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A mechanical multi-scale model describing the relationship between the crack-opening and composite
bridging stress in brittle matrix composites with heterogeneous reinforcement is introduced. Unlike cur-
rently utilized models, it is able to reflect the heterogeneity of fibrous reinforcement. Mechanical, geo-
metrical and bond properties of individual fibers (e.g. fiber surface roughness, radius, strength) are
defined as random variables. The functional dependency between these random variables and the fiber
stress within the composite cross-section is introduced using local equilibrium equations. The response
of the composite to an applied uniaxial tensile load is evaluated by averaging the fiber stress contribu-
tions in a crack bridge.

In particular, the model describes the behavior of a single crack bridge in a composite assuming the
matrix to be rigid. The fiber bridging action is represented using the shear-lag model. Upon fiber rupture
the global load sharing for stress redistribution is considered. With these assumptions the rules for
asymptotic Daniels’ fiber-bundle models can be applied for the evaluation of macroscopic crack bridge
behavior. We use the model to illuminate the effect of selected sources of heterogeneity (fiber breaking
strain, fiber radius and bond strength) on the crack bridge response and to approximately predict the ulti-
mate state of a multiply cracked composite. The model constitutes a basis for the multi-scale simulation
of the strain-hardening response of brittle-matrix composites.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The combination of brittle matrix (ceramic, cementitious) with
fibrous reinforcement provides the possibility to design compos-
ites with tuned properties, in particular with a favorable quasi-
ductile behavior and high load bearing capacity [34,9]. When
loaded in tension, brittle matrix composites exhibit multiple cracks
developing in the matrix perpendicularly to the loading direction
over a range of applied stresses up to a state of crack saturation
and ultimately localized failure within the weakest crack bridge
[25,15,1,2,21,7,8,32]. This process is accompanied by damage evo-
lution and significant stress redistribution both between and with-
in the constituents of the composite [27,47,42,29,10,22,24]. The
qualitative and quantitative characteristics of composites depend
on the mechanical, geometrical and statistical properties of the
constituents and their interface [51,48]. In a cracked composite, fi-
bers bridge matrix cracks and transmit the applied load into the
matrix over a debonded length a which is (in addition to the load)
a function of the frictional bond strength s and fiber radius r
[6,26,1,20]. In the case of heterogeneous reinforcement, the deb-
onded length is a random variable, hence the mean fiber strain is
nonlinear both with respect to the distance from a crack z and
across the crack plane. This phenomenon causes a reduction of
the composite strength, which was also observed experimentally
[46].

We introduce a mechanical multi-scale single crack bridge
model that incorporates reinforcement heterogeneity in the form
of statistical distributions of the fiber and bond properties. In par-
ticular, we extend our previous work [44,4], which was focused on
modeling the tensile behavior of high-modulus multi-filament
yarns subjected to tensile loading, by considering the fiber–matrix
interface and analyze the effects of its scatter on the crack bridge
behavior. In addition, we perform a thorough analysis of fiber frac-
ture location. The homogenization is then performed using the sta-
tistical fiber-bundle model [11,5,33]. A similar approach was
applied in [43,25,23] where statistical averaging was used for the
homogenization of the response of short fibers with random orien-
tation and position. In [13] the homogenized elastic composite
properties are obtained by means of Monte Carlo simulation.

The present paper is organized as follows: First, the computa-
tional model is introduced generally and assumptions are listed
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in Section 2. Particular applications of the model for three random
variables are described in Section 3 and validation is provided in
Section 4. Finally, conclusions are drawn and related issues are
briefly discussed in Section 5.
Fig. 2. Typical composite stress vs. crack opening diagram (mean composite
function).
2. Computational model

2.1. Assumptions and notation

A unidirectional composite with constant cross-sectional area
containing fibers of volume fraction Vf is considered. The fibers ex-
hibit linear elastic behavior with the modulus of elasticity Ef and
brittle failure upon reaching their breaking strain. The fiber
cross-section is assumed circular with radius r. We neglect the
elastic deformation of the matrix and assume it to be rigid. This
is justified for cross sections with much higher matrix stiffness
compared to the stiffness of the reinforcement Em(1 � Vf)� EfVf

(Em – matrix modulus of elasticity).
Matrix cracks in a composite subjected to tensile load are as-

sumed to be planar and perpendicular to the loading direction.
Any residual force transferred by the matrix crack planes is ne-
glected so that the force is transmitted solely by the fibers. When
the tensile load is increased, fibers debond and constant bond
stress s acts at the interface over the debonded length a (Fig. 1).
It is further assumed that the distance between cracks is large en-
ough so that the debonded lengths of individual fibers do not over-
lap and crack bridges can be considered as mechanically
independent.

Although detailed analyzes of stress profiles within a fiber cross
section have been performed in the past [27,49,50], we assume the
stress concentrations at the fiber perimeter close to the matrix
crack plane to have a minor effect (see also [9]) and use the
in
te
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Fig. 1. (a) Bond intensity T(z) given by Eq. (2); (b) fiber strain ef(z) given by Eq. (4);
(c) differential equilibrium on the fiber.
fundamental assumption of shear-lag models [27] of constant fiber
stress over the cross-section. Nevertheless, the stress is variable for
individual fibers due to the parameters which affect the fiber–ma-
trix bond and which are assumed to be of random nature. The
mechanical idealization of the composite can thus be described
as a parallel set of independent 1D springs representing the fibers
coupled to a rigid body representing the matrix through a (possibly
random) frictional bond.

The response of the composite crack bridge is represented by
the statistical average of the contributions of individual fibers
assuming a large number of fibers. Further assumptions applied
here follow the rules for Daniels’ statistical fiber-bundle models
[11,5,36,31,18,39,30] which include global load sharing of the ap-
plied load by fibers in proportion to their stiffness and irrespective
of their position within the bundle. This is justified for cementi-
tious and most ceramic matrix composites where the bond
strength is relatively low and the matrix stiffness relatively high
[35,34,9].

