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Abstract—The presented paper copes with an experimental validaguipped by two load cells measuring the force (20 kN

tion of a model based on modified Weibull size effect theotgis€ical
statistical Weibull theory was modified by introducing a nparam-

eter (correlation lengtl,) representing the spatial autocorrelation o

a random mechanical properties of material. This modificeits here
compared with experimental data obtained for two differaaterials
used in civil engineering: unreinforced (plain) concretel anulti-
filament yarns made of alkali-resistant (AR) glass whichuwsed for
textile-reinforced concrete. The behavior under flexurad #ensile
loading is investigated by laboratory experiments. A highmber
of specimens of different sizes was tested to obtain Sttt
significant data which were subsequently corrected andsttatly
processed. Results of the experiments showed a decreasiraga
strength with an increasing sample length. Size effectesiwere
obtained and the correlation length was fitted according ¢asuared
data. Results do not disclaim the existence of the propossd
parametet,,.

and 2.5 kN). For the bending tests, special equipment for
PB and 4PB was used, while for the tensile tests of yarns,
mechanical tensile clamps of combined type (self-lockiritty w
pre-stressing screws) were installed [1], [2].
In Section I, the classical statistical Weibull size effte-
ory is shortly described. The spatial autocorrelation arflce
is considered and some modification of the size effect law is
introduced. Section 1l describes the theoretical predionp
and the designed experiment investigating the size effect o
samples of plain concrete. In Sec. IV a bundle model together
with tensile experiments on AR-glass yarns are presenteel. T
main obtained results are summarized in last Sec. V.
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|I. INTRODUCTION

The definition of classical Weibull integral for strength of
structures can be derived from illustrative example ofcstrral
segments coupled in series (chain model). Each segment of

HE behav_ior of cor?cret_g structures in teqsion is USkhe chain is independent of others and its strength is a rando
ally described by simplified models reducing, or evegariable with a given probability distribution functiorf. the

neglecting the tensile strength of concrete. The tendeacydumulative density function (CDF) is identical for all segnts
exploit the material effectively calls for more precise ratsd of the chain, then we model them by random variables that are
describing the tensile behavior, which is usually covergfdependent and identically distributed (IID). All the seents

by fracture mechanics. Introducing the models of fractughare the same loading(due to a common forcé).
mechanics quasibrittle materials (as concrete) was tedia There is a strong relation between the theoryesfreme

a long time after these models occurred in steel structurgguesand theweakest link modelThe probability of failure

(mainly in aircraft, naval and nuclear engineering). One @f any segmentP; (o) is equal to the strength CDF. The
the reasons to consider fracture mechanics for concreteeis probability of survival of one segment is the complement

effect of size on a nominal strength of a structure.

1 — Py(0). The probability of survival of the whole chain

The scope of this paper is a description of experimentgl] — p; and is given by the condition that all the segments

testing of two types of materials used in concrete strusturgurvive (the collapse of any segment results in the collapse
when their size increases. The first material was plain unigf-the whole chain). For independent segments, the survival

inforced concrete, the second type were multiflament yarpgobability is the product of survival probabilities of iniual
from alcali resistant (AR) glass used for production of ilext segments linked in series:
reinforcement for concrete. In the first case, series of Ise@dm

constant cross—section with an increasing length was nlesig L=P=(01-P)1-P).(1-P)=1-P)" (1)
(5 different lengths) and tested in flexure. In the letterecas N—times

yarn specimens of 6 different lengths were prepared to B§ taking the logarithm of the equation, we obtain:
tested in tension. Obtained data were statistically psmzbs

and compared with prediction according to the classical and In(l-PF)=Nln(l-P) 2

modified Weibull size effect theories. As the probability of chain failure? is a very low number

The experimental testing was performed in the Iaborator|¥ : o . L
. . . . In practical situations, the expression can be simplified by
of Institute of Structural mechanic, Brno University of fiec substitutionin(1 — P,) ~ — Py, which leads to approximation;
nology on the testing machine Z100 Zwick/Roell Grupp@ == PP '
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where P, (¢) is the probability distribution of failure of a ref-
erence lengtid. for a given stress levet. The reference length _
can be understood as a part of the total lengti structure & **
(chain) and each segment of such a length is considerféd% i
independent of other parts. The number of independent ch@n
segments is thetV = 1/1,.

