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We study well published results on direct tensile tests of dog-bone specimens with rotating boundary conditions
performed by van Vliet and van Mier. They published several papers presenting the experimental results and
naming various sources of experimentally observed size effect on nominal strength. We model the experiments
by methods of stochastic nonlinear fracture mechanics attempting at capturing the size effects. Firstly we
model the specimens by microplane material law to show that alarge portion of the dependence of nominal
strength can be explained deterministically. However, it is clear that more sources of size effect take part and
we consider two of them. Namely, we model the local material strength by an autocorrelated random field
attempting at capturing statistical part of the complex size effect, scatter inclusive. A noticeable fact already
shown by the first author earlier is that such an approach has the large size asymptotic behavior coinciding
with the classical Weibull power law while the small size asymptote deviates strongly from the Weibull size
effect. The strength drop of the smallest specimen obtainedin the experiments is explained by weak surface
layer of constant thickness (caused e.g. by drying, surfacedamage, aggregate size limitation at the boundary
or other irregularities). All three named sources (deterministic-energetic and statistical size effects and weak
layer effect) are believed to be the most contributing sources of the observed strength size effect and the model
combining all of them is capable of reproducing the measureddata. The computational approach represents a
marriage of advanced computational nonlinear fracture mechanics (̌Cervenka and Pukl 2005) with simulation
techniques for random fields representing spatially varying material properties (Vǒrechovsḱy 2005). Using the
numerical example we document how different sources of sizeeffect on strength can interact and result in
relatively complex processes in quasibrittle failure. Thepresented study documents the well known fact that
an experimental determination of material parameters (needed for rational and safe design of structures) is very
difficult for quasibrittle materials such as concrete.

1 INTRODUCTION
The paper studies well published results of direct ten-
sile tests on dog-bone specimens with rotating bound-
ary conditions with varying size (size range 1:32) per-
formed by van Vliet and van Mier (van Vliet and
van Mier 1998; van Vliet and van Mier 1999; van
Vliet and van Mier 2000a; van Vliet and van Mier
2000b; van Mier and van Vliet 2003; Dyskin et al.
2001). In particular we are interested in the series of
dry concrete specimens A to F (dimensionD vary-
ing from 50 to 1600 mm, see Fig. 1); a series accom-
panied by verification tensile splitting tests. The pa-
per attempts at explaining of the complex size effect
on mean and variance of nominal strength by com-
bination of random field simulation of local mater-
ial properties, ”weak boundary” effects and a non-
linear fracture mechanics software based on a cohe-
sive crack model. There has been spent much effort

on different explanations of experimentally obtained
size effect on strength from several different points
of view. Firstly, the effect of a non-uniform distribu-
tion of strains in the smallest cross-section was stud-
ied with simple linear constitutive law (van Vliet and
van Mier 1999; van Vliet and van Mier 2000a) and
a separation of structural and material size effects
was discussed. The results were also compared to the
Weibull theory (Weibull 1939) based on the weakest-
link model which was found to fit the mean nomi-
nal strength of sizes B to F (van Vliet and van Mier
1998; van Vliet and van Mier 1999; van Vliet and van
Mier 2000a; van Vliet and van Mier 2000b; van Mier
and van Vliet 2003). Unfortunately, the slope of mean
size effect curve corresponds to Weibull modulus of
6 which does not coincide with the measured scat-
ter of strengths at each size. However, this is required
in Weibull type of size effect. Secondly, the effect of
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Figure 1: Dog-bone specimens tested by van Vliet and van Mier: series A to F, 2D model in software ATENA

Gaussian stress fluctuation with non-uniform loading
was studied by (Dyskin et al. 2001) and the developed
model employing a limiting distribution of indepen-
dent Gaussian variables with linear trend agrees with
the experimental data very well. Van Mier and van
Vliet also compared the data to ”Delft lattice model”
using a simple local elastic-brittle material with reg-
ular and random lattices with good results. The sta-
tistical part of experimentally obtained size effect has
been recently modeled by (Lehký and Nov́ak 2002)
using Weibull distribution of strength.

