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(M. Vořechovský), teply.b@fce.vutbr.cz (B. Teplý).
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The objective of the paper is to present methods and software for the efficient statistical, sensitivity and
reliability assessment of engineering problems. Attention is given to small-sample techniques which
have been developed for the analysis of computationally intensive problems. The paper shows the
possibility of ‘‘randomizing’’ computationally intensive problems in the manner of the Monte Carlo type
of simulation. In order to keep the number of required simulations at an acceptable level, Latin
Hypercube Sampling is utilized. The technique is used for both random variables and random fields.
Sensitivity analysis is based on non-parametric rank-order correlation coefficients. Statistical correlation
is imposed by the stochastic optimization technique – simulated annealing. A hierarchical sampling
approach has been developed for the extension of the sample size in Latin Hypercube Sampling, enabling
the addition of simulations to a current sample set while maintaining the desired correlation structure.
The paper continues with a brief description of the user-friendly implementation of the theory within
FReET commercial multipurpose reliability software. FReET-D software is capable of performing degrada-
tion modeling, in which a large number of reinforced concrete degradation models can be utilized under
the main FReET software engine. Some of the interesting applications of the software are referenced in
the paper.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The presence of uncertainty in the analysis and design of engi-
neering systems has always been recognized. Uncertainties are in-
volved in every part of the system: structure – load – environment.
Traditional approaches simplified the problem by considering the
uncertain parameters to be deterministic, and accounted for the
uncertainties through the use of partial safety factors in the con-
text of limit states. Such approaches do not absolutely guarantee
the required reliability and they do not provide information on
the reliability achieved and/or on the influence of individual
parameters on reliability. Therefore, attention is being given today
to fully probabilistic approaches and software tools which can be
used for such purposes. Important topics can thus be treated in
an advanced manner, e.g. the probabilistic vulnerability assess-
ment of civil infrastructure systems followed by efficient deci-
sion-making processes.

The standard definition of an engineering problem featuring
uncertainty or randomness which is to be analyzed using comput-
ers is as follows. A random response of the studied engineering
system (e.g. a structure) is represented by random variable Z. In
statistical analyses, Z may represent a random response of a system
(e.g. deflection, stress, ultimate capacity, etc.) or, during reliability
determination, Z is called a safety margin. Random variable Z is a
function of basic random variables X ¼ X1;X2; . . . ;XNvar (or random
fields):

Z ¼ gðXÞ; ð1Þ

where the function g(X), a computational model, is a function of a
random vector X (and also of other, deterministic quantities). Ran-
dom vector X follows a joint probability distribution function (PDF)
fX(X) and, in general, its marginal variables can be statistically
correlated. This paper deals with situations when the information
about fX(X) is limited to the knowledge of univariate marginal
distributions f1ðxÞ; . . . ; fNvar ðxÞ and a correlation matrix, T (a symmet-
ric square matrix of order Nvar). The output variable (or generally a
vector) Z represents a transformed variable and the task is to per-
form statistical, sensitivity and possibly reliability analyses upon
it. It is assumed that the analytical analysis of the transformation
of input variables to Z is not possible.

Approaches focused on the estimate of statistical moments of
response quantities, such as means or variances, are commonly
termed statistical analyses. In sensitivity analysis, approaches aiming
at the quantification of the sensitivity of output (response, failure
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probability) to variations in input variables are applied. The main
result of reliability analysis is an estimate of the theoretical failure
probability.

Statistical analyses can be viewed as estimates of probabilistic
integrals [1]. For example, the estimate of the mean value of Z is,
in fact, an approximation to the following integral:

lg ¼
Z

gðXÞfXðXÞ dX: ð2Þ

Higher statistical moments of the response can be obtained by
integrating polynomials of g(X).

If g(X) represents a failure condition, then it is called the limit
state function and Z becomes the safety margin. Usually, the conven-
tion is that it takes a negative value if a failure event occurs; Z 6 0,
and a survival event is defined as Z ¼ gðXÞ > 0. The limit state
function can be an explicit or implicit function of basic random
variables and it can take either a simple or a rather complicated
form (e.g. a computer program). The performance of the system
and its components may be described considering a number of lim-
it states (multiple limit state functions). The aim of reliability anal-
ysis is the estimate of unreliability using a probability measure
called the theoretical failure probability, defined as

pf ¼ PðZ 6 0Þ: ð3Þ

This failure probability is again calculated as a probabilistic
integral:

pf ¼
Z

I½gðXÞ�fXðXÞ dX ¼
Z

Df

fXðXÞ dX: ð4Þ

The function I½gðXÞ� is an indicator function that equals one for
failure event (g 6 0) and zero otherwise. In this way, the domain of
integration of the joint PDF above is limited to the failure domain Df

where g(X) 6 0.
The explicit calculation of the integral in Eq. (2) or the failure

probability integral in Eq. (4) is generally impossible. A large num-
ber of efficient stochastic analysis methods have therefore been
developed during the last seven decades.

A straightforward solution for these tasks is numerical simula-
tion. The interest in simulation methods started in the early
1940s with the purpose of developing inexpensive techniques
for testing engineering systems by imitating their real behavior.
These methods are commonly called Monte Carlo simulation
techniques. The principle behind the method is to develop an
analytical model – a computer based response or limit state func-
tion (Eq. 1) that predicts the behavior of the studied system and
repeats it many times under many possible conditions. This sim-
ulation principle has remained formally the same up until the
present day.

