effect curves obtained in previous sections and the complex size
effect observed in the tensile test is shown in Fig. 10. The experimental curve has been reproduced by
the stochastic model including the influence of all three random properties simultaneously: E, r and h.
In order to show the influence of randomness of each parameter separately, the size effect curves have been
plotted for isolated randomizations of (h), (r) and (r,E).

In addition to the size effect curves obtained from the random process simulations, Fig. 10 also shows the
size effect obtained with the Daniels�s and Smith�s models calculated for n = 1600. Assuming that the fila-
ments follow the Weibull scaling we may construct the bundle power law as a product of Daniels�s predic-
tion of the mean total strength specified in Eq. (17) with the Weibull scaling f(l) = (l0/l)

1/m
l�
r;l ¼ l�

rf ðlÞ ¼ l�
r

l0
l

� �1=m

¼ s0 � m�1=m � expð�1=mÞ l0
l

� �1=m

: ð27Þ
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M. Vořechovský, R. Chudoba / International Journal of Solids and Structures 43 (2006) 435–458 455
The values l0 and s0 represent the reference length and scale parameter on the Weibull size-effect line for one
filament. The obtained Weibull modulus m = 4.54 matches with the size effect measured and calculated for
long specimens (l� lq). We remark, that this value of m falls into the realistic range m 2 h4–6i for glass
fibers.

Regarding the short specimens, the measured total bundle strength departs significantly from the
Weibull-type power law (Eq. (27)). This fits into our arguments presented in Section 3 concerning the exis-
tence of the statistical length-scale (autocorrelation structure) of the bundle. The computation with random
strength and stiffness according to Table 1 (no delayed activation) produces constant size effect for short
specimens.

It remains to address the reduction of the total strength observed in the experiment for short specimens
(30 mm). As discussed earlier, this reduction may be caused either by the scatter of material stiffness GE(E)
or by the delayed activation Gh(h). The calculation with these distributions shows that we are able to repro-
duce the reduction of the total strength measured experimentally. Moreover, the contributions to the
strength reduction may be quantified separately for the scatter of E and h. The reduction of the mean bun-
dle strength due to the scatter of material stiffness remains constant for short specimens l � lq. Its contri-
bution has been quantified for the performed tests as high as kr,E = 0.957 (see Eq. (26)). The reduction due
to delayed activation gets intensified for short specimens. In other words, the disorder in the yarn structure
dominates the strength reduction for very short specimens.

5.3. Systematic identification of the distribution parameters

Based on the experience with fitting the performed tests we are able to suggest a systematic approach for
deriving the statistical characteristics of the multi-filament yarn. The previously described procedure repre-
sents the most difficult case including the delayed activation and may be simplified for other types of yarns
for which this effect is less pronounced (e.g. polypropylene yarns).

The crucial problem in planning the experimental sequence for constructing the size effect curve is the
estimation of the autocorrelation length lq. A possible strategy to estimate the right asymptote of the size
effect law is to perform replicated tests on at least two selected lengths l � lq and to determine the slope
(�1/mslope) of the line connecting the obtained mean strength values in double logarithmic plot as an esti-
mate of the right asymptote of the MSEC.

The determination of the left asymptote requires the test of short bundles l � lq usually exhibiting a high
amount of experimental distortions (irregular load transmission from the clamps to the filaments). Due to
these difficulties it is more effective to test individual filaments extracted from the yarn. The statistical data
analysis allows us to determine the Weibull modulus mscatter from Eq. (4). We recommend to test the fila-
ments for at least two lengths in order to ensure that the condition l � lq applies for both, i.e. that the esti-
mate of lq is realistic and the mean strength of both lengths is equal. Of course, the moduli mscatter obtained
for the two lengths must be identical.

Now, the condition mslope = mscatter may be used to verify that the two bundle lengths used to determine
the slope of the right asymptote fulfill the condition l � lq. If mslope > mscatter, the autocorrelation length lq
has probably been underestimated and the chosen specimen lengths are in range l � lq. In such a case, long-
er specimens must be tested.

The mean strength measured on filaments (with l � lq) may be easily transferred to the mean bundle
strength with n filaments using the Daniels�s or Smith�s formulas (17), (18) representing the left asymptote
of l�

r. Besides of determining the mean strength, the tests on single filaments can further be exploited to
determine the randomness of the E-modulus. The reduction of strength kr,E is performed using Eq. (26).

