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We study well published results on direct tensile tests gildone specimens with rotating boundary conditions
performed by van Vliet and van Mier. They published seveeglgrs presenting the experimental results and
naming various sources of experimentally observed siszedin nominal strength. We model the experiments
by methods of stochastic nonlinear fracture mechanicsnatiag at capturing the size effects. Firstly we
model the specimens by microplane material law to show tHatge portion of the dependence of nominal
strength can be explained deterministically. Howeves ttlear that more sources of size effect take part and
we consider two of them. Namely, we model the local matetigngth by an autocorrelated random field
attempting at capturing statistical part of the complex ®ffect, scatter inclusive. A noticeable fact already
shown by the first author earlier is that such an approachheatge size asymptotic behavior coinciding
with the classical Weibull power law while the small size mgjyote deviates strongly from the Weibull size
effect. The strength drop of the smallest specimen obtaiméide experiments is explained by weak surface
layer of constant thickness (caused e.g. by drying, sudaoceage, aggregate size limitation at the boundary
or other irregularities). All three named sources (detarstic-energetic and statistical size effects and weak
layer effect) are believed to be the most contributing sesiaf the observed strength size effect and the model
combining all of them is capable of reproducing the measdetd. The computational approach represents a
marriage of advanced computational nonlinear fracturehaeics Cervenka and Pukl 2005) with simulation
techniques for random fields representing spatially varymaterial properties (\fechovsk 2005). Using the
numerical example we document how different sources of sffect on strength can interact and result in
relatively complex processes in quasibrittle failure. nesented study documents the well known fact that
an experimental determination of material parametersdgebéor rational and safe design of structures) is very
difficult for quasibrittle materials such as concrete.

1 INTRODUCTION on different explanations of experimentally obtained

The paper studies well published results of direct tensize effect on strength from several different points
sile tests on dog-bone specimens with rotating boundof view. Firstly, the effect of a non-uniform distribu-
ary conditions with varying size (size range 1:32) per-ion o_f strains m_the smalle_st cross-section was stud-
formed by van Vliet and van Mier (van Vliet and ied with simple linear constitutive law (van Vliet and
van Mier 1998; van Vliet and van Mier 1999; van van Mier 1999; van Vliet and van Mier 20003) and

Vliet and van Mier 2000a; van Vliet and van Mier @ separation of structural and material size effects
2000b; van Mier and van Vliet 2003; Dyskin et al. was discussed. The results were also compared to the
2001). In particular we are interested in the series ofVeibull theory (Weibull 1939) based on the weakest-
dry concrete Specimens AtoF (dimensiﬁhvary_ link model Wthh was found to fit the mean noml-
ing from 50 to 1600 mm, see F|g 1), a series accomnal Strength .Of sizes B tO.F (van Vliet an_d van Mier
panied by verification tensile splitting tests. The pa-1998; van Vliet and van Mier 1999; van Vliet and van
per attempts at explaining of the complex size effecMier 2000a; van Vliet and van Mier 2000b; van Mier

on mean and variance of nominal strength by comand van Vliet 2003). Unfortunately, the slope of mean
bination of random field simulation of local mater- Size effect curve corresponds to Weibull modulus of

ial propertieS, weak boundary” effects and a non_6 which does not coincide with the measured scat-
linear fracture mechanics software based on a cohder of strengths at each size. However, this is required
sive crack model. There has been spent much effoift Weibull type of size effect. Secondly, the effect of
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Figure 1: Dog-bone specimens tested by van Vliet and van:detes A to F, 2D model in software ATENA