For example, the mean value of Z can be estimated using the
best linear unbiased estimator (the arithmetical mean) as:

lg �
1

Nsim

XNsim

i¼1

gðXiÞ: ð5Þ

The Nsim samples Xi (realizations, integration points) of the
basic random vector X are selected to have an identical proba-
bility 1/Nsim (see the weighting function in Eq. (2)). Similarly,
the failure probability can be estimated as the ratio of the
number of samples that yield failure to the total number of
samples Nsim.

The common feature of the many different techniques covering
all the above-mentioned categories is the fact that they require
repetitive evaluation (simulation) of the response or limit state
function g(X). The development of methods is from a historical per-
spective a struggle to decrease the amount of simulations, or avoid
an excessive number of them. Crude Monte Carlo simulation can-
not be applied to time-consuming problems, as it requires a large
number of simulations (the repeated calculation of structural
response) to deliver statistically significant estimates of the
outputs.

In the context of reliability analyses, this obstacle was histor-
ically successfully solved for by the approximation techniques
FORM and SORM, e.g. [2,3]. In spite of some problems concern-
ing accuracy, these techniques are widely accepted today and
have become in some cases standard tools in code calibration.
Once this was achieved, research then focused on the develop-
ment of advanced simulation techniques which concentrate
simulations in the failure region [4]. Among the many efficient
methods developed during the last decades, Latin Hypercube
Sampling and response surface methodologies are often used
e.g. for computationally demanding continuum mechanics
problems.

The development of many reliability methods, varying in effi-
ciency, accuracy and suitability for a particular class of problems,
can be tracked from the proceedings of major reliability confer-
ences e.g. ICOSSAR [5] and ICASP [6]. Two main groups can be dis-
tinguished: simulation and approximation methods. These
methods are implemented in many different modified versions in
statistical and reliability software. Such software usually offers
the possibility of working with a user-defined limit state function
(a multipurpose use) or is integrated fully with a specific FEM
solver.

The objective of the paper is to present methods for efficient
statistical, sensitivity and reliability assessment implemented in
FReET software [7]. Attention is given to those techniques that
have been developed for the analysis of computationally inten-
sive problems; nonlinear FEM analysis being a typical example.
The paper shows the possibility of ‘‘randomizing’’ computational
tasks in the sense of the Monte Carlo type of simulation. The
stratified simulation technique Latin Hypercube Sampling is
used in order to achieve variance reduction of the estimated
outputs at a given number of simulations. The technique is
used both at the level of random variables and that of random
fields.

The paper contains basic information on FReET software, its
degradation module and the implemented methods with relevant
references. The most interesting applications of FReET software
are referenced in the paper.
2. Uncertainty simulation

2.1. A small-sample simulation of the Monte Carlo type

For time-intensive calculations, small-sample simulation
techniques based on stratified sampling of the Monte Carlo type
represent a rational compromise between feasibility and accuracy.
Therefore, Latin Hypercube Sampling (LHS) [8–10], which is well
known today, has been selected as a key fundamental technique.
LHS belongs to the category of advanced stratified sampling
techniques which result in the very good estimate of statistical mo-
ments of response using small-sample simulation. More accu-
rately, LHS is considered to be a variance reduction technique, as
it yields lower variance in statistical moment estimates compared
to crude Monte Carlo sampling at the same sample size; see e.g.
[11]. This is the reason the technique became very attractive for
dealing with computationally intensive problems like e.g. complex
finite element simulations. The software therefore uses the main
icon depicted in Fig. 1.

The basic feature of LHS is that the range of univariate random
variables is divided into Nsim intervals (Nsim is a number of simula-
tions); the values from the intervals are then used in the simula-



Fig. 1. Icon for FReET software.
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Fig. 3. Samples as the probabilistic means of intervals.
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tion process (random selection, median or the mean value). The
selection of the intervals is performed in such a way that the
range of the probability distribution function of each random
variable is divided into intervals of equal probability, 1=Nsim. The
samples are chosen directly from the distribution function based
on an inverse transformation of the univariate distribution
function. The representative parameters of variables are selected
randomly, being based on random permutations of integers
k = 1, 2, . . . , Nsim.

Every interval of each variable must be used only once during
the simulation. Being based on this precondition, a table of random
permutations can be used conveniently, each column of such a ta-
ble belonging to a specific simulation and each row corresponding
to one of the input random variables; see the bottom of Fig. 2.

It has been shown that a preferable LHS strategy is the approach
suggested in [12,13], where the representative value of each inter-
val is the mean value (Fig. 3):

xi;k ¼
R yi;k

yi;k�1
x f iðxÞ dxR yi;k

yi;k�1
fiðxÞ dx

¼ Nsim

Z yi;k

yi;k�1

x f iðxÞ dx ð6Þ

Here fi is the probability density function of variable Xi, and the
integration limits are:

yi;k ¼ F�1
i

k
Nsim

� �
; k ¼ 1; . . . ;Nsim ð7Þ

The sample averages equal exactly the mean values of vari-
ables and the variances of the sample sets are much closer to
the target values compared to other selection schemes, see [14]
for details. For some probability density functions (including e.g.
Gaussian, Exponential, Laplace, Rayleigh, Logistic, Pareto, etc.)
the integral (6) can be solved analytically. For others, the extra
effort of computing the numerical integration is definitely
worthwhile.
var \ sim.: 1 2 3 4 5 6