Let us note, that for composites with rather strong bond and
low matrix stiffness, global load sharing would be a crude simpli-
fication. The stress redistribution of broken fibers here follows the
local load sharing which was studied analytically in [16,22] for
simple fiber packing (linear, square) and later numerically in
[47,40] for more complex fiber packing within the cross-section.
Statistical models introduced in [9,34] approach the local load
sharing by dividing the composite longitudinally and laterally into
independent finite-sized sub-bundles satisfying the weakest link
features. The composite strength is then evaluated as the mini-
mum extreme of the sub-bundle strength distribution which is
approximated by the Gaussian distribution for asymptotic bundles
(and adjusted by the shift of the mean value for finite-sized bun-
dles as proposed in [39,12]).

2.2. Single fiber model

Individual fibers in a composite with rigid matrix are mechani-
cally independent and we can therefore define their strain regard-
less of the strain state of neighboring fibers. When a matrix crack
opens, the bridging fibers debond and transmit an amount of force
that corresponds to their debonded length and the frictional sliding
resistance s at the fiber–matrix interface. We state the differential
equilibrium condition for the debonded fibers at the longitudinal
distance from the matrix crack z

Ef
defðzÞ

dz
þ T � signðzÞ ¼ 0 ð1Þ



1 Remark on notation: Mean values are denoted l with a subscript indicating the
random function and a list of random variables. For example lrc;X

is the mean value of
the random function r which depends on the random variables X.

100 R. Rypl et al. / Composites Science and Technology 89 (2013) 98–109
where we introduce the longitudinal fiber strain ef and the bond
intensity T for the debonded part of a fiber defined as the interface
shear flow acting on the fiber cross section Fig. 1

T ¼ 2prs
pr2 ¼

2s
r
: ð2Þ

The fiber strain derivative for the debonded range of a fiber with
respect to the longitudinal position z is thus

def ðzÞ
dz

¼ � T
Ef

signðzÞ: ð3Þ

If we analyze the fiber strain profile along the crack bridge, the
maximum is found at the crack plane z = 0 and with growing dis-
tance from the crack the function decays linearly with the slope
�T/Ef until it reaches zero at z = ±a. An explicit expression for the
fiber strain can be obtained by integrating Section 3.2

efðzÞ ¼
R z
�a

def ðxÞ
dx dx ¼ T½a�z�signðzÞ�

Ef
: z 2 ð�a; aÞ

0 : otherwise:

(
ð4Þ

The maximum strain ef0 is obtained by integrating Section 3.2.

ef0 ¼ efð0Þ ¼
Z 0

�a

def ðzÞ
dz

dz ¼ Ta
Ef
: ð5Þ

The crack opening w is obtained by integrating ef over the whole
debonded domain as

w ¼
Z a

�a
efðzÞdz ¼ Ta2

Ef
: ð6Þ

If the substitution a = ef0Ef/T from Eq. (5) is performed, the max-
imum fiber strain can be directly defined as a function of w

ef0ðwÞ ¼

ffiffiffiffiffiffiffi
Tw
Ef

s
: ð7Þ

We now introduce the effect of fiber rupture. The fiber strain
value ef0 at which the fiber fails shall be denoted as n and we refer
to it as the fiber breaking strain. We can thus define the strain of an
intact fiber at a crack plane in combination with the Heaviside step
function as

eintact
f0;n ¼ ef0 � Hðn� ef0Þ ð8Þ

where H(�) denotes the Heaviside step function defined as

HðxÞ ¼
0 : x < 0
1 : x P 0

�
ð9Þ

As pointed out by various authors studying the ultimate
strength of composites [35,49,41,9,34], intact fibers transmit the
stress Efef0 and upon breakage at a nonzero distance ‘ from the
crack the fiber is still able to transmit residual stress while being
pulled out of the matrix. The residual stress transmitted by broken
fibers equals the bond intensity T acting on the fiber length ‘ which
is being pulled out from the matrix. Some authors subtract the
crack opening from the pull-out length [41]. We ignore this effect
with the justification that only a small w/‘ ratio is of practical
interest. The strain contribution of broken fibers is thus

ebroken
f0;n ¼ T

Ef
‘ � Hðef0 � nÞ: ð10Þ

Since the distance of the position of the fiber rupture from the
crack plane ‘ is a random variable [28,41] and its contribution to
the crack bridging force is linear, we can assume it to be represented
by its expectation l‘ (see Appendix A for derivation) given by

l‘ ¼
an

mþ 1
ð11Þ
where an is the debonded length at the instant of fiber rupture

an ¼ nEf=T: ð12Þ

and m is the Weibull modulus of the fiber strength distribution.
Substituting l‘ into Eq. (10) then gives

ebroken
f0;n ¼ n

mþ 1
� Hðef0 � nÞ ð13Þ

and the total strain of a fiber during the loading process is the addi-
tion of the two parts

ef0;nðwÞ ¼ eintact
f0;n þ ebroken

f0;n : ð14Þ

In [34], the author refers to this kind of load sharing between
intact and broken fibers as ‘frictional load sharing’.

2.3. Stress homogenization and composite stress

As is the case with the strain-based bundle models [33,4], we
use the (quasi-static) crack opening w as a kinematic control vari-
able that is identical for all fibers within the crack bridge irrespec-
tive of their local stress state. The behavior of the crack bridge is
studied assuming randomness in fiber breaking strain n and in
parameters affecting the bond strength – r and s (Ef is taken to
be deterministic).

In what follows, we introduce the homogenization procedure
and derive the general formula for the mean, homogenized com-
posite stress in a crack bridge1 lrc ;Xðw;XÞ as a function of the crack
opening and a general vector of random variables X. The function
lrc ;Xðw;XÞ will be referred to as the ‘mean composite function’ fur-
ther in the text. In Section 3 particular evaluations of the mean com-
posite function are shown.