In this paper, the authors firstly try to explain the
mean size effect curve by deterministic effects (not as-
suming the local material strength random). It partly
explains the decreasing slope of the mean size ef-
fect curve (MSEC) in double-logarithmic plot (nom-
inal strength versus characteristic size). However, the
strong decrease of the mean strength of the smallest
specimen A is believed to be sufficiently captured by
modeled weak surface layer of thickness of about 2
mm. A parametric study of the influence of a ”weak
layer” thickness and the percentage reduction of the
layer strength compared to the bulk strength will be
presented with regard to resulting MSEC. Next, the
authors approximate the local material strength by an
autocorrelated random field attempting at capturing
the whole size effect, scatter inclusive and combine
all sources together.

2 EXPERIMENT
The experiments are well documented in the six first
references cited in the introduction. We will briefly
mention only those necessary data needed to ex-
plain the computational model, all other details can
be found in the cited publications. Dog-bone shaped
specimens were loaded in uniaxial tension with geo-
metrically scaled eccentricity from the vertical axis of
symmetrye = D/50 [mm]. The loading platens were
allowed to rotate freely in all directions around the
loading point at the top and bottom concrete face. The
loading platens were glued to concrete. Six different
sizes were tested, all beams were geometrically simi-

lar (see Fig. 1). The beam thickness was kept constant
(100 mm) implying transition from plane strain like
conditions at the smallest size to plane stress condi-
tions for the large sizes. The concrete mixture was re-
ported to have an average cube compressive strength
of 50 MPa and maximum aggregate sizedmax = 8 mm.

For comparison purposes, it is necessary to define
nominal strength. Since the eccentricity of loading
points has been geometrically scaled in both experi-
ments and numerical models, we can neglect its effect
and define the nominal stressσ simply as a function
of characteristic dimensionD (maximum specimen
width), instantaneous tensile forceF applied at con-
crete faces on the eccentricitye and cross sectional
area in the middle of the specimenA(= 0.6Db):

σ =
F

A
=

1

0.06

F

D
(1)

Having defined the nominal stress, we define the nom-
inal strengthσN as the nominal stress attained at max-
imum loading force(σN = Fmax/A).

Table 1: Experimental data. Specimens’ dimensions,
nominal strengths and sample size.

D r σN Specimens
0.725D mean (std. dev.) tested

mm mm MPa #
A 50 36.25 2.54 (0.41) 10
B 100 72.5 2.97 (0.19) 4
C 200 145 2.75 (0.21) 7
D 400 290 2.30 (0.09) 5
E 800 580 2.07 (0.12) 4
F 1600 1160 1.86 (0.16) 4

3 DETERMINISTIC MODEL
A strong contribution to non-uniformity of the nom-
inal strength is the ”energetic-deterministic” size
effect caused by approximately constant fracture
process zone (FPZ) size with stress redistribution
in beams of all sizes; see e.g. (Bažant and Planas
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Figure 2: Left: size effect plot for experimental data, deterministic and weak layer computations. Right: com-
putational model with weak layer

1998). This effect can be modeled e.g. by finite el-
ement method if the fracture energy and the whole
shape of pre- and postpeak behavior is correctly in-
troduced. We created the deterministic model in soft-
ware package ATENA (̌Cervenka and Pukl 2005), us-
ing the Bǎzant’s microplane material model (version
4) and the crack band model (Bažant and Oh 1983)
as a regularization. Specimens were loaded by de-
formation increment and the forceF was monitored,
see Figure 1 right. We neglected the transition from
plain strain to plane stress conditions with growing
beam size and modeled the whole series of sizes with
plane stress model. Based on the information about
the average cube compressive strength of 50 MPa
ATENA generated a set of consistent microplane pa-
rameters: K1=1.5644E-04, K2=500, K3=15, K4=150,
crack bandcb = 30 mm, number of microplanes 21.
We changed the crack band to 8 mm, a value which
better matches the experimental data, see Figure 2
left. The crack band size is related to fracture en-
ergy of material and controls the size at which the
transition from ductile to elastic-brittle failure takes
place. A noticeable fact is that in the size effect plot
the curve can be shifted right or left as a rigid body
just by changingcb. More specifically, the determin-
istic nominal strength computed for a certain sizeD
using a valuecb is also the nominal strength of size
k D computed with crack band widthk cb:

for ∀k > 0 : σdet

N (D,cb) = σdet

N (k D,k cb) (2)

This fact can be exploited to simplify preprocessing of
numerical models of size effect series: simply create
model of one size only and varycb instead ofD. For
instance, we do not have to model all sizes in ATENA,
but modifycb in a single model to obtain the response
of another size.