X 1 x 1,1 x 1,2 x 1,3 x 1,4 x 1,5 x 1,6

X 2 x 2,2 x 2,6 x 2,4 x 2,1 x 2,5 x 2,3
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Fig. 2. Illustration of a random trial – swap of samples j and k of variable X2.
2.2. Statistical correlation control

Once Nsim samples of each marginal variable are generated, sep-
arately, the correlation structure prescribed by the target correla-
tion matrix must be taken into account. There are generally two
problems related to the statistical correlation: First, during sam-
pling an undesired correlation can occur between the random vari-
ables [15]. For example, instead of a correlation coefficient of zero
for the uncorrelated random variables an undesired correlation of
e.g. 0.4 can be generated. This can happen especially in the case
that only a very small number of simulations (in the order of tens)
are carried out, where the number of interval combinations is
rather limited. The second task is to introduce the prescribed sta-
tistical correlation between the random variables defined by the
correlation matrix.

This can be achieved by rearranging the order of samples of
each variable in the LHS simulation plan in such a way that either
they diminish the undesired random correlation when unit matrix
T is required or they introduce a target correlation structure. Such a
rearrangement of the sample ordering can be achieved via several
different techniques published in the literature on LHS (e.g.
[16,17]); however, some serious limitations have been found by
the authors while using them.

A robust technique to impose statistical correlation based on
the stochastic method of optimization called simulated annealing
has been proposed by Vořechovský and Novák [14]. The imposition
of the prescribed correlation matrix on the sampling scheme can
be understood as a combinatorial optimization problem: The dif-
ference between the prescribed (target) T and the generated (ac-
tual) A correlation matrices should be as small as possible. Let us
denote the difference matrix (error-matrix) E:

E ¼ T� A ð8Þ

To obtain a scalar measure of the error a suitable norm of the
matrix E is introduced. Two different norms have been defined in
[14], denoted as qmax and qrms. These norms have to be minimized
from the point of view of the definition of the optimization prob-
lem; the objective function is the error norm and the design variables
are related to the ordering in the sampling scheme (Fig. 2). Clearly,
in real applications the number of all the possible actual correla-
tion matrices A is extremely large: consider all ðNsim!ÞNvar�1 differ-
ent mutual orderings of the sampling table. Clearly, we want to
find an efficient near-optimal solution. This is achieved by the
application of the algorithm briefly described below.
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In each step of the combinatorial optimization algorithm, muta-
tion is performed by a transition called a swap from the parent con-
figuration to the offspring configuration. A swap (or a trial) is a
small change to the arrangement of the sampling table in Fig. 2.
It is done by randomly interchanging a pair of values, xij and xik.
In other words, one needs to randomly generate i (select the vari-
able), and a pair, j, k, (select the pair of realizations to interchange);
see Fig. 2. One swap may or may not lead to a decrease (improve-
ment) in the error norm. Immediately, one configuration between
the parent and offspring is selected to survive. The Simulated
Annealing algorithm [18] is employed for the selection step. The
advantage of this compared to some simple evolution strategies
is that there is a nonzero probability of accepting an offspring con-
figuration with a higher error than its parent (hill climbing). The
acceptance rule with decaying probability of hill climbing provides
a mechanism for accepting increases in a controlled fashion (cool-
ing schedule). It is possible that accepting an increase in the error
norm will reveal a new configuration that will avoid a local mini-
mum or at least a bad local minimum in future. Details on the algo-
rithm and also on the implementation can be found in [14].

Extensive studies on the performance of the algorithm [19–21]
show that it performs considerably better than other widely used
algorithms for correlation control, namely both Iman and Conov-
er’s (1982) Cholesky decomposition [16] and Owen’s (1994)
Gram-Schmidt orthogonalization [17].
2.3. Hierarchical sampling

When using Monte Carlo-type simulation, the adequacy of a gi-
ven sample for the purpose of giving acceptable estimates of de-
sired statistical quantities cannot be determined a priori, and
thus the ability to extend or refine an experimental design may
be important. This can be done very easily in crude Monte Carlo
sampling. Very often, though, running each realization (as either
a physical or virtual experiment) is very expensive. In conventional
Latin Hypercube Sampling, however, it is necessary to specify the
number of simulations in advance. If too small a sample set is used
(i.e. a set that does not give acceptable statistical results), the ana-
lyst normally has to abandon the results and run new analyses
with a larger sample set. It is thus desirable to start with a small
sample and then extend (or refine) the design if deemed necessary.
The extension would permit the use of a larger sample set without
the loss of any of the already performed, and possibly quite expen-
sive, calculations (experiments).

This problem has been overcome by the method called Hierar-
chical Latin Hypercube Sampling, which was proposed recently in
[22,23]. Note that a similar solution has been published in [24].
The method combines the addition of simulations to the current
sample set (hierarchical refinement of sampling probabilities)
while maintaining the desired correlation structure by employing
an advanced correlation control algorithm [14] for the extended
part of the sample. The initial LH-sample can have an arbitrary
number of simulations and the added sample must have an even
integer times more sampling points than the current sample size
(e.g. twice more, see Fig. 4).