The composite stress rc is, by definition, the sum of fiber forces
ff,i transmitted by all nf fibers within a crack plane divided by the
composite cross-sectional area Ac.

rc ¼
1
Ac

Xnf

i¼1

ff ;iðw;XÞ: ð15Þ

Let us remark, that ff,i is a function of the crack opening w and of
the random vector X. The explicit notation of these dependencies is
omitted in the following formulas. Assuming a large number of
fibers, we can define

Pnf
i¼1ff ;i and Ac in terms of expected values

stating that

Xnf

i¼1

ff;i � nf E½ff � ð16Þ

and

Ac � nf
E½Af �

V f
ð17Þ

where Af = pr2 is the single fiber cross-sectional area. Substituting
Eqs. (16) and (17) into Eq. (15) and assuming fibers exhibit linear
elastic behavior (ff,i = Efef0,nAf), we write the mean composite func-
tion lrc

(with the w dependency omitted)

rc � lrc
¼ V f

E½ff �
E½Af �

¼ V f
E½Efef0;nAf �

E½Af �
¼ Ef V f E ef0;n

Af

E½Af �

� �
: ð18Þ

We further define the dimensionless fiber cross-section which
is the fraction in the square brackets in Eq. (18), thus

mf ðrÞ ¼
Af

E½Af �
¼ r2

E½r2� ð19Þ
c
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and finally write the general form

lrc
ðw;XÞ ¼ Ef V f E ef0;nðw;XÞmf ðrÞ

� �
: ð20Þ

The maximum of the mean composite function Eq. (20)
shall be referred to as the mean composite strength and is
defined as

lH

rc
ðXÞ ¼ supflrc

ðw;XÞ; w P 0g: ð21Þ

When computing the mean composite function, the main task is
the evaluation of the expectation E[ef0,n(w)mf(r)] using ef0,n(w) as
defined in Eq. (14).

3. Analysis of random effects

The following paragraphs report on systematically performed
parametric studies with combinations of random and deterministic
parameters. The studies reveal the correspondence between the
individual sources of randomness and the response of a crack
bridged by heterogeneous reinforcement. If the properties of all fi-
bers in the composite are deterministic, the mean composite func-
tion Eq. (20) is simply

lrc
ðwÞ ¼ rcðwÞ ¼ Ef V fef0;nðwÞ ð22Þ

Here, the strain, which is identical for all fibers, is multiplied by the
fiber stiffness. Note that for deterministic fiber radius r, the dimen-
sionless cross-section mf(r) defined by Eq. (19) becomes 1.

3.1. Random fiber breaking strain n

Most authors studying the mechanical properties of fiber rein-
forced composites assume the fiber strength to be the only source
of randomness [39,35,22,17,41,38,9]. We use the fiber-in-compos-
ite breaking strain distribution, which was also used in the above
mentioned references (see Appendix C for full derivation), in the
two parameter Weibull form

GnðnÞ ¼ 1� exp � n
e0

� 	mþ1
" #

ð23Þ

with the scale parameter

e0 ¼
Tðmþ 1Þem

V0
V0

2Efpr2

� 	1=ðmþ1Þ

ð24Þ

and the corresponding density function

gnðnÞ ¼
@GnðnÞ
@n

¼ mþ 1
e0

n
e0

� 	m

½1� GnðnÞ�: ð25Þ

Let us note that e0 is related to the normalizing scale parameter
rc used e.g. in [20,9] as e0 = (m + 1)1/(m+1)rc. In our study, however,
it would be of little benefit to use this normalization since s and r
(and consequently also the normalizing scale) are random
variables.

3.1.1. Stress homogenization for random fiber breaking strain
Having derived the density function gn, we can use it to evaluate

the mean composite function with random fiber breaking strain in
the following manner

lrc;n
ðwÞ ¼ Ef V fmf ðrÞ

Z 1

0
ef0;nðw; nÞgnðnÞdn: ð26Þ

In analogy to Eq. (14) we split the homogenization of the com-
posite stress into contributions from intact and broken fibers (see
Fig. 2). Recalling that mf(r) = 1 for deterministic fiber radius, the first
term within the homogenization procedure, corresponding to
intact fibers, becomes
lintact
rc;n
ðwÞ ¼ Ef V fef0

Z 1

0
Hðn� ef0ÞgnðnÞdn

¼ Ef V fef0

Z 1

ef0

gnðnÞdn ¼ Ef V fef0½1� Gnðef0Þ� ð27Þ

and the second term, corresponding to broken fibers, becomes (with
the use of Eqs. (16) and (17))

lbroken
rc;n

ðwÞ ¼ TV f

Z 1

0
l‘Hðef0 � nÞgnðnÞdn

¼ Ef V f

mþ 1

Z ef0

0
ngnðnÞdn: ð28Þ

The integral in Eq. (28) can be solved analytically [41]

Inðef0Þ ¼
Z ef0

0
ngnðnÞdn ¼ e0 � c 1þ 1

mþ 1
;

ef0

e0

� �mþ1
 !

ð29Þ

with c standing for the lower incomplete gamma function. Note
that in [35,34,9] the contribution of broken fibers is well
approximated by simpler formulas. The resulting form of the
homogenized composite stress with random fiber breaking
strain is then with regard to the dependency ef0(w) given in
Eq. (28)

lrc;n
ðwÞ ¼ lintact

rc;n
ðwÞ þ lbroken

rc;n
ðwÞ

¼ Ef V f ef0½1� Gnðef0Þ� þ
Inðef0Þ
mþ 1

� �
: ð30Þ

After all fibers have broken (i.e. for large values of w), the first
term in Eq. (30) representing intact fibers is zero and the second
term representing the residual stress transmitted by the pull-out
of broken fibers is

lrc;n
ðw!1Þ ¼ lbroken

rc;n
ðw!1Þ ¼ Ef V f

Inðw!1Þ
mþ 1

ð31Þ

with

Inðw!1Þ ¼ e0 � C
1

mþ 1

� 	
ð32Þ

where C denotes the complete gamma function.
Numerical evaluations of Eq. (30) are shown in Fig. 3 in the

bottom diagram for three values of the Weibull modulus m.
The corresponding breaking strain distributions are depicted
in the upper diagram. They are normalized in such a way that
the mean value of n is constant for all three distributions.
Higher values of m denoting narrow distributions of fiber
breaking strain result in more brittle behavior being exhibited
by the composite crack with a higher ultimate stress. Residual
stresses transmitted by the pull-out of intact fibers are higher
for lower m because fibers with a high variation of breaking
strain will in average break further away from the matrix
crack.

3.1.2. Composite strength with random fiber breaking strain
Of particular interest is the mean composite strength lH

rc
given

as the maximum of the composite mean function lrc;n
ðwÞ (Eq.