Finally, the sought autocorrelation length can be determined as an intersection of the two independently
determined asymptotes. With the known lq at hand we may express the resulting approximation of the
MSEC by Eq. (24).
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If the filament strength cannot be measured reliably using filament test as in the case of the used glass
filaments (see discussion in Section 5.1) and there is no chance to judge about the autocorrelation length, we
have to fit the formula (24) to the data by applying the stochastic simulation of the bundle and find all the
parameters of the MSEC by fitting as shown in the previous section.
6. Conclusions

In the two companion papers we have identified and studied several sources of imperfections in the bun-
dle and in the tensile test: delayed activation of filaments, variable cross-sectional area of filaments, scatter
of filament clamp distances, variability of E-modulus and of tensile strength along the filaments.

Based on the efficient micromechanical model of the fiber bundle developed in Part I, we have performed
stochastic simulations with randomized stiffness and strength along the filaments in the bundle. The size
effect formulas derived for studied sources of randomness and their combinations have been verified numer-
ically using a micromechanical model combined with Monte Carlo simulation technique. Based on the les-
sons learned from the modeling we have suggested approximation formulas describing the size effect laws
due to the random strength or stiffness along the bundle. The obtained results have been related to available
fiber bundle models and analytical formulas by Daniels, Phoenix and Smith.

An extensive testing program has been worked out so that the results of the simulation could be com-
pared with the test results of the tensile test on bundles and on filaments with varied length. The detailed
knowledge of the length-dependent performance of the yarn allowed us to quantify the parameters of sta-
tistical distributions of filament and bundle properties stemming from the imperfections in the material
structure.

The performed stochastic simulations with the available experimental data revealed the existence of sta-
tistical length scale that could be captured by introducing autocorrelation of random material properties.
This represents the departure from the classical Weibull-based models that are lacking any kind of length-
scale.

The introduced model delivers a quasi-ductile response of the bundle from the ensemble of interacting
linear-elastic brittle components with irregular properties. In this respect the present approach falls into the
category of lattice models used to model quasi-brittle behavior of concrete. It should be noted, that due to
the possibility to trace the failure process in a detailed way both in the experiment and in the simulation, the
modeling of multi-filament yarns provides a unique opportunity to study the local effects in quasi-brittle
materials. To possibility to generalize the results for other quasi-brittle materials is worth further intensive
studies.

The model is limited to bundles with zero friction between filaments. This assumption is justified by the
practical focus of the study. In reality, local interaction between filaments would emerge in any yarn with
the specimen length sufficiently large with respect to the stress transfer length, i.e. the length at which the
equality of local strains gets recovered due to friction. Then, the single bundle gets transformed to a chain
of shorter bundles. A systematic study of the transition between the bundle and chain of bundles in com-
bination with other effects studied here is desirable but would go beyond the scope of the present paper.

The obtained statistical material characteristics turned out to be of crucial importance for robust mod-
eling of crack bridges occurring in the cementitious textile composites. The ‘‘well designed’’ microstructure
of the yarn and of the bond layer in the crack bridge may significantly increase the overall deformation
capacity (ductility) of structural elements. The lessons learned from the present study can be applied in
a more targeted development of new yarn and textile structures with an improved performance of crack
bridges.

As a final remark, we note that the phenomena of delayed activation and varying effective length at the
microlevel could be present in any material structure. The only question is at which length scale of material
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structure it appears. In case of multi-filament yarns the length scale of delayed activation overlaps with the
length scale of other sources of randomness (varying strength and stiffness) so that it must be included in
the evaluation of the true size effect.
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Chudoba, R., Vořechovský, M., Konrad, M., 2006. Stochastic modeling of multi-filament yarns. I: Random properties within the

cross-section and size effect. International Journal of Solids and Structures 43, 412–434.
Daniels, H.E., 1945. The statistical theory of the strength of bundles of threads. Proceedings of the Royal Society (London) 183A, 405.
Daniels, H.E., 1989. The maximum of a Gaussian process whose mean path has a maximum, with an application to the strength of

bundles of fibres. Advances of Applied Probability 21, 315–333.
Epstein, B., 1948. Statistical aspects of fracture problems. Journal of Applied Physics 19, 140–147.
Fisher, R.A., Tippett, L.H.C., 1928. Limiting forms of the frequency distribution of the largest and smallest member of a sample.

Proceedings of the Cambridge Philosophical Society 24, 180–190.
Gnedenko, B.V., 1943. Sur la distribution limite du terme maximum d�une série aléatorie. Annals of Mathematics, 2nd Series 44 (3),
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