The subsets sampled by the proposed method can be merged
together, exploiting the property of variance reduction, yet retain-
ing the sampling flexibility. The whole procedure of a cascade of
sampling runs can be fully automated and the stopping criterion
might be e.g. the significance of output statistics, or the desired
computational time. The simulation can simply be stopped during
run-time depending on the current accuracy of results and the ana-
lyst’s budget. In this way, e.g. some crude pilot studies can later be
efficiently reused and refined. Refining an existing experiment’s
design instead of re-creating a new one offers the advantage that
reusing sample points helps to decrease the overall computational
cost.

Numerical studies have shown that the extended sample has all
the properties that the same LH sample would have when simu-
lated in a single LHS run. The advantage in sample size flexibility
is obvious.
2.4. Simulation of random fields

At a higher level of uncertainty modeling, the spatial variability
of the mechanical and geometrical properties of a system and
intensity of load should be represented by means of random fields.
Because of the discrete nature of the finite element formulation,
the random field must also be discretized into random variables.
This process is commonly known as random field discretization.
The computational effort in reliability problems generally in-
creases with the number of random variables. It is therefore desir-
able to use a small number of random variables to represent a
random field. To achieve this goal, the transformation of the origi-
nal random variables into a set of uncorrelated random variables
can be performed through a well-known eigenvalue orthogonaliza-
tion procedure. This procedure is a discrete version of the well-
known Karhunen–Loève expansion of random fields using a set
of uncorrelated Gaussian variables and orthogonal functions. It
has been demonstrated that a few of these uncorrelated variables
with the largest eigenvalues are sufficient for the accurate repre-
sentation of a random field.

Let us consider the fluctuating components of a homogenous
random field, which is assumed to model the material property
variation around its expected value. Correlation characteristics
can be specified in terms of the autocorrelation matrix Cxx con-
structed by discretization using an autocorrelation function and
FEM mesh geometry. An eigenvalue orthogonalization procedure
will transform variables into uncorrelated space:

CXX ¼ UKUT ð9Þ

The covariance matrix in the uncorrelated space Y is the diago-
nal matrix K ¼ Cyy. The vector of uncorrelated Gaussian random
variables Y can then be simulated in the traditional way (Monte
Carlo simulation). The transformation back into correlated space
yields the vector X using eigenvectors U:

X ¼ UY ð10Þ

As shown in [25], the LHS method can be advantageously used
for the simulation of uncorrelated Gaussian variables Y. The
superiority of this stratified technique also remains here for the
accurate representation of the random field, thus leading to a
decrease in the number of simulations needed [26].
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The concept of the Karhunen–Loève expansion of random fields
has been extended for both the continuous and discrete represen-
tation of cross correlated random fields; see [27]. Translation from
Gaussian random fields into other distribution functions can be
conveniently achieved by employing Nataf transformation [28].

2.5. Sensitivity and reliability analyses

An important task in structural reliability analysis is to deter-
mine the significance of random variables. With respect to the
small-sample simulation techniques described above the most
straightforward and simplest approach uses the non-parametric
rank-order statistical correlation between the basic random vari-
ables and the structural response variable [29,30]. The sensitivity
analysis is obtained as an additional result of LHS, and no addi-
tional computational effort is necessary.

The relative effect of each basic variable on the structural re-
sponse can be measured using the partial correlation coefficient
between each basic input variable and the response variable. The
method is based on the assumption that the random variable
which influences the response variable most considerably (either
in a positive or negative sense) will have a higher correlation
coefficient than the other variables. Because the model for the
structural response is generally nonlinear, a non-parametric
rank-order correlation is used by means of the Spearman correla-
tion coefficient or Kendall tau. Sensitivity analysis can be depicted
using parallel coordinates [31]; a strong positive influence (high
correlation coefficient) results in parallel lines between the input
variable and the response variable, while a strong negative influ-
ence results in a bundle of intersecting lines.

In cases when we are constrained by the use of only a small
number of simulations (tens, hundreds) it can be difficult to
estimate the failure probability. The following approaches are
Fig. 5. ‘‘Random var
therefore utilized here; they are approximately ordered from ele-
mentary (extremely small number of simulations, inaccurate) to
more advanced techniques:

� Cornell reliability index - calculation of the reliability index
from an estimate of the statistical characteristics of the safety
margin.
� The curve fitting approach - based on the selection of the most

suitable probability distribution of the safety margin.
� FORM approximation (Hasofer-Lind index).
� Importance sampling techniques.
� Response surface methods.

These approaches are not described here as they are well-
known in the reliability literature, and also the provision of all
details is beyond the aim of this paper. In some cases, these tech-
niques do not always belong to the category of very accurate
reliability techniques (especially the first three in the list). How-
ever, they represent a feasible alternative in many practical cases.
3. Freet software

3.1. Basic parts

FReET multipurpose probabilistic software for the statistical,
sensitivity and reliability analysis of engineering problems (Novák,
Vořechovský and Rusina [7,32,33]) is based on the efficient reliabil-
ity techniques described above. There are three basic parts.