(30)). The corresponding crack opening ww for which lrc;n
ðwÞ at-

tains its maximum is obtained in the following form (see Appendix
B for detailed derivation)

@lrc;n
ðwÞ

@w
¼ 0! wH ¼ Ef

T
e2

0m�
2

mþ1: ð33Þ

Evaluating Eq. (30) for ww gives the mean composite strength

lH

rc
¼ lrc;n

ðwHÞ ¼ Ef V ff � e0 ð34Þ

with



(a)

(b)

Fig. 3. (a) Fiber breaking strain distribution Gn with varying Weibull modulus m
and scale parameter adjusted, so that the mean value remains constant; (b) mean
composite functions (mean composite stress vs. crack opening) corresponding to
the Gn in (a).
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f ¼ m�
1

mþ1 � exp � 1
m

� 	
þ 1

mþ 1
� c 1þ 1

mþ 1
;

1
m

� 	� �
: ð35Þ

Similarly, the fraction of intact fibers at the instant of maximum
composite stress is obtained by substituting ww from Eq. (33) into
Eq. (33)

pH ¼ 1� Gn½ef0ðwHÞ� ¼ expð�1=mÞ: ð36Þ

Let us remark, that this result has been also derived by Daniels
[11] and Coleman [5] with their fiber-bundle model describing the
behavior of ’dry’ bundles (with the absence of matrix) as it is re-
ferred to in [14]. We can conclude that the fraction of intact fila-
ments at maximum composite stress remains unaffected even if
the bond between filaments and rigid matrix and the pullout of
broken fibers are included.

3.2. Interaction of random n with random r and s

In addition to random fiber breaking strain there are various
other sources of randomness that cause the reinforcement to be-
have heterogeneously. In this section, we consider variations of
fiber radius r caused by the methods used to produce filaments
in multi-filament yarns, and also variations in bond strength s
which are caused e.g. by fiber surface roughness, fiber sizing
quality or matrix penetration (Fig. 4). For example in the case
of multi-filament yarn reinforcement used in textile reinforced
concrete, the variations in the matrix-filament bond are espe-
cially pronounced. They are caused by the irregular penetration
of the matrix into the yarn and by the micro-structure of the
fine grained cement matrix [19]. Statistical dependencies be-
tween the variables, which are considered random, may occur.
However, within this study we consider these dependencies
minor and treat the random variables as statistically
independent.

3.2.1. Effect of deterministic r and s
Before approaching the analysis of the effects of additional ran-

dom variables on crack bridge response, we consider their influ-
ence as deterministic variables.

First, we use Eq. (30) from Section 3.1 to study the effect of
deterministic r and s on the composite mean function. With explic-
itly denoted dependencies on r and s, Eq. (30) is written as

lrc;n
ðw; r; sÞ ¼ Ef V f ef0ðr; sÞ½1� Gnðef0ðr; sÞÞ�½ þ Inðef0ðr; sÞ; r; sÞ

mþ 1

�
:

ð37Þ

Fig. 5 (upper diagrams) depicts the mean composite functions
for various values of r and s.

The effect of r and s on the mean composite strength is appar-
ent, if an analysis is made of the behavior of Eq. (34) where the two
variables occur in the scale parameter e0. Written explicitly, we
obtain

lH

rc ;n
ðr; sÞ ¼ Ef V ff

sðmþ 1Þem
V0

V0

Efpr3

� 	1=ðmþ1Þ

: ð38Þ

Hence the scaling of the mean composite strength with respect to
the fiber radius (Fig. 5c) can be expressed as

lH

rc ;n
ðrÞ / r�3=ðmþ1Þ ð39Þ

and the scaling with respect to the bond strength as (Fig. 5d)

lH

rc ;n
ðsÞ / s1=ðmþ1Þ ð40Þ

which corresponds to [9]. As it is the case with the mean composite
strength, we can study the crack opening at peak composite stress
ww as a function of the two variables r and s. For this purpose, we
substitute e0 from Eq. (24) into Eq. (33) and use the substitution
T = 2s/r to obtain

wH

n ðr; sÞ ¼
rEf

2s
m�

2
mþ1 �

sðmþ 1Þem
V0

V0

Efpr3

� 	2=ðmþ1Þ

: ð41Þ

Clearly, we can state that

wH

n ðrÞ / r1�6=ðmþ1Þ ð42Þ

and

wH

n ðsÞ / s�1=ðmþ1Þ: ð43Þ

An interesting conclusion can be drawn, if we observe the scal-
ing of wH

n with r: If m ¼ 5:0;wH

n is a constant independent of the fi-
ber radius because the r terms in Eq. (41) cancel out. For
m > 5:0;wH

n grows with growing r and for m < 5.0 it decays with
growing r; see Fig. 5c. With growing s, the crack opening at peak
stress wH

n will decay for all values of m; see Fig. 5d.

3.2.2. Effect of random r and s
The mean composite function for deterministic r and s given by

Eq. (37) can be used to evaluate the mean composite function
when r and s are defined as random variables. We assume that
the distribution functions of the random variables Gr and Gs and
their corresponding density functions gr and gs are known. We will
first derive the homogenized crack bridge behavior for only a sin-
gle random variable (in addition to the random fiber breaking
strain). The evaluation is performed by integrating the mean



Fig. 4. Micrographs of filaments in matrix provided by the Institute of Textile Technology (ITA) of the RWTH University in Aachen, Germany: detail of scatter in fiber radius r
(a); detail of matrix penetration into a multi-filament yarn – source of scatter in bond strength s (b).

(a) (b)

(c) (d)

Fig. 5. Effect of deterministic parameters on crack bridge behavior: mean composite function with variable r (a) and s (b); mean composite strength lH

rc;n
and crack opening at

peak stress wH

n for variable r (c) and s (d).
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composite function lrc;n
multiplied by the dimensionless fiber ra-

dius and the density function gr or gs over the domain of the ran-
dom variable. In this way the mean composite function for
random r is obtained as

lrc;nr
ðwÞ ¼ Ef V f

Z 1

0
mfðrÞlrc;n

ðw; rÞgrðrÞdr ð44Þ

and for random s as

lrc;ns
ðwÞ ¼ Ef V f

Z 1

0
lrc;n
ðw; sÞgsðsÞds: ð45Þ

The effect of scatter in filament radius and bond strength on the
mean composite strength is quantified using Eqs. (44) and (45),
respectively. Three levels of scatter in uniform distribution were
applied to show the influence of each random variable (Fig. 6).
It appears that variations in s and r have a similar qualitative ef-
fect on the mean composite strength but the sensitivity of the re-
sponse with respect to the scatter in the bond strength is
somewhat higher. Differences in the influence of the studied vari-
ables are found especially in the descending branches of the mean
composite functions. Both a lower s and a higher r reduce the bond
intensity T and therefore flatten and prolong the descending
branch. However, variations in r additionally affect the fiber break-
ing strain. Since thicker fibers are more prone to rupture, breakages
of fibers with larger radius r and low T are found in earlier loading
stages and thus do not substantially contribute to the descending
branch. Because of this opposing effect of r, the descending branch
remains almost unaffected by the scatter in r.