Gaussian stress fluctuation with non-uniform loadingar (see Fig. 1). The beam thickness was kept constant
was studied by (Dyskin et al. 2001) and the developed100 mm) implying transition from plane strain like
model employing a limiting distribution of indepen- conditions at the smallest size to plane stress condi-
dent Gaussian variables with linear trend agrees witlions for the large sizes. The concrete mixture was re-
the experimental data very well. Van Mier and vanported to have an average cube compressive strength
Vliet also compared the data to "Delft lattice model” of 50 MPa and maximum aggregate siggy= 8 mm.
using a simple local elastic-brittle material with reg- For comparison purposes, it is necessary to define
ular and random lattices with good results. The stanominal strength. Since the eccentricity of loading
tistical part of experimentally obtained size effect haspoints has been geometrically scaled in both experi-
been recently modeled by (Lejland Novak 2002)  ments and numerical models, we can neglect its effect
using Weibull distribution of strength. and define the nominal stresssimply as a function

In this paper, the authors firstly try to explain the of characteristic dimensioy (maximum specimen
mean size effect curve by deterministic effects (not aswidth), instantaneous tensile forééapplied at con-
suming the local material strength random). It partlycrete faces on the eccentricityand cross sectional
explains the decreasing slope of the mean size efarea in the middle of the specimeli= 0.6Db):
fect curve (MSEC) in double-logarithmic plot (nom-
inal strength versus characteristic size). However, the _F 1 F 1)

strong decrease of the mean strength of the smallest T AT 006D
specimen A is believed to be sufficiently captured by aving defined the nominal stress, we define the nom-

modeled weak surface layer of thickness of about . .
mm. A parametric study of the influence of a "weak Inal strengthr y as the nominal stress attained at max-

layer” thickness and the percentage reduction of thdhum loading forceon = Fax/A).

layer strength compared to the bulk strength will be _ ] _ _
presented with regard to resulting MSEC. Next, thel@ble 1: Experimental data. Specimens’ dimensions,
authors approximate the local material strength by afiominal strengths and sample size.

autocorrelated random field attempting at capturing D r ON Specimens
the whole size effect, scatter inclusive and combine 0.725) mean (std. dev.)  tested
all sources together. mm mm MPa #

A 50 36.25 2.54 (0.41) 10
2 EXPERIMENT B 100 72.5 2.97 (0.19) 4
The experiments are well documented in the six first g 288 %gg 237,(5) (8-3390 g
references cited in the introduction. We will briefly 300 580 507 20-12)) 2
mention only those necessary data needed to eXT 1600 1160 1.86 (0.16) 4

plain the computational model, all other details can
be found in the cited publications. Dog-bone shaped

specimens were loaded in uniaxial tension with geo-

metrically scaled eccentricity from the vertical axis of 3 DETERMINISTIC MODEL

symmetrye = D /50 [mm]. The loading platens were A strong contribution to non-uniformity of the nom-
allowed to rotate freely in all directions around theinal strength is the “energetic-deterministic” size
loading point at the top and bottom concrete face. Theffect caused by approximately constant fracture
loading platens were glued to concrete. Six differenforocess zone (FPZ) size with stress redistribution
sizes were tested, all beams were geometrically simin beams of all sizes; see e.g. @at and Planas
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Figure 2: Left: size effect plot for experimental data, deti@istic and weak layer computations. Right: com-
putational model with weak layer