The behavior of Weibull probability distribution is demon-g
strated for increasing number of chain segments in Fig. &. TH
random strength of each segment is given by Weibull PDF and
CDF as:
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Using (1) we can express the CDF and PDF of Weibull

distribution for N number of elements:

local strength. Assume that the local strength is random and
characterized by the Weibull distribution (two paramétric

Fy = 1-[1—F(o;s,m)" (6) Using the weakest-link model together with the Weibulleyp
_ OFn _ . N-1 function for concentration of defects, the probability aflfire
In = do N filossm) L = Fi (o3 5,m)] P; at a given level of stress is expressed as the so-called

Graphs of the probability densities (full lines) and the eam Weibull integral [3]:

lative distribution functions (dash lines) are plotted iig.FL
for different N. The trend of decreasing mean value and the
standard deviation with increasing number of elements ean b

observed.
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where the Macaulay brackets stand for positive gajt =
max (e,0). The argument in the Macaulay brackets with
its powerm represents a particular choice of concentration
function. It represents a contribution to the failure proibity

of the whole structure. For a given Weibull modulus (shape
parameter)n, we have a reference lengthwith correspond-
ing scale parametey, of the Weibull strength. The uniform
stress level is independent of the position over the length a
therefore we can rewrite (7) asIn (1 — P;) = (a/s0)™1/lo.
Now, the stress level for a chosen probability of faildtecan

be expressed as a function of the structural size (lefgth

o(l)

50 (lo/l)l/m[_ In (1 _ Pf)]l/m (8)

=sofw () [~In(1- P/

This function is a power law and therefore its graph in
a double logarithmic plot for arbitrary level of probabilit

This reduction of strength can be even more clearly shown (quantile) is a straight line with decreasing slope of
in the double logarithmic plot of strength as a function of 1/m- For example, the mean strength of thel structure
number of segments. For chosen level of failure probabilifePends on its length as(l) = sol' (1 + 1/m) (lo/1) =
P; = 0.5 (median strength) the size effect curve is presentéd!)I' (1 +1/m), wherel' is the Gamma function. The effect
in Fig. 2. In logarithmic coordinates, the curve appears & length in this equation and also in (8) has been inserted
a straight line with a slope given by the shape paramet8fo the scale parameter which then reads

(—1/m). s (1) = so (lo/)M™ = s0 fw (1) 9

The above described derivation for a chain strength can Peym here on, we calfy, (1) the Weibull length-dependent

generalized for continuous bodies. Consider a body (streft function. The strength distribution of such a structure is
under uniform stress containing randomly distributed flawgveibull for arbitrary length:

see Fig. 3a. The size of the body is characterized by its
T m
F(:c)lexp{[?l)} }

Fig. 1. Weibull strength distribution PDF (full line) and EXdashed line).

length ! (e.g. the length of a fiber). The structure fails once

the stress at the weakest point (cross section) reaches its (10)
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The important property readily seen from the above equa- g ]23 — I Los 2
tions is that the scale parameter of the Weibull distributio = 400 - L
= s

can be adjusted by for any length to deliver the same?; 03 n variables | random fields [} D]

0
as for the original reference length: si/s0 = fw (l1) = 025 —o———o—oemo N ‘5‘ _
(lo/l)™. This demonstrates the inherent feature of the % 00]~2 - 16 8
Weibull distribution in the context of the weakest-link nesd A 1%, ¢
already revealed in (8): it is arbitrarily scalable with pest 0.05 E Notmal | 24
to the reference lengthy; there is no length scale inside. L N ST T
Realizing that the reference length of one segmints Bundle length in number of correlation lengths [-]

arbitrarily scalable, we may perform this randomizatiorthwi
arblt_rary segment length, 'nCqumg Ve_ry smialk= 0 V\_”th the Fig. 4. Top: mean size effect curves for an increasing nurobébersn in
scaling parameter; — oo and still obtain the same size effecta bundle for fiber strength described by Weibull random mspe. = 4.52.
The extreme value theory gives us an analytical solutiofhe curves nearly overlap fdr> 160. Bottom: effective Weibull modulus
which was recently proposed to simplify computations oféar ™ (12).
structures with stochastic finite element method [4], [5].