If scatter in both r and s is considered at the same time, the
mean composite function reads

mirek
Line

mirek
Line
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Fig. 6. Mean composite functions (mean composite stress vs. crack opening) for three levels of scatter of the random fiber radius r (a) and bond strength s (b).
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lrc;nrs
ðwÞ ¼ Ef V f

Z 1

0

Z 1

0
mf ðrÞlrc;n

ðw; r; sÞgrsðr; sÞdrds ð46Þ
where grs(r, s) is the joint probability density function of the ran-
dom variables r and s.

Parametric studies of the mean composite strength lH

rc;nrs
and

crack opening at peak stress wH

nrs have been performed for various
levels of COV of the random variables n,r and s. The sensitivity of
lH

rc;nrs
and wH

nrs to the scatter in the random variables variables is
depicted in Fig. 7 for various m values. Analyzing the results, we
can point out the following conclusions:

� Generally, scatter of every considered variable reduces the
mean composite strength lH

rc;nrs
since it causes the strain in

the fibers to become non-homogeneous.
� The rate of lH

rc;nrs
reduction with scatter in r is faster for smaller

values of m.
� The rate of lH

rc;nrs
reduction with scatter in s is slower for smaller

values of m.
� wH

nrs decreases with growing scatter in s and this decreasing
tendency is faster for smaller m values.
� wH

nrs is unaffected by the scatter in r for m = 5.0, which was
already explained above.
� For m > 5:0;wH

nrs gets reduced with growing scatter in r and for
m < 5:0;wH

nrs grows with growing scatter in r.
Fig. 7. Crack opening at peak stress (upper diagrams) and mean
4. Validation of the model

In order to validate the model we introduce the calibration test
setup (Section 4.1) and and describe the calibration of parameters
using the single crack bridge model (Section 4.2). In Section 4.3, we
present the test setup for validation with multiple cracks and in
Section 4.4, we provide the appropriate adaptation of the model
based on references [34,9,35]. Finally, we discuss the validity of
the model in Section 4.5.

Throughout this section we use the fiber stress (and fiber
strength – denoted with the w superscript) as the mean value
lrf
¼ lrc

=V f when referring to model outputs and as force per
reinforcement cross-section rf when referring to experiments.
4.1. Test setup for calibration

The material used for the experiments was textile reinforced
concrete (TRC) which is a composite material with significant bond
strength variations due to irregular penetration of matrix into the
reinforcing multi-filament yarns. It consists of a fine-grained
cementitious matrix which is laminated or sprayed onto carbon
textiles [37]. The water-based cementitious matrix does not pene-
trate the whole cross-section of the multi-filament yarns so that
the effective bond strength is variable, see Fig. 4.
composite strength (lower diagrams) for random n, r and s.

mirek
Line



Fig. 9. Typical single crack bridge experimental curve and calibrated single crack
bridge model.
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To match the conditions and assumptions of the single crack
bridge model, double sided pullout specimens 40 � 40 � 1000 mm
with a single carbon yarn (Toho Tenax Co., Ltd., 12 k, 800 tex) were
cast for the purpose of calibration (Fig. 8, left). The ratio of the
cross-sectional areas 1600 mm2 (matrix) and 0.45 mm2 (yarn)
have been chosen to fulfill the high matrix/fibers stiffness ratio
Em(1 � Vf)� EfVf so that the matrix can be assumed rigid com-
pared to the reinforcement. The length 1000 mm has been chosen
in order to reflect the infinite embedded length assumed in the
model formulation. In the middle of the specimen’s longitudinal
axis, a matrix crack was predetermined by a thin steel plate with
a round opening in the middle defining the position of the bridging
carbon yarn. A mold release agent was used to avoid adhesion of
the cementitious matrix to the steel plate (Fig. 8).

A typical test response for a selected specimen is exemplified in
terms of rf vs. w diagram in Fig. 9. In total, four tests have been
conducted with the measured strengths rH

f ranging between 805
and 872 MPa with crack openings ww between 1.35 and
1.83 mm. The high initial stiffness corresponds to the simultaneous
shear stress contribution of all intact fibers in the initial loading
stages. The rather long, slowly descending post-peak branch is
due to debonding of fibers with a weak bond and the pullout of
broken fibers.

4.2. Calibration

If all variables are considered deterministic the developed mod-
el has 5 parameters: Vf, Ef, r, n, s. Since the evaluated stresses are
related to the actual fiber volume fraction the variable Vf is elimi-
nated. The modulus of elasticity Ef and the filament radius r are as-
sumed to be deterministic with values taken from the producers’
specifications: Ef = 240 GPa and r = 3.5 lm. The bond strength s
and fiber breaking strain n are considered as random variables.

For n, we apply the distribution function Gn derived in Appendix
C with the typical value of Weibull modulus for dry carbon fibers
m = 5.0. As described e.g. in [9] the in situ filament breaking strain
can be degraded compared to the ex situ state so that the scale
parameter is a variable for calibration in general. To determine
the in situ filament strength separately, elaborate fracture mirror
analyzes and/or pullout length measurements could provide some
help. In the present study, the scale parameter sV0 in Gn is to be
identified within the calibration. The shape parameter m is as-
sumed equal to the ex situ value.

Observing the microscopic structure of a whole yarn cross-
section which is partly depicted in Fig. 4, one can distinguish that
the majority of filaments in the core of the yarn does not have a di-
rect contact to the matrix. These core filaments only transfer the
applied load indirectly due to a rather low friction to neighboring
filaments. A much smaller fraction of filaments – sleeve filaments
– are fully covered by the matrix around the whole perimeter and
will thus have a much stronger bond. A possible distribution func-
tion of the effective bond strength reflecting this arrangement is
the 3-parameter Weibull distribution with a low shape parameter
Fig. 8. Single crack bridge tensile specimen (left)
(<1.0) which concentrates the majority of the random values at the
lower bound. Certainly, other forms of distributions having a sim-
ilar shape might reflect the bond equally well.