1998). This effect can be modeled e.g. by finite el-4 WEAK BOUNDARY

ement method if the fracture energy and the wholea parametric study has been performed to illustrate
shape of pre- and postpeak behavior is correctly inwhat is the effect of (i) the weakened layer thickness
troduced. We created the deterministic model in softand (ji) reduction of the material strength in that layer.
ware package ATENAGervenka and Pukl 2005), us- |n Figure 2 we plot six size effect curves computed
ing the Baant's microplane material model (version with deterministic model equipped with a layer of
4) and the crack band model (Bent and Oh 1983) \eakened material on both curved edges of the spec-
as a regularization. Specimens were loaded by damen (see the illustration on the right). In particular,
formation increment and the fordeé was monitored, \ye selected three thicknessies (0.5, 2 and 8 mm)
see Figure 1 right. We neglected the transition fromand for each thickness we considered two different re-
plain strain to plane stress conditions with growingduction factors of material strength parametef0.5
beam size and modeled the whole series of sizes withnd 0.9). In the figure, for each layer thickness the two
plane stress model. Based on the information aboWyrves are plotted and the space between them is filled
the average cube compressive strength of 50 MPgith gray color (the upper curve always corresponds
ATENA generated a set of consistent microplane patg reduction of 0.9 and the lower one to reduction of
rameters: K1=1.5644E-04, K2=500, K3=15, K4=150,0.5). It can be seen that the nominal strength reduc-
crack band:;, = 30 mm, number of microplanes 21. tion decays as the layer thickness becomes negligible
We changed the crack band to 8 mm, a value whiclktompared to specimen dimensiéah Moreover, the
better matches the experimental data, see Figure @tio between the reduced strength and deterministic
left. The crack band size is relate(_j to fractl_Jre eNmominal strength can be roughly used as a strength
ergy of material and controls the size at which thereduction coefficient for any ratig,/D. This reveals
transition from ductile to elastic-brittle failure takes simple scaling rule written for an arbitrary positive
place. A noticeable fact is that in the size effect plotmultiplier & as the reduction factor, of specimen

the curve can be shifted right or left as a rigid bodystrength due to weak strip compared to deterministic
just by changings,. More specifically, the determin-  strength with no strip:

istic nominal strength computed for a certain size
using a value, is also the nominal strength of size (tw> on (D, ty) on (kD, kty)
T's = =

k D computed with crack band widthc,: oE (D) oW (kD) (3
N N

D

forvk >0: of*(D,e) =oX' (kD key) (2) 1, € (r;;1), whereodt (D) = deterministic strength

for size D; oy (D,t,) = deterministic strength for
This fact can be exploited to simplify preprocessing ofsize D and weak layer thickness,; »; = reduction
numerical models of size effect series: simply creatdactor for material strength within the weak layer
model of one size only and vary instead ofD. For  r; € (0;1).
instance, we do not have to model all sizes in ATENA, Best results are obtained with = 2 mm and re-
but modify ¢, in a single model to obtain the responseduction coefficient; = 0.5. The thickness roughly
of another size. corresponds to the frequent largest aggregate size at



boundary (particle size certainly decreases as we ajphe effect of weakened boundary only reduces the
proach the specimen boundary). As can be seen fromean nominal strength but does not influence the scat-
Figure 2, we are able to partly fit the drastic strengthter of strengths. For simplicity we used the value of
reduction of specimens where the thickngsss not  cov=0.15 (15% variability of local material strength).
negligible compared to specimen neck thickness oThis is relatively high value implying relatively low
0.6 D. The deterministic size effect (transition from Weibull modulus mentioned above. Discretized ran-
plastic to elastic strength) is automatically includeddom field is a set of autocorrelated random variables.
in the computation because we use the same matefhe most important parameter (apart from autocor-
ial model and parameters. However, the most imporfelation function) is the autocorrelation length con-
tant effect of strength reduction for large specimengrolling the distance over which the random material
can not be modeled by the two effects studied so farstrengths are correlated. We used the squared expo-
Neither we are able to model the strength scatter beaential autocorrelation function:

cause there has been no randomness considered in the

model yet. R = exp {— <d>2] (5)

Ly
5 STOCHASTIC MODEL
We believe that the strong size effect on strength i
the experimental data is predominantly caused by sp
tial variability/randomness of local material strength.

here d = distance of two points], = correlation
jéngth, value of 80 mm used for random field of K1.
It can be shown that for specimens much smaller

Therefore, we considered the strength related param&12n one autocorrelation length the realization of ran-
dom field of the local strength K1 is a constant func-

ter in microplane model denoted K1 in ATENA ran- :
tion over the whole region and all local strengths

dom and performed Monte Carlo type simulations for £ the whol . b d by i
each size of a specimen. In particular, we sample@' the€ whole specimen can be represented Dy just