4 WEAK BOUNDARY
A parametric study has been performed to illustrate
what is the effect of (i) the weakened layer thickness
and (ii) reduction of the material strength in that layer.
In Figure 2 we plot six size effect curves computed
with deterministic model equipped with a layer of
weakened material on both curved edges of the spec-
imen (see the illustration on the right). In particular,
we selected three thicknessestw (0.5, 2 and 8 mm)
and for each thickness we considered two different re-
duction factors of material strength parameterrt (0.5
and 0.9). In the figure, for each layer thickness the two
curves are plotted and the space between them is filled
with gray color (the upper curve always corresponds
to reduction of 0.9 and the lower one to reduction of
0.5). It can be seen that the nominal strength reduc-
tion decays as the layer thickness becomes negligible
compared to specimen dimensionD. Moreover, the
ratio between the reduced strength and deterministic
nominal strength can be roughly used as a strength
reduction coefficient for any ratiotw/D. This reveals
simple scaling rule written for an arbitrary positive
multiplier k as the reduction factorrσ of specimen
strength due to weak strip compared to deterministic
strength with no strip:

rσ

(

tw
D

)

=
σN (D, tw)

σdet
N (D)

∼=
σN (k D,k tw)

σdet
N (k D)

(3)

rσ ∈ 〈rt; 1〉 , whereσdet

N (D) = deterministic strength
for size D; σN (D, tw) = deterministic strength for
size D and weak layer thicknesstw; rt = reduction
factor for material strength within the weak layer
rt ∈ 〈0; 1〉.

Best results are obtained withtw = 2 mm and re-
duction coefficientrt = 0.5. The thickness roughly
corresponds to the frequent largest aggregate size at
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boundary (particle size certainly decreases as we ap-
proach the specimen boundary). As can be seen from
Figure 2, we are able to partly fit the drastic strength
reduction of specimens where the thicknesstw is not
negligible compared to specimen neck thickness of
0.6 D. The deterministic size effect (transition from
plastic to elastic strength) is automatically included
in the computation because we use the same mater-
ial model and parameters. However, the most impor-
tant effect of strength reduction for large specimens
can not be modeled by the two effects studied so far.
Neither we are able to model the strength scatter be-
cause there has been no randomness considered in the
model yet.

5 STOCHASTIC MODEL
We believe that the strong size effect on strength in
the experimental data is predominantly caused by spa-
tial variability/randomness of local material strength.
Therefore, we considered the strength related parame-
ter in microplane model denoted K1 in ATENA ran-
dom and performed Monte Carlo type simulations for
each size of a specimen. In particular, we sampled
64 realizations of random field of parameter K1 for
each size and computed the responses (complete load-
displacement diagrams, stress fields, crack patters,
etc.). We tested numerically that parameter K1 has ap-
proximately linear relation to structural strength in a
wide range around the mean value used in determin-
istic model. The reason for sampling the local mate-
rial strength by random field instead of independent
random variables is that we believe that in reality the
strength of any two close locations must be strongly
related (correlated) and such a relation can be suit-
ably modeled by an autocorrelated random field. We
assumed the distribution of local strength in each ma-
terial point identical and Weibull distributed. The lo-
cal probability of failurepf (cumulative distribution
functionFσ ) depending on stress levelσ reads:

pf = Fσ (σ) = 1− exp
[

−
(

σ

σ0

)m]

(4)

whereσ0 = scale parameter of Weibull distribution
[MPa], value 1.6621E-4 used for K1;m = shape para-
meter of Weibull distribution (dimensionless, depends
solely on cov = coefficient of variation).m = 7.91
used for random K1.

To obtain results consistent with previous deter-
ministic analysis we kept the value of parameter K1
as the mean value. The second parameter of Weibull
distribution has been set with regard to the cov of
nominal strength of the smallest sample (in experi-
ments cov of the size A was 0.16). This choice is
supported by the fact that size A has the largest sam-
ple size (10 replications, see Tab. 1). Therefore the
estimation of variance has higher statistical signifi-
cance than for other sizes. Moreover, we believe that

the effect of weakened boundary only reduces the
mean nominal strength but does not influence the scat-
ter of strengths. For simplicity we used the value of
cov=0.15 (15% variability of local material strength).
This is relatively high value implying relatively low
Weibull modulus mentioned above. Discretized ran-
dom field is a set of autocorrelated random variables.
The most important parameter (apart from autocor-
relation function) is the autocorrelation length con-
trolling the distance over which the random material
strengths are correlated. We used the squared expo-
nential autocorrelation function:

R = exp



−

(

d

lr

)2


 (5)

where d = distance of two points;lr = correlation
length, value of 80 mm used for random field of K1.