However, it has been argued [6] that the independence
assumption of neighboring strengths is not correct for & rea . ,
spatial distribution of strength in a material and must J@dependent of direction. An example of such a function
abandonedit a certain length scaleAlso, thestrength must ¢@n be the squared exponential function (power= 2):
remain boundedor short segments. The origin of the strengtht (Ad) = exp[=(|Ad| /1,)"]. In the model, the strength
bound is not discussed here, but surely, it is not possible '@1dom field is homogeneous and isotropic, meaning simply

measure arbitrarily high strength with very short specimeﬁhat the local distr_ibution _is identi_cal in all ppints of the
This discrepancy calls for solution. structure. To remain consistent with the previous text, the

strength is assumed to be Weibull distributed from here on.
b) In addition, the relation between the pair of reference shap
and scale parameter of the distribution and the autocdioela
length must be formulated explicitly. The reason is that the
simple scaling relatiors; /so = fw (l1) = (lo/1)*/™ does
not hold anymore. Why? Because a statistical length scale in
a form of the autocorrelation length have been incorporated.
|l =h=l=l As a consequence, the strength dependence upon the size
(length) is not a power law anymore. The autocorrelation has
the effect of imposing an upper bound on strength for infipite
Fig. 3.  Unidirectional fibrous structures with breaks atkpémad: a) one small (short) structures. When the structural size corestg
T e e ot " """ zero, the weakest ink mechanism disappears and the rengt
is identical to the elemental distribution (the highestiatble
strength of the model at the currently modeled scale such as
micro, meso, macro, etc.). By adding more material (indreas
length), the weakest link effect gradually overtakes andea
N . the decrease of structural strength (both, the mean ofgitren
B. Modified theory with length parameter and also its standard deviation reduces). In limit, one taws
In order to impose an upper bound on the strength dfat the large size asymptotic behavior is the classicabuiei
small structures in the Weibull theory, the independence asze effect. In other words, for very large structures ttfeatf
sumption of any pair of local substructures must be abaofrelatively small autocorrelation length becomes ingigant
doned [7]. A plausible and physically acceptable assumptiand the model can again be treated as the weakest link
is that neighboring segments of a structure are statisticamodel of independent identically distributed random sjthn
dependent, while two remote segments are independent. Télmments. The crossover length is the autocorrelationttleng
can be easily modeled by an autocorrelated random field. Ta conclude, the fiber strength has the same form as in (8),
other words, it is assumed here that the local strengths &g with a different length dependent function. In partaul
dependent via autocorrelation function. The autocorigat a smooth interpolation function proposed recently in [B], [
can be just a function of Euclidean norm of two pointhas correct asymptotes: the left asymptote at the small size
moreover, it can be isotropic, i.e. the autocorrelation ban limit is horizontal and the right asymptote is the classical




Weibull function fy (1) from (8): F/2 F2

l l
1/m
fv(l)< b )/ (12) | | |A A|
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At large sizes, self-similar behavior is recovered (theldeu F <o F
logarithmic plot is a straight decreasing line with a slop ® 4
—1/m). At small sizes, the weakest link mechanism is su (@] Fm F
pressed by the fact that all substructures share an idénti €]

strength due to their perfect positive dependence. Note tha

this relation is supported by numerical simulations of @xtes Fig. 6. Left: Geometrical scheme of bent beam. Right: Randtrength of
(minima) of random fields and is an alternative to currentan segments.

available analytical results [9]. Note also that the shapeo(

CoV) of the distribution remains independent of siz@a (8).

An illustration of the mean fiber size effect exploiting (1) B. Experimental testing

provided in Fig. 4 with comparison to the classical Weibull

dependence. The experiment was focused on the observation of effect
IIl. FLEXURAL STRENGTH OFPLAIN CONCRETE of size (resp. lengthly) on the_specimens’ strength. _Conse_—

A. Theoretical strength quently,_a wide range of specimen lengths was des[red with

' emphasis on production of the longest possible bending, span

According to the theory of elasticity, the nominal strengtgo that the behavior in this region could be mapped. The
of a beam under four point bending (4PB) is attained whegngth groups were suggested with equal distribution oif the

in bottom fibers of the cross section within the bending SP3égarithms, as the size effect curve is usually visualizethe
sy reach tensile strength. In the bending span, the bendigguple-logarithmic scale.

moment has a constant valug = I - s apd the beam is The bending experiment was inspired by results mentioned
loaded by pure flexure as the shear force is equal to zero..