64 realizations of random field of parameter K1 for ON€ random variable (instead of number of spatially

each size and computed the responses (complete loggRrrelated variables). Since the specimen’s nomi-
displacement diagrams, stress fields, crack patter§al Strength is just a simple transformation of input
etc.). We tested numerically that parameter K1 has apztrength parameter K1 (no spatial variability allowing
proximately linear relation to structural strength in aCracks to localize in other location than in determinis-
wide range around the mean value used in determirfi analysis), we knew that the mean nominal strength

istic model. The reason for sampling the local mateOf the smallest specimen will be the same as that ob-

rial strength by random field instead of independen{‘;Iined k]gy de'zjerministi_c qnalyslis. That if] why we usled
random variables is that we believe that in reality thelN® K1 from deterministic analysis as the mean value

strength of any two close locations must be stronglypfq_indom fi(leld O]]: Kl'd field uated in locati
related (correlated) and such a relation can be suit-, | € Samples ofrandom fields evaluated in locations

ably modeled by an autocorrelated random field. wef integration points were simulated by methods de-

assumed the distribution of local strength in each ma%"/Cribed in (V@echovsk 2005; Vdechovsly 2004b;

terial point identical and Weibull distributed. The lo- dOFG‘;h?(;’SK‘ and Nowak 2005). The ﬂmh“'ated ran-

cal probability of failurep, (cumulative distribution 9O fields are stationary, isotropic and homogeneous.

function , ) depending on stress levelreads: Brlef_ly, the orthogonal _transfor_mat_lon of covariance
7 - matrix has been used in combination with Latin Hy-

pr=F,(0)=1—exp {_ ()m} (4) percube Sampling _of the random part of field expan-
a0 sion. Such a combination proved itself to be very ef-
where o, = scale parameter of Weibull distribution fective in providing samples of random fields lead-
[MPa], value 1.6621E-4 used for K&j = shape para- ing to high accuracy in estimated response statistics
meter of Weibull distribution (dimensionless, dependscompared to classical Monte Carlo sampling. Nu-
solely on cov = coefficient of variation)n = 7.91  merical studies documenting this efficiency are pub-
used for random K1. lished by (Vdechovsk 2005; Vdechovsk 2004b;

To obtain results consistent with previous deter-Vofechovsk and Novak 2005). This is extremely im-
ministic analysis we kept the value of parameter K1portant property in cases when evaluation of each re-
as the mean value. The second parameter of Weibudiponse is very time consuming. In our case the eval-
distribution has been set with regard to the cov ofuation is represented by one computation of response
nominal strength of the smallest sample (in experi-by nonlinear finite element method with microplane
ments cov of the size A was 0.16). This choice ismaterial model. Clearly this is very expensive and we
supported by the fact that size A has the largest sanmust keep the number of simulations as low as pos-
ple size (10 replications, see Tab. 1). Therefore thaible. The number of 64 simulations was tested to be
estimation of variance has higher statistical signifi-high enough and providing stable and accurate statis-
cance than for other sizes. Moreover, we believe thatical estimates of field’s statistics (averages, sample
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standard deviations, autocorrelation structure) as webby Weibull power law (Weibull 1939). However,
as reproducible estimates of statistics of structural reas explained in (M@chovsk 2004b; Vdechovsk
sponse (nominal strength etc.). 20044a; Vdechovsk and Chudoba 2006b), the clas-
The automatic simulation of all structural responsessical Weibull model is not able to account for spatial
was done by software SARA integrating (i) ATENA correlation between local material strengths. Rather,
software (evaluation of response) on one side and (iiyveibull model is based on 11D (independent and iden-
FREET software (Mechovsk 2004b; Nowak et al. tically distributed) random variables linked in series.
2005; Nowak et al. 2003a) (simulation of samples The effect of such a consideration is that the strength
of random parameters, statistical assessment) on tleé infinitely small specimen is infinite. In Weibull
other side. model every structure is equivalent to a chain un-
In Figure 3 we plot computed sets of load- der uniaxial tension, a chain of independent mem-
displacement diagrams and sketch the definition obers having identical statistical distribution of stress.
displacement (separation of two measuring points)lf the local strength is modeled by an autocorrelated
Selected load displacement curves are highlightedandom field (and we consider the autocorrelation
and the corresponding realizations of random strengttength to be a material property), the small size as-
fields are plotted in Figure 4. The letter denotes specymptote of strength is equivalent to the distribution
imen size and the integer denotes the number off local material strength. On the other hand, the
simulation. Besides the most frequent simple loadiarge size asymptote is exactly identical to that of
displacement functions we purposely highlighted sevihe Weibull model (Véechovsk 2004b; Vdechovsk
eral curves with unusual shape (snap-back type or "2004a; Vdechovsg and Chudoba 2006b) (for a
loop”). In routine practice of testing concrete struc- proper choice of reference length and the correspond-
tures such special shapes can be experimentally mesnrg scale parameter of Weibull distribution in Weibull
sured just occasionally. As discussed later, in oumodel). The autocorrelation length plays an important
case some unusual or unexpected curves are obtaineale of statistical scaling length in material control-
partly due to the definition of displacemefxt, and ling the transition from one strength random variable
mainly due to the spatial randomness with high vari-model (full correlation in small structures) to many
ability. The comparison of peak strength of determin-independent local strengths (large structures, Weibull
istic load-displacement diagram with the mean valuenodel).