The ‘‘Random Variables’’ window (Fig. 5) allows the user-
friendly input of basic random variables of the analyzed problem.
Uncertainties are modeled as random variables described by their
probability density functions (PDF). The user can choose from a set
iables’’ window.
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of selected theoretical models such as normal, lognormal, Weibull,
rectangular, etc. Random variables can be described in three ways.
The first option is to describe them by their statistical characteris-
tics (statistical moments): the mean value, standard deviation (or
coefficient of variation), coefficient of skewness and kurtosis ex-
cess. Alternatively, they can be set based on their parameters or
on a combination of parameters and moments. The number of free
parameters is identical in all three modes (moments, parameters or
a mixture of both) and it represents the degrees of freedom of the
distribution. A special feature is enabled: the user can work with a
variable that represents the i-th greatest or smallest variable of n
independent and identically distributed (iid) variables selected
from the basic (elemental) distribution (order statistics). In this
way, e.g. the smallest of the n iid random variables can be selected
and the software works with this transformed distribution as if this
was on the list of available elemental distributions. This feature is
accessible from the ‘‘Distribution details’’ window, Fig. 6, and this
window also provides the option of performing basic computations
with a single random variable.

Another option allowing definition of the distribution of a single
random variable is to use raw data. Upon loading an arbitrary list
of values, the program either enables the use of a histogram or pro-
poses the best matching available parametric distribution accord-
ing to the Kolmogorov–Smirnov test.

The ‘‘Statistical Correlation’’ window serves for the input of tar-
get correlation matrix T, Fig. 7. The user can work at the level of a
subset of correlation matrices (each related to a group of random
variables) or at the global level (all random variables resulting in
a large correlation matrix). The level of correlation during interac-
tive input is highlighted, and the positive definiteness is checked.
Note that Simulated Annealing applied for correlation control does
not require the positive definiteness as it automatically delivers a
Fig. 6. Probability distribution functio
sample having the nearest positive semidefinite correlation matrix
to the target matrix T.

Random input parameters are generated according to their PDF
using LHS sampling. Samples are reordered by the Simulated
Annealing approach in order to match the required correlation ma-
trix as closely as possible, Fig. 8. Generated realizations of random
parameters are used as inputs for the analyzed function (computa-
tional model). The solution is performed Nsim times and the results
(structural response) are saved. At the end of the whole simulation
process the resulting set of structural responses is statistically
evaluated. The results are: estimates of the mean value, variance,
coefficient of skewness and kurtosis, and the empirical cumulative
probability density function estimated by an empirical histogram
of structural response. This basic statistical assessment is visual-
ized through the ‘‘Histograms’’ window. It is followed by reliability
analysis based on several approximation techniques: (i) the basic
estimate of reliability by the Cornell safety index, (ii) the curve fit-
ting approach applied to the computed empirical histogram of re-
sponse variables and (iii) the simple estimate of probability of
failure based on the ratio of failed trials to the total number of sim-
ulations; see Fig. 9.

Additional information regarding the problem solved is ob-
tained via the sensitivity analysis of each response function based
on its rank-order correlation coefficient. Even though this is actu-
ally a byproduct of the simulation which does not require any spe-
cial additional effort, it provides very useful information in many
cases. If the correlation coefficient between a certain input variable
and output variables is close to zero, we can conclude that the in-
put variable has (in its simulated range) a small or even negligible
effect on the output. This can sometimes help to decrease the prob-
abilistic dimension of the problem because such an input can be
considered deterministic; see Fig. 10.
n calculator (Distribution details).



Fig. 8. Window showing progress during the imposition of statistical correlation by the Simulated Annealing algorithm.

Fig. 7. ‘‘Statistical correlation’’ window.
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Fig. 10. Visualization of statistical correlation structure in parallel coordinates (correlation coefficient –0.98).

Fig. 9. ‘‘Reliability’’ window with empirical histogram, Curve fitting, Cornell safety index and Monte Carlo sampling estimates.
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3.2. Summary of main features

State-of-the-art probabilistic algorithms are implemented in
FReET to compute the probabilistic response and reliability. FReET
is a modular computer system for performing probabilistic analysis
developed mainly for computationally intensive deterministic
modeling and the running of user-defined subroutines. The main
features of the software are (version 1.6):

3.2.1. Stochastic model (inputs)
The fundamental part of the software is the user-friendly han-

dling of inputs - basic random variables and theirs statistical corre-
lation. The main features are:

� A friendly Graphical User Environment (GUE).
� 30 probability distribution functions (PDF), mostly 2-paramet-

ric, some 3-parametric, two 4-parametric (Beta PDF and normal
PDF with a Weibullian left tail).
� Unified description of random variables with the optional use of

statistical moments or parameters or a combination of
moments and parameters.
� PDF calculator, Fig. 6.
� Extreme value distributions and order statistics for any avail-

able parametric distribution.
� Statistical correlation (there is also a weighting option).
� Categories and comparative values for PDFs.
� Visualization of basic random variables, including statistical

correlation in both Cartesian and parallel coordinates, Fig. 10.

3.2.2. Response/Limit state function
The user has several options to define the analyzed function.

The complexity of the task is decisive for the selection of an appro-
Fig. 11. Equation editor (parser) window for the defi
priate interface. Several efficient and user-friendly options are
implemented:

� Closed form (direct), using the implemented Equation Editor
(simple problems), Fig. 11.
� Numerical (indirect), using a user-defined DLL function that can

be prepared in practically any programming language (C++,
Fortran, Delphi, etc.).
� General interface to third-party software using user-defined
�.BAT or �.EXE programs based on input and output text com-
munication files.
� Multiple response functions assessed in the same simulation

run.

3.2.3. Results (outputs)
The assessment of outputs (the results of Monte Carlo-type sim-

ulation) consists of:

� Histograms of output variables.
� Sensitivity analyses.
� Reliability estimates by various simulation and approximation

methods.
� Limit state functions.
� Parametric studies.
� Cost/Risk assessment.