in [10]. The material of plain concrete was designed with

m=1 respect to the loading capacity of the experimental equigme

the size of concrete specimens was designed according to
[ ——— Table | keeping the cross—section and the length of edges
m=17 and shear spag; constant, Fig. 6 left. The bending span

varied in range from O (for 3PB) to 300 mm; five different
length groups of concrete beams were produced, Fig. 7.

m=15
TABLE |
SIZE OF CONCRETE SPECIMENS
Group Shear Bending Edge Total Number of
Fig. 5. Elastic stress field: reduction of the region coniiity to Weibull nr. span span length specimens
integral (7) depending on parameter. ss [mm] s, [mm] o [mm] L [mm] [-]
1 100 0 30 260 26
The distribution of the longitudinal tensile stress is &ne g 188 15c?o 28 gég gg
over the beam’s deptﬁ)_. The tens_|le s'Fress enters the Welb_ull 1 100 200 30 160 57
integral (7) and contributes to it. Fig. 5 shows the region s 100 300 30 560 28

contributing with its stress field into the Weibull integrdhe ~ Cross—section60 x 60 [mm?] 2-139

region size reduces with the increasing shape parameter

Nevertheless, it can be observed, that only a very narrow )

area with a tensile stress is relevant for the calculation of Concrete beams were produced in 4 days, each day a new

the Weibull integral. This area can be then easily modeled 3atch of fresh concrete was mixed. Despite the effort tovll

a chain, where the local strength is represented by elemelfi@ given recipe, the series from different batches embodie

with identically distributed random strengths sharing saene different strength characteristics. The total number ofipced

load, Fig. 6 right. Failure due to the crack initiation fronPPecimens was 139. The testing was performed always 35

a smooth surface can appear anywhere inside the bending sfays after casting. The testing schedule was created teaesp

in a place with the weakest local strength (weakest link ef tffOMe elementary principles of laboratory testing and desfg

chain). experiments. Samples of different size were present in eich
As discussed in Sec. II-B, the size effect law plotted ithe testing series. The loading rate was chosen to ensure the

a double-logarithmic scale as a straight line was modified §{atic response of the samples: concrete samples weredloade

introducing a new left asymptote expressing the strength lY rate 5 mm/min.

a single chain element, which is never infinitely high, and The maximal measured load (force) was in case of bending

a parametet, describing the correlation length of a randontest transformed to the value of nominal strengithaccording

field of a material strength. to (13), where the moment contribution due to self-weight



Fig. 7.

Five different lengths of concrete samples.

My, in the spot of beam failure was added.

o Mmax Msw (l‘) + MF Msw (l’) + F/2 + Sg
N = = =
w w w
(13)
TABLE 1l
RESULTS OF BENDING TESTSAVERAGE, STD AND COV OF YARN
STRENGTH
Length group Sp Omax Omax Omax MNsam
nr. [cm] avr [MPa] std [MPa] CoV [%] [-]
1 0 6.367 0.525 8.24 26
2 5 5.771 0.640 11.10 29
3 10 5.848 0.484 8.28 29
4 20 5.683 0.592 10.24 27
5 30 5.508 0.586 10.64 28

As can be observed from measured data, some strength re-
duction with increasing bending span is visible. Nevegdhs)
production series embody high strength variance among.them
This fact was caused by the heterogeneity of concrete batche
Due to this fact, it was not correct to consider the material
of the whole data set (137 specimens) as homogeneous.
Although, the statistical evaluation of the non-homogerseo
data was done and results are presented in Tab. Il. The
graphical representation of results of the whole data set in
form of double—logarithmic plot is in Fig. 9.
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Fig. 9. Bending test: Mean values and std of nominal stremgttbending
span

Due to technological limitations, it was not possible to
produce specimens with longer bending span, that would show
the further development of the size effect curve. Neveettsl
it can be expected, that the sample strength would follow the
decreasing trend according to the classical Weibull theory