Fig. 9 shows the comparison between the test and the calibrated
model. The identified parameters for the applied Weibull distribu-
tion for the bond strength s were: location = 0.006 MPa, sca-
le = 0.03 MPa and shape = 0.23 and the obtained scale parameter
of fiber breaking strain scale parameter sV0 = 0.0026. Note that
with the calibration of a deterministic s an acceptable fit of the
experimental data could not be achieved since it is unable to cap-
ture the gradual failure of sleeve and core filaments.

4.3. Test setup for validation

For the validation, dog-bone shaped tensile test specimens with
cross-sectional area 100 � 40 mm and gauge length 500 mm were
laminated using 12 layers of carbon fabric of the same type as was
used for the double sided pullout specimens (Fig. 8, right). In the
saturated state the mean crack spacing, measured with the optical
3D measuring machine ARAMIS, was 14 mm with mean crack
widths 0.045 mm and the strength rH

f was ranging between
1383 and 1496 MPa [37] (in German).

In a multiply cracked specimen, stress and strain profiles are
periodic with respect to the individual crack bridges. Conse-
quently, the debonded lengths of the filaments are limited to the
half crack spacing distance. This fact introduces a boundary condi-
tion that is different from the single crack bridge configuration
considered so far. For this situation, the single crack bridge model
shall be adapted in order to predict the ultimate state in a multiply
cracked specimen.

4.4. Model adaption for periodic boundary conditions

Given the crack spacing lCS of a multiply cracked specimen in
the saturated state (Fig. 8) with all fibers fully debonded, fibers
, multiple cracking tensile specimen (right).
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in each crack bridge can be assumed clamped to the matrix at the
distance lCS/2 from the matrix crack. To include this constraint, the
single fiber response (compare with Eq. (7)) has to be modified to
take on the linear form

eMC
f0 ðwÞ ¼

w
lCS
þ TlCS

4Ef
; for ða > lCS=2Þ: ð47Þ

For the mean pullout length of broken fibers in a multiply
cracked composite, we apply the approximation l‘ � an/2, which
is derived and justified in [34].

To remain consistent with the structure of ef0 derived in Sec-
tion 2 the strain of a single fiber in a multiply cracked composite
at the matrix crack position is divided into the contribution of in-
tact and broken fibers

eMC
f0;nðwÞ ¼ eMC;intact

f0;n þ eMC;broken
f0;n : ð48Þ

We substitute eMC
f0 for ef0 and an/2 for l‘ so that

eMC;intact
f0;n ¼ eMC

f0 � Hðn� eMC
f0 Þ ð49Þ

and

eMC;broken
f0;n ¼ n

2
� HðeMC

f0 � nÞ: ð50Þ

Further, we follow the common conservative assumption that
the fiber strain profile in a multiply cracked composite can be
approximated by a constant value [34] as indicated in Fig. 10 so
that the fiber breaking strain distribution Gn becomes

GMC
n ðnÞ ¼ 1� exp � n

e0

� 	mþ1
" #

ð51Þ

with e0 in the form

e0 ¼
Tem

V0
V0

2Efpr2

� 	1=ðmþ1Þ

ð52Þ

agreeing with the distribution in [34]. Since both n and s are as-
sumed to be random variables, the variability will be reflected in
the strain state of individual fibers. A representative fiber strain is
evaluated in terms of statistical average using the procedure de-
scribed in Section 2 with the derived function for single fiber strain
eMC

f0;nðwÞ. Applying GMC
n for the fiber breaking strain distribution and
(a)

(b)

Fig. 10. Schematic strain profiles of two fibers with different s for single crack
bridge (a) multiple cracking (b). The approximated constant strain profile is used for
the evaluation of fiber failure probability.
the calibrated 3-parameter Weibull form for the distribution of s,
the mean fiber strength and the corresponding crack opening can
be readily computed using Eqs. (20) and (21).
4.5. Discussion

For the calibrated parameters, the adapted crack bridge model
predicts the mean fiber strength lrf n;s ¼ 1346 MPa at the crack
opening wH

n;s ¼ 0:062 mm. Compared with dog-bone experiments
delivering the strengths 1383–1496 MPa and mean crack opening
0.045 mm [37] the predicted values yield a reasonably good fit
although the predicted strength is somewhat lower and the crack
opening higher than measured. The underestimation of the
strength could be due to the conservative assumption on the fiber
strain profile in a multiply cracked composite (Fig. 10) and the
overestimation of the crack width due to the rigid matrix assump-
tion and the chosen distribution function for the bond strength s.

Strength measured on dog-bone specimens with multiple
cracks (Fig. 8, right) was more than 50% higher then the strengths
of composites with a single crack (Fig. 8, left). The reason for this
trend is a homogenization effect on fiber strains in a crack bridge
of a multiply cracked composite due to the periodicity of strains
along the specimen (Fig. 10).

The differences in fiber strain ef0 due to variations in s or r (gen-
erally T) are most pronounced in case of a single crack bridge
where ef0 given by Eq. (7) is proportional to the square root of
the crack opening multiplied by T (note the difference in ef0 in
Fig. 10a). When the periodic boundary conditions apply (compare
the differences in eMC

f0 Fig. 10b), the fiber strain close to the ultimate
state takes the form Eq. (47) and the variability in eMC

f0 is given by
the ratio of the constant term TlCS/(4Ef) involving the variability
due to T and the linear term w/lCS independent of T. With growing
crack density in the saturated state, i.e. lCS ? 0, the first term grows
and the second term vanishes. Consequently, the fiber strains ap-
proach a constant value independent on the variability in T. This
can be viewed as an interaction effect of crack density and scatter
in the bond on the crack bridge strength. In simple words, the
growing crack density leads to strain homogenization in the fibers
in spite of the scatter in the bond intensity and, therefore increases
the composite strength.

Another type of interaction effect on composite strength has
been identified for crack density and scatter in fiber strength
[35,34,9]. In particular, Phoenix and Raj [35] predict strength de-
crease for the case of multiple cracking due to the higher average
fiber strain within the shielded length (Fig. 10b) as compared to
the case of a single matrix crack (Fig. 10a). This source of strength
reduction is certainly present also in the case of heterogeneous
reinforcement. However, for the studied material with high scatter
of bond strength the fiber strain homogenization due to increasing
crack density described above dominates.