3.2.4. Probabilistic techniques
Both standard and advanced statistical, simulation and reliabil-

ity techniques are implemented:

� Crude Monte Carlo simulation.
� Latin Hypercube Sampling (3 alternatives).
nition of simple limit state/response functions.
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� Hierarchical Latin Hypercube Sampling (extension of sample
size).
� First Order Reliability Method (FORM).
� Curve fitting.
� Simulated Annealing employed for correlation control over

inputs.
� Bayesian updating.
� Response surface.
� Importance sampling around mean values.

4. Concrete degradation simulation

When assessing the durability of concrete structures it is com-
mon to distinguish the initiation period during which the passive,
thin layer on the reinforcement’s surface is destroyed (e.g. depass-
ivation due to carbonation or chloride ingress) and the propagation
period of the reinforcement corrosion process [34].

The description of relevant limit states and associated reliability
assessment methodology are dealt with briefly in e.g. [35] for both
the initiation as well as the propagation period. Probabilistic mod-
eling of the carbonation process is described in more detail else-
where [36,37], modeling of chloride ion ingress e.g. in [38,39].

Verification of limit states associated with durability may be
performed according to one of the safety formats given in fib Mod-
el Code 2010 [40]: (i) full probabilistic format; (ii) partial safety
factor format; (iii) deemed-to-satisfy approach; (iv) avoidance-of-
deterioration approach. Note that approach (i) is the only option
which provides quantitative information about the safety level
and that there are also other reasons why the dominance of the full
probabilistic safety format is evident.

It appears that predictive models are needed to estimate how
resistance, loads and safety level will change over time. The utiliza-
tion of such models is highly advantageous when checking a prob-
ability limit condition: considering the Ultimate Limit State (ULS)
and the Serviceability Limit State (SLS), the general condition for
the probability of failure Pf may be formulated (reformulating Eq.
(3)) as:

Pf ¼ PðA P BÞ < Pd; ð11Þ

where A is the action effect, B is the barrier and Pd is the target
probability value. Reliability index b is alternatively utilized in-
stead of the probability of failure in practice (this is well-known
and is today prescribed in design codes). Generally, both A and B
(and hence Pf or b) are time dependent. The broad utilization of
such an approach is still prevented by the insufficient dissemina-
tion of information on stochastic analysis, by the lack of experi-
mental evidence and suitable models, and due to the lack of
efficient software. Durability and reliability issues should be ad-
dressed during the design process and discussed with stakeholders,
whose needs create the basis for the application of a performance-
based approach [41].

In the case of durability, the limit state can also be expressed by
means of the service life format as:

Pf ¼ PðtS 6 tDÞ 6 Pd; ð12Þ

where tD is the design life; the service life tS can be determined as
the sum of two service-life predictors (periods):

tS ¼ ti þ tp: ð13Þ

In (13), ti is the time at which the initiation of reinforcement
corrosion takes place and tp is the part of the service life after
corrosion initiation – the propagation period. Frequently, the initi-
ation period only serves as the decisive limit state – considered to
be a limit for service life, see e.g. the JSCE Guidelines [42]:

tS ¼ ti: ð14Þ
The direct consequence of passing this limit state is that possi-
ble future measures needed to repair the structure become more
expensive. The principal factors causing depassivation of reinforce-
ment in concrete are carbonation and chloride ingress. The
variables in Eq. (11) for the case of concrete carbonation are de-
noted as follows: B is concrete cover thickness and A is the depth
of carbonation at time tD. In the case of chloride ingress: B is the
critical concentration of Cl� which leads to steel depassivation
and A is the concentration of Cl� in contact with the reinforcement
at time tD.

Carbonation affects the pore structure of concrete, thus also
changing the chloride profile. Nevertheless, due to the slow pro-
gress of carbonation this effect is usually exhibited in the surface
layer of concrete only, and in practical life time assessment it
may be neglected.

Assessing the progress of reinforcement corrosion, i.e. the prop-
agation period tp, the relevant limit states according to Eq. (11) are
constructed with consideration given to the critical tensile stress of
concrete, the critical crack width, or the limiting reinforcement
cross-sectional area (with regard to either the SLS or the ULS) [35].

A comment regarding the level of representation in space:
several variables applied in the assessment of deteriorating con-
crete structures show random spatial variability. In contrast, the
majority of published analyses deal with 1D representation, which
enables the investigation of ‘‘points in space’’ or ‘‘hotspots’’, during
which only the temporal variability is taken into account. In order
to rectify this deficiency, numerous proposals for approaches
which also facilitate the analysis of the spatial characteristics of
deterioration processes have recently appeared, e.g. [43–46]. Fre-
quently, random fields in 2D space are used, often simulated by
means of random variables, generated for a chosen mesh in sto-
chastic finite element analysis. The requirement for data concern-
ing the correlation structure in space creates a challenge in
practical cases; therefore, monitoring/testing can be employed. A
more appropriate and economical definition of ti can then be based
on the reinforcement depassivation reached in a certain proportion
of the structure.
5. FReET-D module

Many predictive computational models for the degradation of
reinforced concrete structures with different levels of sophistica-
tion may be found in the literature. A common feature of all these
models is that input data are very uncertain. The authors and their
co-workers have developed a software implementation where rel-
atively well-known and simple models are chosen and employed
within the framework of a unified software environment – cur-
rently encompassing 39 models or their modified versions. This
program, FReET-D, features a combination of analytical models
and simulation techniques which have been amalgamated to form
specialized software for assessing the potential degradation of
newly designed as well as existing concrete structures [47,48].