IV. TENSILE STRENGTH OF MULTHFILAMENT YARNS
A. Strength of fiber bundles

The nominal strength was plotted in a double—logarithmic The above described extension of Weibull theory can be
scale as a function of the bending span The value of readily incorporated into theory of strength of bundleshwit
bending span for the 3PB samples was set 0.1 cm (instesdstic-brittle fibers and with global load sharing [7]. The
of 0), so that the strength values are visible in a doublelassical model formulated by Daniels [11] describes a sit-
logarithmic plot. The individual test results are shown latp uation of n parallel fibers (or microbonds) with 1ID random
in Fig. 8 as circles. Each plot represents one productideser strengths, equal lengths and elastic moduli, stretcheddmet
full line connects the average values.
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two clamps under global load sharing. The maximum tensile
force of the bundl&)’, is measured in terms of load per fiber.
Daniels [11] derived a recursive formula for computing the
cumulative density function (CDF), (x) of Q7 depending

on the fiber CDFF (z) and number of fibers:

Gu(2) = P(Q; <) =
- S ) [ (@))* G (525).
where Gy (z)=F(z), Go(x)=1 and

n .
( k ) = kTR
(14)

This formula is usable only for small number of parallel
fibers (a few tens) as the computational demands and also
the round-off errors explode with increasing number of Bber



Moreover, Daniels proved that, under broad assumptions per 1000 meters) and depends on the average fiber diameter,

F (x), the asymptotic distribution of the maximum bundle loathe fibre material density and the number of fibers.

Q; is Gaussian, i.e. withh — oo, it tends to The shape of samples and the production technology was
. . inspired by the experiments run previously at RWTH Aachen

lim G, (z) = ® (I _*” \/ﬁ) - (x _*“ ) (15) University [13] and other. The material selected for the-ten

nreo v g sile tests was the AR-glass yarn produced by Saint Gob-

in Vetrotex with brand name Cem-FIL Direktroving LTR

where @ (o) is the standard Gaussian cumulative densi . -
function. The mean valugs* depends on fibet (x) and 325 2400 tex. Sp( Iength_ groups were sugges_ted with equal
not on the number of fibers. The standard deviation* of ~distribution of their logarithms — Table Ill, Fig. 10 (the
bundle strength is proportional to the inverse of the squaf§!9est possible specimen length was designed with regards

root of n, see e.g. [7] for details. Formulas for the mean valJ8€ €sting equipment). The most problematic part of tensil
4 and standard deviation* in the case of Weibull strength testing was to deal with the anchoring of glass yarns into the
distribution F (z) of fibers will be given in (16). machine. Basically, there are two possible ways how to ereat

The effect of parallel coupling seems to be captured We|:r_undle supports: endings can be either directly coiled up on

The question remains what teéfect of lengttof such a bundle & cylindrical _member or_poured into gnchoring mekS anathe
on its strength is. It has been shown in [7] that, for thfélamped. (Dlre.ct cIamplng of yarns is not possible, as thra ya
situation studied, the effect of length and parallel caupli is made of brittle material that would crush at the support

can be treated separately and they are independent and ddPRt due _to lateral compression n cl_amps.) Never_theless,
interact. Simply, a change in the length of the fibers in ﬂ%oth techniques shows certain deficiencies. As the usdddest

bundle results only in the change of the scaling param‘eterm":lchine wa:js_equipped V‘fth self—lﬁckinggoldkers, ygrn ?ﬁdin
of the distribution F () of fiber strength. This distribution ¢ POU® '”Ito 7S v Salvbichoibonidiioad
then enters formulas for the bundle strength distributién. resin. The total number of tested samples was 317 pieces.

for example, we consider Weibull fibers, and, in analogy TABLE Il

with (8), use the association of the length dependence with LENGTH OF GLASS YARNS SPECIMENS

the scale parametet(l) = sof (1), the resulting Weibull

strength distribution can be plugged in Daniels's formulacé%tggg Ige'r?;t’?L”r['mm] 1%) 2?5 636 1,;0 350 72’0
for bundle strength. After a few simple manipulations [7¢ th Number of specimenssam 53 48 48 55 53 60
resulting mean bundle strength regds(n,l) = u* (n) f (1) S 317

thus manifesting the decomposed effects of length andlphral
coupling. The bundle strength being a function of the amount
of material (fiber length and number of parallel fibers) i g
plotted in Fig. 4. The figure compares the Proposed inCoE ———————————
poration of the statistical length scalg using fy (1) with é-——-—u--
the classical Weibull theory that us¢s; ({). It is shown that : :
with increasing number of fibers (or microbonds) the crosso
length!, propagates in the size effect plots unchanged.
The Gaussian variables have the mean valife and
standard deviations™ given in [11] and refined in [12],
see [7]. The formulas are rearranged here to be explicim(]
dependent on the length functigi(l},) (see Fig. 3) for which
there are two alternatives (the Weibull forrfiy and the
proposed formulgy based on extremes of random processes;

Fig. 10. Six different lengths of yarns.