It can be shown that for specimens much smaller
than one autocorrelation length the realization of ran-
dom field of the local strength K1 is a constant func-
tion over the whole region and all local strengths
of the whole specimen can be represented by just
one random variable (instead of number of spatially
correlated variables). Since the specimen’s nomi-
nal strength is just a simple transformation of input
strength parameter K1 (no spatial variability allowing
cracks to localize in other location than in determinis-
tic analysis), we knew that the mean nominal strength
of the smallest specimen will be the same as that ob-
tained by deterministic analysis. That is why we used
the K1 from deterministic analysis as the mean value
of random field of K1.

The samples of random fields evaluated in locations
of integration points were simulated by methods de-
scribed in (Vǒrechovsḱy 2005; Vǒrechovsḱy 2004b;
Vořechovsḱy and Nov́ak 2005). The simulated ran-
dom fields are stationary, isotropic and homogeneous.
Briefly, the orthogonal transformation of covariance
matrix has been used in combination with Latin Hy-
percube Sampling of the random part of field expan-
sion. Such a combination proved itself to be very ef-
fective in providing samples of random fields lead-
ing to high accuracy in estimated response statistics
compared to classical Monte Carlo sampling. Nu-
merical studies documenting this efficiency are pub-
lished by (Vǒrechovsḱy 2005; Vǒrechovsḱy 2004b;
Vořechovsḱy and Nov́ak 2005). This is extremely im-
portant property in cases when evaluation of each re-
sponse is very time consuming. In our case the eval-
uation is represented by one computation of response
by nonlinear finite element method with microplane
material model. Clearly this is very expensive and we
must keep the number of simulations as low as pos-
sible. The number of 64 simulations was tested to be
high enough and providing stable and accurate statis-
tical estimates of field’s statistics (averages, sample
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standard deviations, autocorrelation structure) as well
as reproducible estimates of statistics of structural re-
sponse (nominal strength etc.).

The automatic simulation of all structural responses
was done by software SARA integrating (i) ATENA
software (evaluation of response) on one side and (ii)
FREET software (Vǒrechovsḱy 2004b; Nov́ak et al.
2005; Nov́ak et al. 2003a) (simulation of samples
of random parameters, statistical assessment) on the
other side.

In Figure 3 we plot computed sets of load-
displacement diagrams and sketch the definition of
displacement (separation of two measuring points).
Selected load displacement curves are highlighted
and the corresponding realizations of random strength
fields are plotted in Figure 4. The letter denotes spec-
imen size and the integer denotes the number of
simulation. Besides the most frequent simple load-
displacement functions we purposely highlighted sev-
eral curves with unusual shape (snap-back type or ”a
loop”). In routine practice of testing concrete struc-
tures such special shapes can be experimentally mea-
sured just occasionally. As discussed later, in our
case some unusual or unexpected curves are obtained
partly due to the definition of displacement∆u and
mainly due to the spatial randomness with high vari-
ability. The comparison of peak strength of determin-
istic load-displacement diagram with the mean value
of nominal strength can be made in Figure 3. The
difference between them grows with specimen size.
While for size C the mean strength nearly coincides
with the peak of deterministic diagram, for specimen
size E the deterministic curve is above all 64 random
realizations of the diagram, see Figure 3.

In Figure 4 we plot chosen realizations of random
strength field for all sizes A - F. We note that a sim-
ilar scaling rule to Eq. 2 can be written for the role
of statistical length (here in a form of autocorrelation
lengthlr). For a given strength random field (statisti-
cal distribution and an autocorrelation structure) only
the proportion betweenlr andD matters:

for ∀k > 0 : σN (D, lr) = σN (k D,k lr) (6)

Again, this can be used to simplify modeling because
one size can be used with varyinglr instead ofD.