of nominal strength can be made in Figure 3. The crack patterns of two randomly chosen specimens
difference between them grows with specimen sizéa 2 and B 14 (see Fig. 4) show the most frequent lo-
While for size C the mean strength nearly coinCides;aion of strain localization. The small eccentricity of
with the peak of deterministic diagram, for specimen;,qq and relatively narrow neck of dog bone specimen
size E the deterministic curve is above all 64 randomyeqrly guarantee that cracking will initiate on the right
reallzqtlons of the diagram, see Figure 3. side of the neck. Samples of random fields in both
In Figure 4 we plot chosen realizations of randomc,5eg (A, B) are nearly constant functions and there-
strength field for all sizes A - F. We note that a sim-fyre there is no space left for the weakest link prin-
llar scaling rule to Eq. 2 can be written for the role oinje pattern C 22 in the same figure documents that

of statistical length (here in a form of autocorrelation e o4 strength can be in some location so small that
lengthi,). For a given strength random field (statisti- e re|atively low stresses in that location can initiate

cal distribut_ion and an autocorrelation structure) Onlyfracturing. In specimen C 22 the rotation of platens
the proportion betweeh and D matters: was opposite to the usual direction. Since the dam-
_ _ age localized out of the distance on which we mea-

forvk>0: on(D.l;) =on(kD.kl:)  (6)  gired the displacement, the corresponding-A,,

Again, this can be used to simplify modeling becausd!idgram in Figure 3 has the snap-back like shape. The
or?e size can be used with varﬁhgnstead of%). same is true also for C 51 whereas C 34 and C 55 are

It can be seen that as the ratio of autocorrelatiof@ain just typical representatives @fA, diagrams
length and specimen sizB decreases, the rate of and crack patterns. Similar features can be found in
spatial fluctuation of random field realizations grows.S€!1€S D. Positions of cracking in D 3 and D 22 caused
Therefore there is increasing number of locationd!® Shap back while D 27, D 44, D 47 and D 55 illus-
with low material strength (locations prone to fail- U'até the random sampling of crack initiation leading
ure). Or, in other words, with increasing speciment© Usual shape of-A, diagram displayed on our vir-
size there is an increased probability that there willlUa! testing machine.
be a weak spot in highly stressed regions. This ef- Very interesting are diagrams E 15 and E 18. The
fect is long referred to as the statistical size effect’loops” in Figure 3 are the results of an unfortunate
The classical statistical size effect is modeled by thease of cracking close to points of measured displace-
simple weakest link model and usually approximatedment. It can happen that at some point of loading the
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Figure 3: Load-displacement diagrams (64 realizationsjroictural sizes C, D, E and F. Selected diagrams are
highlighted.