Samples marked as outliers (with the relative error of max-
al force with respect to the corresponding length group’s
average value greater then 0.35) were eliminated from the
ata set. These outliers (38 samples) belonged mostly to the
rst two production series, that were influenced by the still
unsettled production procedure. The number of yarn samples

w=r) p, and o*=f(l) o, where used for the statistical evaluation was 279 (in each length

Ly = S, [mwlcm +0.996n 7 m(F %) exp (_L)] . group was 42-48 samples).
3m The obtained values of strength together with the average
fip(m,m,s) ... for length I, sample’s free lengthl, and the number of samples used for

_ —1/m e (1 —ec) _ -1 the statisticsng,,, are overviewed in Tab. IV. The effect of
ag S m C C ni, C ex — . . . .
P [ m ( m)/\/_} " » (%) decreasing average and std of the strength with the inogasi

0p(m,n,s) ... for length I, sample length can be observed. The value of CoV can be

(16) considered as stagnating in the range close to 15 %. The
number of samples after the elimination of outliers exceeds
required 30 pieces in each length group so that the obtained
data set can be considered as a statistically representeitiv

One yarn composes of several hundreds up to thousandsdfigh significance.
single fibers with diameter measured in tens of micrometers.The graph with the samples’ peak loads in a double-
The fineness of the yarn is defined by the “tex” unit (graogarithmic scale is in Fig. 11. The plotted points représen

B. Experimental testing



TABLE IV
RESULTS OF TENSILE TESTSAVERAGE, STD AND COV OF YARN 1000 - ﬂ‘
STRENGTH - - 1
c=830 N j €]
— T ‘
Length group L Fmax Fmax Frax Msam E 800 =
nr. avr [mm] avr [N] std [N] CoV [%] [ <
1 9.2 824.8 126.3 15.32 42 é‘)
2 239 7957 1213 15.24 45 goor
3 58.8 7379 122.9 16.66 48 E m = 3.8
4 128.5 693.2 101.2 14.60 48 =] lp =131 mm
5 3084 6254 81.0 12.94 48 - L
6 738.5 498.6 78.6 15.77 48 400 P l m
F 1) =c(rg)
" PR | il 1
individual experiments, their color is assigned to the pi@d ‘ " Nominal strength [mm] 1000

tion series. Samples with relative error of strength extegd
+0.35 as well as the whole series PO1 and P02 are marked w’Ltlg_ »
a cross (outliers), the border lines separating the osatfiem

the accepted values are marked with dash line. The average of

each length group strength (marked with a cirelstd) defines 55 the size effect curve is usually visualized in the double-
the size effect curve. The red color represents the mOdiﬁFE?]arithmic scale.

(reduqe_d) data set while the light grey ShO_WS the_ trend of high number of samples were tested so that the obtained
the original complete set of samples (containing outli€tse  eqits are statistically significant. The most significeffiect

fact that these two curves do not notably differ from eacly the ohtained data set was the strength reduction with the
other confirms the claim of statistically sufficient numbér 9ength extension. For each of the length groups, an average

Tension test: Estimation of size effect curve patans.

samples. value of strengthf,..y, its standard deviation and a coefficient
w0 . Of variation were calculated.
1000 |- 0 The experimentally obtained/measured dependencies of
wo b Eﬁg strength on size support the assumption of existence oécorr
= w7 - lation length of a strength random field.
= 600 [ P09
S P10
g Eé : ACKNOWLEDGMENT
£ §i§ : This outcome has been achieved with the financial support
ns . Of the Czech Science Foundation under project No. 13-19416J
and a Specific University Research projec6MT No. FAST-
200 Lt — T J-12-21. The support is gratefully acknowledged.
Nominal length [mm]
Fig. 11. Tension test: Yarn strengths vs. yarn lengths ¢étesample groups REFERENCES

and the size-effect curve as an avethgil of modified (red) and original

(grey) data set. Dash line separates the outliers [1] J. Kadérova, “Testovani statistického vlivu \sti pomoci

Ctyfbodového ohybu (Experiments on statistical siZeatfin four point
) ) » ) bent specimens),” Master’s thesis, Institute of Strudtikechanics,
Now, the curve can be fitted with the modified Weibull ~ Faculty of Civil Engineering, Brno University of TechnolpgBrno,

size-effect function with the included autocorrelatiomdéh Czech Republic, 2009.