It can be seen that as the ratio of autocorrelation
length and specimen sizeD decreases, the rate of
spatial fluctuation of random field realizations grows.
Therefore there is increasing number of locations
with low material strength (locations prone to fail-
ure). Or, in other words, with increasing specimen
size there is an increased probability that there will
be a weak spot in highly stressed regions. This ef-
fect is long referred to as the statistical size effect.
The classical statistical size effect is modeled by the
simple weakest link model and usually approximated

by Weibull power law (Weibull 1939). However,
as explained in (Vǒrechovsḱy 2004b; Vǒrechovsḱy
2004a; Vǒrechovsḱy and Chudoba 2006b), the clas-
sical Weibull model is not able to account for spatial
correlation between local material strengths. Rather,
Weibull model is based on IID (independent and iden-
tically distributed) random variables linked in series.
The effect of such a consideration is that the strength
of infinitely small specimen is infinite. In Weibull
model every structure is equivalent to a chain un-
der uniaxial tension, a chain of independent mem-
bers having identical statistical distribution of stress.
If the local strength is modeled by an autocorrelated
random field (and we consider the autocorrelation
length to be a material property), the small size as-
ymptote of strength is equivalent to the distribution
of local material strength. On the other hand, the
large size asymptote is exactly identical to that of
the Weibull model (Vǒrechovsḱy 2004b; Vǒrechovsḱy
2004a; Vǒrechovsḱy and Chudoba 2006b) (for a
proper choice of reference length and the correspond-
ing scale parameter of Weibull distribution in Weibull
model). The autocorrelation length plays an important
role of statistical scaling length in material control-
ling the transition from one strength random variable
model (full correlation in small structures) to many
independent local strengths (large structures, Weibull
model).

Crack patterns of two randomly chosen specimens
A 22 and B 14 (see Fig. 4) show the most frequent lo-
cation of strain localization. The small eccentricity of
load and relatively narrow neck of dog bone specimen
nearly guarantee that cracking will initiate on the right
side of the neck. Samples of random fields in both
cases (A, B) are nearly constant functions and there-
fore there is no space left for the weakest link prin-
ciple. Pattern C 22 in the same figure documents that
the local strength can be in some location so small that
the relatively low stresses in that location can initiate
fracturing. In specimen C 22 the rotation of platens
was opposite to the usual direction. Since the dam-
age localized out of the distance on which we mea-
sured the displacement∆u the correspondingσ-∆u

diagram in Figure 3 has the snap-back like shape. The
same is true also for C 51 whereas C 34 and C 55 are
again just typical representatives ofσ-∆u diagrams
and crack patterns. Similar features can be found in
series D. Positions of cracking in D 3 and D 22 caused
the snap back while D 27, D 44, D 47 and D 55 illus-
trate the random sampling of crack initiation leading
to usual shape ofσ-∆u diagram displayed on our vir-
tual testing machine.

Very interesting are diagrams E 15 and E 18. The
”loops” in Figure 3 are the results of an unfortunate
case of cracking close to points of measured displace-
ment. It can happen that at some point of loading the
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Figure 3: Load-displacement diagrams (64 realizations) ofstructural sizes C, D, E and F. Selected diagrams are
highlighted.

lower measuring point can start moving faster than the
upper point and this result in bizarre shape ofσ-∆u di-
agram E 15. A specimen can later start cracking in the
neck as occurred in the case of E 18. In series F the
autocorrelation length becomes so small compared to
specimen dimension that again cracks initiate on the
right side of the neck nearly in all cases, see Figures 3
and 4. In series A we never reported snap-back like
curve due to cracking outside the measuring distance
and in case of B and F this happened once only, see
Figure 3. We can conclude that the most interesting
processes happen in specimens with dimension com-
parable to one or two correlation lengths (region of
transition from one random strength variable to a set
in independent strength variables).

We note that in contrast to the experiments, we did
not control loading by the displacement increments

∆u. Instead, we loaded the beams by displacement at
the ends and therefore we were able to monitor snap-
back type of curves without any difficulty.

We were able to simulate random specimen re-
sponses of specimens smaller than A with random
fields of K1, moreover we could simply use a ran-
dom variable sampling to represent randomness in
that small specimens. On the other hand, it becomes
very problematic to simulate samples of random fields
of specimens much larger than F. Even though the first
author is deeply involved in techniques to overcome
the computational difficulties with stochastic finite el-
ement computation of large structures (Vořechovsḱy
and Chudoba 2006a) we will present another tech-
nique here. Fortunately, only strength is random in our
analysis and we can use the classical Weibull integral
for large structures. As explained in (Vořechovsḱy
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D3 D 22 D 27 D 44 D 47 D 55

E 2 E 3 E 10 E 15 E 18 E 27

F 3 F 13 F 26 F 42 F 52

low strength
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Figure 4: Simulated random strength field realizations and corresponding crack patters in deformed specimens
right after attaining the maximum forceFmax. Field simulated and crack widths computed in integration points.