lower measuring point can start moving faster than the\,,. Instead, we loaded the beams by displacement at
upper point and this result in bizarre shapeeh, di-  the ends and therefore we were able to monitor snap-
agram E 15. A specimen can later start cracking in thdack type of curves without any difficulty.
neCk as Occurred in the case Of E 18. In SerieS F the We were ab'e to Simu'a’te random Specimen re-
autocorrelation length becomes so small compared tgponses of specimens smaller than A with random
specimen dimension that again cracks initiate on th¢ie|ds of K1, moreover we could simply use a ran-
right side of the neck nearly in all cases, see Figures gdom variable sampling to represent randomness in
and 4. In series A we never reported snap-back likghat small specimens. On the other hand, it becomes
curve due to cracking outside the measuring distancgery problematic to simulate samples of random fields
and in case of B and F this happened once only, segf specimens much larger than F. Even though the first
Figure 3. We can conclude that the most interestingyuthor is deeply involved in techniques to overcome
processes happen in specimens with dimension comne computational difficulties with stochastic finite el-
parable to one or two Correlat|0n |engthS (reg|0n Ofement Computanon of |arge structures ‘(Mj'lovsk'[
transition from one random strength variable to a sehnd Chudoba 2006a) we will present another tech-
in independent strength variables). nique here. Fortunately, only strength is random in our
We note that in contrast to the experiments, we didanalysis and we can use the classical Weibull integral
not control loading by the displacement incrementdor large structures. As explained in (xhovsk
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Figure 4: Simulated random strength field realizations awdesponding crack patters in deformed specimens
right after attaining the maximum fordé,.. Field simulated and crack widths computed in integratiom{s.

2004b; Vaechovsk 2004a; Vdechovsk and Chu- alent to full stochastic finite element simulation. We
doba 2006Db) if the structure is sufficiently large, thewill briefly sketch the computational procedure of
spatial correlation of local strengths becomes unimevaluating the Weibull integral for structural failure
portant and the Weibull integral yields solution equiv- probability, details can be found e.g. in &at and
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stress state.

Planas 1998). The Weibull integral has the form: only for extremely large sizes where effects of struc-
tural nonlinearity (causing stress redistribution) dis-

—ln(l—P :/ X) - dV/ (x 7 appear. For small sizes there are two prok_)_lems: 0]

n /) clo()sm o0l 6 spatial correlation of local strengths and (ii) effect

of stress redistribution. The result must be a straight

where P; = probability (the cumulative probabil- line in double logarithmic plot of size versus strength
ity density) of failure load of structure;[e] = stress ~ (Siz€ effect plot is a power law). An approach based
concentration function. on S|m_ple scaling of We_lbuII random varlables associ-

There are several possible definitions of the streséted W'th struptural regions of different SIZES has been
concentration function, see (Bant and Planas 1998). Used in (Lehk and Nowk 2002). They simply used
In the studied specimens the major contributor to théN€ Scaling rules only for sizes larger than size C and
stress tensor is the normal stress. The field of ~ thiS helped them to obtain close fit of experimental
stresss,, nearly coincides with the principal tension data. Unfortunately, the numerical model used did not
o1. Since only tensile stresses are assumed to cau§dOW Platens to rotate freely and did not model the

a failure, we defined the stress concentration functioffCCeNtricity of loading force which both, in our view
simply as: can negatively affect the results of response statistics.

By prescribing both platens to move without rotation
1 o (x)\™ one forces the specimen to fracture differently than if
— < > (8) platens can rotate freely. This becomes extremely im-
Vo portant if the local strength gets randomized spatially.