Without claiming that the present study provides a robust val-
idation of the model, we can state that the predicted trends are
consistent with the behavior of the tested specimens. Most impor-
tantly the adapted crack bridge model for multiple cracking is able
to reflect the homogenizing effect of the periodic strain fields.
5. Conclusions

We have provided a framework for evaluating the mean com-
posite stress vs. crack opening function based on a multi-scale
mechanical–statistical model of a crack bridge with heterogeneous
reinforcement. Variability in virtually every mechanical or geomet-
rical parameter of the fiber and interface properties can be consid-
ered within the evaluation and the presented general pattern can
be applied for the evaluation of the homogenized composite
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response [3]. For demonstration purposes, we have used a simple
shear-lag model for fiber pull-out and selected fiber breaking
strain, fiber radius and bond strength as examples of random
variables.

When analyzing the influence of random fiber breaking strain,
we have provided a review of the findings introduced by Oh and
Finnie [28] and Evans and Thouless [41] and evaluated scalings
of the mean composite strength and crack opening at maximum
composite stress which essentially match the results published in
[35,9]. Furthermore, when studying the expected value of the
pull-out length of broken fibers we came to the conclusion that
it equals the debonded length at the instant of the fiber rupture di-
vided by the factor m + 1. For AR-glass fibers, for example, m � 5.0,
so the mean pull-out length of fibers would be � 1/6 of the deb-
onded length corresponding to their breaking strain. Generally,
the model documents that with growing variability in fiber break-
ing strain, the mean composite strength decreases and the failure
transits from brittle to ductile (Fig. 3).

If we compare the influence of the parameters r and s on the
crack bridge behavior, two interesting conclusions can be drawn
in addition to those described in Section 3.2:

� The crack bridge stiffness in the initial crack opening stages,
where all fibers can be assumed intact, is governed by the bond
intensity T and fiber modulus of elasticity Ef. Since T = 2sr�1, the
influence of s on the stiffness is identical to the influence of r�1.
� The mean composite strength scaling with m is, however, not

identical for s and r�1. This can be seen when comparing Eq.
(39) and Eq. (40).

The discrepancy between the stiffness and the mean strength
scaling is caused by the presence of r2 in the Weibull scale param-
eter for fiber breaking strain (see Eq. (24)) which affects the mean
composite strength but not the crack bridge stiffness.

The framework of the presented model is also applicable to
more complicated fiber (or other bridging element) pull-out mod-
els for which the pull-out force against the crack opening is defined
by an analytical or numerical relationship provided that the fibers
do not interact and their random parameters are identically
distributed.

For composites with higher reinforcement ratios, the matrix
cannot be assumed rigid and its deformation will influence the fi-
ber stress state. The influence of elastic deformation of the matrix
on composite behavior is currently being investigated by the
authors. The findings shall be published in a subsequent paper.

Let us emphasize that the presented single crack bridge model
was developed as a component of a multi-scale strain hardening
model for brittle matrix composites with heterogeneous reinforce-
ment. The description of the whole modeling framework will be
provided by the authors in a subsequent paper.
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Appendix A. Evaluation of the mean pull-out length

We apply the theory established by Oh and Finnie [28] and used
for fiber composites by Evans and Thouless [41] and recall the joint
probability density function of fiber failure position within a par-
ticular region dL at distance z from the matrix crack and at the ref-
erence strain at crack plane n
hðn; zÞ ¼ ð1� GnÞ
2m½nð1� z=anÞ�m�1

L0em
0

: ðA:1Þ

Since the random variables breaking strain n and breaking position z
are statistically dependent, dividing h(n, z) by gn(n) (Eq. 25) yields
the conditional probability density function of the fracture position,
given that the fiber breaks at n

gzðzjnÞ ¼
hðn; zÞ
gnðnÞ

: ðA:2Þ

Note that the terms (1 � Gn) cancel and gz(zjn) can be simplified
to

gzðzjnÞ ¼
2m½nð1� z=anÞ�m�1

L0em
0

TL0

2Ef

e0

n

� 	m

¼ m
an
ð1� z=anÞm�1

: ðA:3Þ

Density functions gz(zjn) for various values of m are depicted in
the left diagram in Fig. A.11. It may seem paradoxical, that for m < 1
(dashed line), the fiber breaks are most probable at the very end of
the debonded zone, but this can be explained by the form of the
hazard rate of the Weibull distribution which, for m < 1, is a mono-
tonically decreasing function. Fiber breaks are thus more probable
at lower strains – at the end of the debonded zone z = a.

To obtain the mean value of the random fracture position given
that the fiber break occurs at the strain n, Eq. (A.3) is integrated
over z

l‘ðnÞ ¼
Z an

0
zgzðzjnÞdz ¼ Ef

T
n

mþ 1
¼ an

mþ 1
: ðA:4Þ

It might be of interest to evaluate the overall mean pull-out
length of all broken fibers at a given crack opening (Fig. A.11),
which shall be denoted lL(w). For this purpose, the mean pullout
length of individual fibers l‘ has to be integrated over the n domain
from zero to the ef0 value (corresponding the evaluated crack open-
ing by Eq. 7) and normed with Gn(ef0). The formula then yields

lLðwÞ ¼
1

Gnðef0Þ

Z ef0

0
l‘ðnÞgnðnÞdn: ðA:5Þ

With an = nEf/T,l‘ can be substituted by nEf/(T[m + 1]) resulting in

lLðwÞ ¼
Ef

Gnðef0ÞTðmþ 1Þ

Z ef0

0
ngnðnÞdn ðA:6Þ

which is, using Eq. 7) and

lLðwÞ ¼
Ef Inðef0Þ

Gnðef0ÞTðmþ 1Þ : ðA:7Þ
Appendix B. Evaluation of the crack opening ww at the peak of
the mean composite function