2004b; Vǒrechovsḱy 2004a; Vǒrechovsḱy and Chu-
doba 2006b) if the structure is sufficiently large, the
spatial correlation of local strengths becomes unim-
portant and the Weibull integral yields solution equiv-

alent to full stochastic finite element simulation. We
will briefly sketch the computational procedure of
evaluating the Weibull integral for structural failure
probability, details can be found e.g. in (Bažant and
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Planas 1998). The Weibull integral has the form:

− ln (1− Pf ) =
∫

V

c [σ (x) ;m,σ0] dV (x) (7)

wherePf = probability (the cumulative probabil-
ity density) of failure load of structure;c [•] = stress
concentration function.

There are several possible definitions of the stress
concentration function, see (Bažant and Planas 1998).
In the studied specimens the major contributor to the
stress tensor is the normal stressσyy. The field of
stressσyy nearly coincides with the principal tension
σI . Since only tensile stresses are assumed to cause
a failure, we defined the stress concentration function
simply as:

c [σ (x) ;m,σ0] =
1

V0

〈

σI (x)

σ0

〉m

(8)

whereV0 = reference volume associated withm and
σ0.

In Figure 5 right we plot computed field of princi-
pal tension over the specimen in an elastic stress state.
Numerical integration of this stress field for different
specimen sizes and failure probabilities can be suit-
ably rewritten in dimensionless coordinates so that
the computation becomes extremely easy. Resulting
mean size effect is plotted in Figure 6 (asymptotic
mean size effect curve). Let us also mention that an-
other way of simulating the random strength of large
structures can be done utilizing the stability postulate
of extreme values (Fisher and Tippett 1928). Such a
computational procedure is an elegant trick using the
recursive property of distribution function and is de-
scribed in (Bǎzant et al. 2005; Nov́ak et al. 2003b) to-
gether with applications. Results of such an approach
(and also Weibull integral as presented here) are valid

only for extremely large sizes where effects of struc-
tural nonlinearity (causing stress redistribution) dis-
appear. For small sizes there are two problems: (i)
spatial correlation of local strengths and (ii) effect
of stress redistribution. The result must be a straight
line in double logarithmic plot of size versus strength
(size effect plot is a power law). An approach based
on simple scaling of Weibull random variables associ-
ated with structural regions of different sizes has been
used in (Lehḱy and Nov́ak 2002). They simply used
the scaling rules only for sizes larger than size C and
this helped them to obtain close fit of experimental
data. Unfortunately, the numerical model used did not
allow platens to rotate freely and did not model the
eccentricity of loading force which both, in our view
can negatively affect the results of response statistics.
By prescribing both platens to move without rotation
one forces the specimen to fracture differently than if
platens can rotate freely. This becomes extremely im-
portant if the local strength gets randomized spatially.

6 ANALYSIS OF THE RESULTS

By introducing three different scaling lengths we are
able to independently incorporate three different ef-
fects in the model resulting in three size effects on
nominal strength. The crack band widthcb (determin-
istic scaling length) controls at which size the tran-
sition from ductile to elastic-brittle behavior takes
place and therefore it controls the transition between
two horizontal asymptotes in the size effect plot (see
Fig. 2). The second introduced length (weak bound-
ary thicknesstw) together with the material strength
reduction controls at which size there will be a signifi-
cant reduction of nominal strength. The reduction gets
amplified with decreasing specimen size and causes
opposite slope of size effect than the deterministic
and statistical ones (see Fig. 2). The last introduced
length is the autocorrelation lengthlr controlling the
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Figure 6: Comparison of results in size effect plot.

transition from randomness caused by overall mater-
ial strength scatter (one random variable for material
strength) to a set of independent identically distrib-
uted random variables of local material strengths via
autocorrelated random field. In other words it controls
the convergence to Weibull statistical size effect based
on the weakest link principle. Such interplay of three
independent material/structural lengths is very com-
plex. It would be nearly impossible to determine all
these parameters from the available experimental data
even if the model featuring the three effects was per-
fectly correct.