. . . 2] ——, “Multi-filament yarns testing for textile-reinfosrl concrete,’
(12). The curve-fit can be seen in Fig. 12. The paramete[é Master's thesis, Institute of Structural Mechanics, Fgcwf Civil

l, (autocorrelation length) defining the point of asymptotes’ Engineering, Brmo University of Technology, Brno, CzechpBic,
i i 2012.
intersection, the strength VaIU?Of .the I(.aft _asy_mptote anc.l [3] W. Weibull, “The phenomenon of rupture in solidsRoyal Swedish
m (the shape parameter of Weibullian distribution) govegnin Institute of Engineering Research (Ingenioersvetensised. Handl.),
the slope of the right asymptote in a double-logarithmidesca  Stockholmvol. 153, pp. 1-55, 1939.
were fitted to the measured data. [4] Z. P. Bazant, M. Vofechovsky, and D. Novak, “Asymfitoprediction
of energetic-statistical size effect from deterministioité element
solutions,” Journal of Engineering Mechanics (ASCGEpl. 133, no. 2,
V. CONCLUSION pp. 153-162, 2007.
. . . [5] Z. P. Bazant, S. D. Pang, M. Vorechovsky, and D. Nqvéknergetic-
Both of the two types of introduced experiments (bend'né statistical size effect simulated by SFEM with stratifiedngting and
tests on concrete beams and tensile tests on yarns) were crack band modelInternational Journal for Numerical Methods in

focused on the observation of effect of size (resp. length)  Engineering (Wiley)vol. 71, no. 11, pp. 1297-1320, 2007.

h . , h C | id 1] M. Vorechovsky, “Incorporation of statistical lerfgscale into Weibull
on the specimens’ strength. Consequently, a wide range strength theory for compositesComposite Structuresvol. 92, no. 9,

specimen lengths was desired with emphasis on production of pp. 2027-2034, 2010. _ ' '
the Iongest possible bending span, resp. gauge Iengthaso tiy]1 M. Vorechovsky and R. Chudoba, “Stochastic modelinfy roulti-

. . . filament yarns: Il. Random properties over the length and sifect,”
the behavior in this region could be mapped. The length G0UP  |ternational Journal of Solids and Structures (Elsevierdl. 43, no.

were suggested with equal distribution of their logarithms  3-4, pp. 435-458, 2006.



[8] M. Vorechovsky, “Statistical alternatives of combih size effect on
nominal strength for structures failing at crack initiatibin Problemy
lomové mechaniky IV (Problems of Fracture Mechanics M) Stibor,
Ed. Academy of Sciences - Institute of physics of materiadls o
the ASCR: Brno University of Technology, 2004, pp. 99-10&ited
lecture.

[9] R. Leadbetter, G. Lindgren, and H. RootzdBxtremes and Related
Properties of Random Sequences and Processas Springer Series
in Statistics. Springer London, Limited, 2011. [Online]valable:
http://books.google.cz/books?id=AGBIMQEACAAJ

[10] H. Koide, H. Akita, and M. Tomon, “Probability model ofeftural
resistance on different lengths of concrete beamdgplications of
Statistics and Probability, Melchers & Stewards (eds). 1053-1057,
2000.

[11] H. Daniels, “The maximum of gaussian process whose npedh has
a maximum, with an application to the strength of bundles lofe,”
Advances in Applied Probabilitywol. 21, pp. 315-333, 1945.

[12] R. Smith, “The asymptotic distribution of the strengthi the series-
parallel system with equal load-sharingyhnals of Probability vol. 10,
no. 1, pp. 137-171, 1982.

[13] R. Chudoba, M. Vofechovsky, V. Eckers, and T. Gridsfféct of twist,
fineness, loading rate and length on tensile behavior ofifitartient
yarns (a multivariate study)Textile Research Journal (Sage)l. 77,
no. 11, pp. 880-891, 2007.

Jana Kadérova is a Ph.D. student at Brno University of Technology, Inséitu
of Structural Mechanics.

Miroslav Vorechovsky is an associate professor at Brno University of
Technology, Institute of Structural Mechanics.