We use the substitution k ¼
ffiffiffiffiffiffiffiffiffiffi
T=Ef

p
so that ef0 ¼ k

ffiffiffiffi
w
p

and take
derivatives of the two summands from Eq. (30) with respect to
w. The derivative of the first one lintact

rc;n
ðwÞ, is

@lintact
rc;n
ðwÞ

@w
¼ Ef V f ½1� Gnðk

ffiffiffiffi
w
p
Þ�

2
ffiffiffiffi
w
p � k� kmþ2ðmþ 1Þwmþ1

2

emþ1
0

" #
ðB:1Þ

and the derivative of the second one lbroken
rc;n

ðwÞ is

@lbroken
rc;n

ðwÞ
@w

¼ Ef V f ½1� Gnðk
ffiffiffiffi
w
p
Þ�

2
ffiffiffiffi
w
p kmþ2w

mþ1
2

emþ1
0

: ðB:2Þ

Setting the sum of the derivatives to zero provides the equation
for ww

@lintact
rc;n
ðwÞ

@w
þ
@lbroken

rc;n
ðwÞ

@w
¼ 0 ðB:3Þ
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Fig. A.11. Probability density functions for fiber break position (left); mean pull-out lengths and corresponding fiber break probabilities (right).
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this yields

k� kmþ2mwH
mþ1

2

emþ1
0

¼ 0 ðB:4Þ

and therefore

wH ¼ Ef

T
e2

0m�
2

mþ1: ðB:5Þ
Appendix C. Fiber-in-composite breaking strain distribution

The assumption of random fiber breaking strain is based on the
fact that brittle fibers are flaw-sensitive and the flaws can be as-
signed a value of strain to failure, which is a random variable.
The applied strain shall be denoted as e and the strain to failure
distribution of the flaws F(e).

C.1. General Weibull distribution form

We consider the uniaxial tensile strain state since it is relevant
for brittle fibers subjected to tensile loading. Given that reaching
the strain to failure of either of the flaws leads to the ultimate fail-
ure of the structure and, that the number of flaws N in the volume
of the structure is large, the distribution of strain to failure of the
structure G(e) can be described by the weakest link model
[28,45]. For a constant tensile strain throughout the whole struc-
ture, the strain to failure is defined as the minimum extreme of
the parent distribution F(e)

GðeÞ ¼ 1� ½1� FðeÞ�N ¼ 1� exp N ln½1� FðeÞ�ð Þ ðC:1Þ

Provided that F(e) has a lower bound eu and its left tail can be
approximated by C0(e � eu)m, G(e) has (for large N) the form

GðeÞ ¼ 1� exp �NC0ðe� euÞm
� �

ðC:2Þ

which is known from the work of Weibull [45]. Weibull expressed
the distribution in the form

GðeÞ ¼ 1� exp � V
V0

e� eu

eV0

� 	m� �
ðC:3Þ

where V is the total structure volume and eV0 is the Weibull scale
parameter corresponding to the reference unit V0.

In general, the total volume V can be subdivided into a series of
n units DV which are subjected to a variable strain ei with
i = 1, 2, . . . , n. Assuming that the strain state within the structure
is uniquely defined by a reference strain eref, it can be described
as ei(eref, zi), where zi is the coordinate of ei. Given further, that
the flaw strain to failure distribution F(e) is bounded at zero, the
two parameter form of the Weibull distribution for the strain to
failure of the structure reads
GðerefÞ ¼ 1� exp �
Xn

i¼1

DV
V0

eiðeref ; ziÞ
eV0

� 	m
" #

ðC:4Þ

and as the size of DV approaches zero from above, the notation for
the continuous form becomes

GðerefÞ ¼ 1� exp �
Z

V

dV
V0

eðeref ; zÞ
eV0

� 	m� �
: ðC:5Þ

The shape of the distribution is controlled by the Weibull mod-
ulus m and the scale by the scale parameter eV0 corresponding to
the reference volume V0.

C.2. Application to fibers

Let us now apply the strength distribution to a single fiber with
longitudinal strain e as a function of the fiber axis z. Since the strain
is assumed constant within the cross-section, we can reduce the
two dimensions in the fiber’s cross-section plane by pre-solving
the integral in the general Eq. (C.5) and thus obtain the integration
in the fiber’s longitudinal direction

GðerefÞ ¼ 1� exp �
Z

L

pr2dz
V0

eðeref ; zÞ
eV0

� 	m� �
: ðC:6Þ

Note, that this approach considers only production flaws related
to the material volume. Another source of flaws on the surface
with a different distribution might also be relevant for the fiber
breaking strain but we neglect this effect here. These modifica-
tions would not affect the general form of the procedure derived
below.

In the particular case of fibers in a composite with constant fric-
tional stress s at the fiber–matrix interface which is activated along
the debonded length a, the fiber strain is a linear function of z (Eq.
(4)) and can be uniquely described by its maximum value at the
crack plane. We denote the resulting distribution Gn and refer to
it as the fiber breaking strain distribution. The peak fiber strain is
denoted as n – the fiber breaking strain – and the corresponding
debonded length as an given by Eq. (12). Eq. (C.6) with this notation
becomes

GnðnÞ ¼ 1� exp �
Z an

�an

pr2dz
V0

n� Tz=Ef

eV0

� 	m
" #

: ðC:7Þ

Solving the integral and substituting Eq. (12) for an, we obtain the
distribution function with the argument n in the two parameter
Weibull form

GnðnÞ ¼ 1� exp � n
e0

� 	mþ1
" #

ðC:8Þ

with the scale parameter
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e0 ¼
Tðmþ 1Þem

V0
V0

2Efpr2

� 	1=ðmþ1Þ

ðC:9Þ

Differentiating Eq. (23) with respect to n gives the density func-
tion of the fiber breaking strain as

gnðnÞ ¼
@GnðnÞ
@n

¼ mþ 1
e0

n
e0

� 	m

½1� GnðnÞ� ðC:10Þ
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Fig. 5.
R. Rypl a,⇑, R. Chudoba a, A. Scholzen a, M. Vořechovský b

a Institute of Structural Concrete, RWTH Aachen University, Germany
b Institute of Structural Mechanics, Brno University of Technology, Czech Republic
The authors regret that is a mistake in the following equation in
the article as mentioned below: p. 102, Eq. (43). The following
equation:

wI

n ðsÞ / s�1=ðmþ1Þ

should be changed to

wI

n ðsÞ / sð1�mÞ=ð1þmÞ:
The diagrams in Fig. 5 depicting this scaling are evaluated cor-
rectly but there is are some mistakes in the notation of the slopes.
The correct slopes are marked by bolface letters in the corrected
Fig. 5 below.

The authors would like to apologise for any inconvenience
caused.
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