The software package FReET-D, version 1.2 (2012), is efficient
and user friendly; models for carbonation, chloride ingress, rein-
forcement corrosion, sulphide, acid and frost attack are provided.
FReET-D actually represents a specialized module of FReET soft-
ware [7], described above. All features implemented in FReET can
therefore also be utilized for durability limit states defined by
FReET-D. The full probabilistic safety formats are thus employed,
serving also for the provision of quantitative safety level informa-
tion. The uncertainties associated with parameters involved in
deterioration processes are modeled by random variables and
several simulation techniques may be optionally used. Statistical,
sensitivity as well as reliability analysis is provided. The imple-
mented models may serve directly in the durability assessment
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of concrete structures in forming durability limit states, i.e. the
assessment of service life and the level of the relevant reliability
measure. Several features are offered, including parametric studies,
Bayesian updating and statistical correlation of input variables.
Models are implemented as pre-defined dynamic-link library func-
tions selected from the literature. Some of them were originally
developed as deterministic models and have been converted into
probabilistic form for the purposes of the presented software. Note
that the availability of more models seems to be beneficial in some
situations, bearing in mind that a more sophisticated computa-
tional model requires a larger amount of input data, which are
not always available.

Some applications are described e.g. in [39,49–51].

6. Selected applications

6.1. General remarks

FReET software is used worldwide for both research and teach-
ing purposes. However, the applications of FReET software as a
complex system for the reliability analysis of concrete structures
are some of the most successful and interesting. Efficient nonlinear
numerical analysis techniques implemented in ATENA software
[52,53] and stochastic methods have been combined to offer an ad-
vanced tool for the reliability assessment of concrete structures.
The combination of all parts (structural analysis, reliability assess-
ment, inverse analysis and degradation modeling) is presented
together as SARA software [54–63]. There are, of course, applica-
tions in other areas of engineering in which the basic concepts of
stochastic simulation as implemented in FReET software can be
used, e.g. in geomechanics [64]. But we will provide the list of
applications bellow related to FReET and SARA only.

6.2. Probabilistic analysis of concrete structures

The presented approach has been used for the statistical, sensi-
tivity and nonlinear reliability analysis of concrete structures. This
Fig. 12. A subway tube in dry dock.
was the primary impulse for software development. The finite ele-
ment model of concrete structure developed in ATENA software is
randomized using FReET software, which generally results in a
bundle of load–deflection curves. Based on statistical processing
of the results, ultimate capacity, sensitivity and reliability can be
assessed. The main interest is focused on probabilistic bridge
assessments, including degradation and retrofitting modeling.
The majority of bridges analyzed by the complex system SARA
are located in the Czech Republic, Austria, Italy and Germany. Refs.:
[65–73].

6.3. Size effect studies

It is well known that concrete exhibits size effect. Deterministic
energetic size effect can be captured by nonlinear fracture mechan-
ics, but there is an additional source of size effect: uncertainties
related to the strength of the material used. Such a size effect is
a statistical size effect and cannot be captured without the applica-
tion of statistics and probability. The SARA software system can do
that, as has been verified with several size effect experiments. The
probabilistic treatment of nonlinear fracture mechanics in the
sense of extreme value statistics has been recently applied mainly
for crack initiation problems which exhibit Weibull-type statistical
size effect. Refs.: [74–81].

6.4. Inverse analysis

The recently proposed inverse analysis is based on a coupling of
stochastic nonlinear fracture mechanics analysis and an artificial
neural network. This inverse analysis utilizes the SARA software
package. Small-sample simulation is used efficiently for the virtual
simulation of a training set for an artificial neural network. The ap-
proach has been used for material parameter identification, dam-
age identification, inverse analysis and model updating. The
original procedure has also been applied for inverse reliability
analysis. Refs.: [82–93].

6.5. Verification of (code) design formulas

Complex simulation software can be efficiently used for code
verification and calibration purposes. Questions always arise at
the academic level concerning the correctness and reliability level
of design code formulas vs. newly proposed formulas. No real guar-
antees and information on safety can be obtained using the partial
safety concept as accepted in the present design codes.

In the context of transferring to new design codes for the
assessment of civil engineering structures, the current topic is
designing according to the Eurocodes (EC). The engineering com-
munity is currently discussing and organizing lectures focused on
this issue. These lectures very often just deal with issues arising
due to the differences between current design methodology and
designing according to the EC. Refinement of calculations in terms
of more accurate reliability estimates (quantified using failure
probability) necessitates a truly probabilistic framework – fully
probabilistic computation. Refs.: [94–98].