In Figure 5 left we plot the estimated distribution
function of nominal strength for all tested sizes as
we obtained them from the full stochastic finite ele-
ment analysis with parameter K1 modeled by random
field. The table above the graphs presents the para-
meters of Weibull distribution that best fit the empiri-
cal histograms. For some reason it happened that the
Weibull modulus increases for sizes E and F even if
the slope of corresponding size effect curve in Fig-
ure 6 suggests again the value 7.91 (the value that we
expect and that follows from simple Weibull size ef-
fect of elastic-brittle structure). The deviations may
be caused by numerical errors; especially insufficient
discretization of random field with respect to the auto-
correlation length. The variability is not captured suf-
ficiently by the density of integration points because
we did not increase the mesh density for models of
large specimens. Rather, we kept the same number of
finite elements for all sizes in order to save computa-

tional time.
The resulting nominal strengths for all sizes ob-

tained by nonlinear stochastic FEM are plotted and
compared to experiments in Figure 6. We see that
starting from size C the size dependence on mean
nominal strength is predominantly statistical and we
were not able to model it by deterministic model
alone, see e.g. (Novák et al. 2001). We also included
mean nominal strengths for sizes F, H and J obtained
by Weibull integral (Eqs. 7 and 8). Weibull solution
is a straight line and represents the asymptotic size
effect of structures caused solely by spatial strength
randomness. Above the plots we sketch the size re-
gions for different computational techniques used for
modeling of random strength.

The very thick curve in Figure 6 (denoted as 3) is
the curve resulting from combination of all three ef-
fects described here. The curve has been obtained by
applying the dimensionless reduction factorrσ due to
weak strip on results obtained by nonlinear stochas-
tic FEM (layer thicknesstw = 2 mm, reductionrt =
0.5). This was a simple solution to estimate the final
results of model featuring all effects. Unfortunately
this simple approach is not correct because it applies
reduction of weak layer to final mean of all results of
simulation with random fields. Generally this can not
be done because the sources of size effect interact.
To get consistent result, one should model the local
strengths by random field and apply the reduction in
the layer to each realization of a field. This would help
the specimens to initiate crack in surface layer more
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often. However, the full set of time consuming simu-
lations would be necessary. One can immediately see
that the strength of size A is not reproduced correctly
(even though the scatter is). We believe that partly this
can be improved by considering the plane strain con-
ditions and most importantly the fact that the thickens
(0.1 m) is larger than the width of the beam and in
3D model the crack would often initiate from front or
back surfaces of the specimen (see illustration in Fig-
ure 1 left). This effect certainly results in decreased
strength of specimen A.

In our study the correlation lengthlr has been set
to a value nearly equal to the thickness of a specimen.
At this length the variation of local strength is just
becoming significant and may distort results of very
small specimens. The authors of experiments also re-
ported that due to casting of the beams the front lay-
ers have different material properties than back layers.
We model these effects in 3D models, but the results
are beyond the scope of this paper and 3D effects are
neglected in this study (Vořechovsḱy and Matesov́a
2005).

7 CONCLUSIONS

The performed numerical simulations of random re-
sponses of tensile tests with dog-bone specimens with
rotating boundary conditions performed by van Vliet
and van Mier are in good agreement with the pub-
lished data. Based on comparison of trends of nom-
inal strength dependency on structural size we con-
clude that the numerical model featuring three scal-
ing lengths is capable of capturing the most important
mechanisms of failure. In particular, we have shown
that a portion of the experimentally obtained size ef-
fect can be captured at a deterministic level with the
help of deterministic length represented by crack band
width in our model. Secondly, further strength depen-
dence on size in large beams is modeled by an auto-
correlated random strength field. The important sta-
tistical length scale is introduced in a form of the au-
tocorrelation length of the field. The asymptotic size
effect form caused by random strength is the classical
Weibull power law. By random sampling of the local
strength field we were able to model also the random
scatter of resulting nominal strengths. The last effect
presented here is the weak boundary layer of con-
stant width. This weakened layer results in reduction
of strength of small specimens which contrasts with
trends of the two previous size effects. The presented
study documents the well known fact that an experi-
mental determination of material parameters (needed
for rational and safe design of structures) is very dif-
ficult for quasibrittle materials such as concrete.
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Bažant, Z. P. and J. Planas (1998).Fracture and
Size Effect in Concrete and Other Quasibrittle
Materials. CRC Press, Boca Raton and Lon-
don.
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Vořechovsḱy, M. and R. Chudoba (2006a). Adap-
tive probabilistic modeling of localization, fail-
ure and size effect of quasi-brittle materials.
In ECCM-2006 - III European Conference on
Computational Mechanics, Lisbon, Portugal,
pp. in print.
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