\%4

clo (X);m,o0] = p

\(/fvor?erevo reference volume associated withand 6 ANALYSIS OF THE RESULTS
In Figure 5 right we plot computed field of princi- By introducing three different scaling lengths we are
pal tension over the specimen in an elastic stress statable to independently incorporate three different ef-
Numerical integration of this stress field for different fects in the model resulting in three size effects on
specimen sizes and failure probabilities can be suithominal strength. The crack band width(determin-
ably rewritten in dimensionless coordinates so thatstic scaling length) controls at which size the tran-
the computation becomes extremely easy. Resultingition from ductile to elastic-brittle behavior takes
mean size effect is plotted in Figure 6 (asymptoticplace and therefore it controls the transition between
mean size effect curve). Let us also mention that antwo horizontal asymptotes in the size effect plot (see
other way of simulating the random strength of largeFig. 2). The second introduced length (weak bound-
structures can be done utilizing the stability postulateary thickness,,) together with the material strength
of extreme values (Fisher and Tippett 1928). Such aeduction controls at which size there will be a signifi-
computational procedure is an elegant trick using theant reduction of nominal strength. The reduction gets
recursive property of distribution function and is de- amplified with decreasing specimen size and causes
scribed in (Baant et al. 2005; Nak et al. 2003b) to- opposite slope of size effect than the deterministic
gether with applications. Results of such an approachnd statistical ones (see Fig. 2). The last introduced
(and also Weibull integral as presented here) are valitength is the autocorrelation lengthcontrolling the
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Figure 6: Comparison of results in size effect plot.

transition from randomness caused by overall matertional time.
ial strength scatter (one random variable for material The resulting nominal strengths for all sizes ob-

strength) to a set of independent identically distrib-tained by nonlinear stochastic FEM are plotted and
uted random variables of local material Strengths VIEbompared to experiments in Figure 6. We see that
autocorrelated random field. In other words it controlsstarting from size C the size dependence on mean
the convergence to Weibull statistical size effect base@ominal strength is predominantly statistical and we
on the weakest link principle. Such interplay of threewere not able to model it by deterministic model
independent material/structural lengths is very comgjone, see e.g. (N@k et al. 2001). We also included
plex. It would be nearly impossible to determine all mean nominal strengths for sizes F, H and J obtained
these parameters from the available experimental datgy, \Weibull integral (Egs. 7 and 8). Weibull solution
even if the model featuring the three effects was peris a straight line and represents the asymptotic size
fectly correct. effect of structures caused solely by spatial strength
In Figure 5 left we plot the estimated distribution randomness. Above the plots we sketch the size re-

function of nominal strength for all tested sizes asgions for different computational techniques used for
we obtained them from the full stochastic finite ele-modeling of random strength.

ment analysis with parameter K1 modeled by random The very thick curve in Figure 6 (denoted as 3) is
field. The table above the graphs presents the pardhe curve resulting from combination of all three ef-
meters of Weibull distribution that best fit the empiri- fects described here. The curve has been obtained by
cal histograms. For some reason it happened that thegpplying the dimensionless reduction factgrdue to
Weibull modulus increases for sizes E and F even ifveak strip on results obtained by nonlinear stochas-
the slope of corresponding size effect curve in Fig-tic FEM (layer thicknes$,, = 2 mm, reduction; =

ure 6 suggests again the value 7.91 (the value that w@5). This was a simple solution to estimate the final
expect and that follows from simple Weibull size ef- results of model featuring all effects. Unfortunately
fect of elastic-brittle structure). The deviations maythis simple approach is not correct because it applies
be caused by numerical errors; especially insufficienteduction of weak layer to final mean of all results of
discretization of random field with respect to the auto-simulation with random fields. Generally this can not
correlation length. The variability is not captured suf-be done because the sources of size effect interact.
ficiently by the density of integration points becauseTo get consistent result, one should model the local
we did not increase the mesh density for models oftrengths by random field and apply the reduction in
large specimens. Rather, we kept the same number tifie layer to each realization of a field. This would help
finite elements for all sizes in order to save computathe specimens to initiate crack in surface layer more
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