6.6. Statistical simulation of uplift forces: Case study of the launching
of a large subway tunnel

A unique application of the first version of FreET software
should be mentioned [99]: An extension of the subway system in
Prague, Czech Republic, crosses the Vltava River. A couple of large
concrete tunnels, which are curved in plan as well as in elevation,
were cast in a dry dock excavated in the bank of the river, Fig. 12
[100]. After the first tube was cast, it was launched in a trench
excavated in the river bed. Each tunnel was cast in 12 m long
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segments. The total number of 14 segments formed a large tube,
168 m long. The outside width of the cross-section was 6.48 m,
and the height was 6.48 m, too. The thickness of the walls and
the top and bottom slabs was about 0.7 m. During launching, the
tube was suspended at one third of its length from its front on a
pontoon, and at the back end the tube was supported by hydraulic
telescopic sliding shoes. During launching the tube was subjected
to two forces -actions acting in opposite directions; (i) that of its
own weight and (ii) that of the buoyancy of the water. Both these
actions exhibit statistical scatter due to the differences in dimen-
sions and in the density of the concrete. The actual load is the dif-
ference between the two actions, and therefore it is extremely
sensitive to the scatter of geometrical imperfections. Due to the ex-
pected variability, balancing forces (tanks of water) were consid-
ered in some range and then applied in reality. There was a
danger that such imperfections might result in an out-of-control
situation in which the necessary balancing forces would be outside
of the feasible range. A statistical feasibility study was therefore
needed.

The imperfections of the individual segments were simulated as
random variables – a total of 211 random variables were used in
the study! A simulation of the random process of concrete tube
casting (geometry) with the statistical assessment of forces was
performed. The updating of weights according to the results of
the casting of previous segments was suggested and implemented
into the virtual numerical procedure. The segments were continu-
ously updated – the 2nd segment was based on the 1st segment,
the 3rd segment was based on the 1st and 2nd segments, etc. An
improvement in the forces in each random realization can be ex-
pected from this technique – the resultant uplift force will be close
to the target one.

The good convergence of such a procedure is shown in Fig. 13,
using several Monte Carlo-type simulations only. The basic nomi-
nal starting thickness of the first segment was 0.7 m, the target up-
lift force being approx. 9 kN/m (per meter of tunnel tube). The good
convergence of both means and percentiles was observed, which
obviously contributes to reliability.

The virtual simulation detailed above was purely theoretical,
and so the question naturally arises: what will the result be during
the real casting of tubes? The suggested method of segment updat-
ing was followed in reality as much as possible. Real values for
uplift forces based on geometry and density measurements are
shown in Fig. 13. The behavior confirms the efficiency of the updat-
ing procedure tested virtually before casting.

The statistical simulation of this technical process was aimed at
the decision-making process before launching and thus at
assessing the reliability of the entire project. The successful
launching of the subway tubes with segment geometry updating
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Fig. 13. Uplift force – virtual Simulation vs. reality.
demonstrated very good agreement with the preliminary statisti-
cal simulation.
7. Conclusions

The paper describes the main software features and stochastic
methods implemented in FReET. Efficient techniques of employing
stochastic simulation methods were combined in order to offer an
advanced tool for the probabilistic assessment of user-defined
problems at ultimate capacity and serviceability limit states.

The presented software tools may be applied in the advanced
design of structures, when making decisions about alternatives,
when searching for optimum life-cycle cost solutions, and in
cost-effective decision-making processes concerning maintenance
inspection and planning. With regard to this, the time aspect
emphasizes the urgent need for durability limit state consider-
ation. The software implementation in FReET-D can help users to
choose appropriate models and assess the service life issue as ap-
plied to concrete structures.

Real world engineering structural design, development and
assessment is very challenging as it is subjected to a whole host
of sources of variation. Probabilistic techniques are therefore used
in various engineering fields, offering advantages over the alterna-
tive, but more traditional, deterministic methods that might other-
wise be employed. Small-sample probabilistic simulation of the
Monte Carlo type can address a lot of the shortcomings of classical
deterministic approaches and a ready-to-use software program has
been developed for the analysis of any user-defined problem. Its
wide range of applicability, both practical and theoretical, provides
the opportunity for further intensive development of the software
tools it offers.
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[15] Vořechovský M. Correlation control in small sample Monte Carlo type
simulations II: Analysis of estimation formulas, random correlation and
perfect uncorrelatedness. Probab Eng Mech 2012;29:105–20.

[16] Iman RC, Conover WJ. A distribution free approach to inducing rank
correlation among input variables. Commun Stat 1982;B11:311–34.

[17] Owen AB. Controlling correlations in Latin Hypercube Samples. J Am Stat
Assoc (Theory and methods) 1994;89(428):1517–22.

[18] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of
state calculations by fast computing machines. J Chem Phys
1953;21:1087–92.
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[51] Teplý B, Chromá M, Rovnaník P, Novák D. The role of modeling in the
probabilistic durability assessment of concrete structures. In: Strauss,
Frangopol, Bergmeister (Eds.), Proc life-cycle and sustainability
infrastructure systems (IALCCE 2012). London: Taylor & Francis Group;
2013. p. 876–82.
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[77] Vořechovský M. Interplay of size effects in concrete specimens under tension
studied via computational stochastic fracture mechanics. Int J Solids Struct
2007;44(9):2715–31.
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[98] Vořechovský M, Miča L, Boštík J. Comparison of shallow foundation according
to the partial safety factor method and the full probabilistic method. In:
Frankovská, et al. (Eds.), Proceedings of the 14th Danube-European
conference on geotechnical engineering from research to design in
European practice, held in Bratislava, Slovakia, full papers on CD-ROM.
Slovak University of Technology, Bratislava; 2010.

[99] Keršner Z, Novák D, Vítek JL, Teplý B. Decision-making support based on
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