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ABSTRACT: The paper summarizes the main outcomes achieved within the framework of the research pro-
ject “Nonlinear fracture mechanics of concrete using stochastic finite elements and random fields”. The pro-
ject focused on randomization of nonlinear finite element analysis of concrete structures. Theoretical as well
as practical application aspects are presented emphasizing the conceptual framework and key points of the so-
lution. Efficient techniques of both nonlinear numerical analysis of concrete structures and stochastic simula-
tion methods of Monte Carlo type have been combined in order to offer an advanced tool for the assessment
of the real behavior of concrete structures from statistical and reliability points of view.

1 INTRODUCTION

The transparent and easily understandable concept is
the reliability calculation of structures from the sto-
chastically obtained structural resistance and ex-
pected load distribution. The stochastic response re-
quires repeated analyses of the structure with
random input parameters, which reflects randomness
and uncertainties in the input values. The system
should use the nonlinear computer simulation for re-
alistic prediction of structural response and its resis-
tance. As the nonlinear structural analysis is compu-
tationally very demanding, a suitable technique of
statistical sampling should be used, which allows a
relatively small number of simulations. Final results
are: statistical characteristics of response (stresses,
deflections, crack width etc.), information on domi-
nating and non-dominating variables (sensitivity
analysis) and estimation of reliability using reliabil-
ity index and/or theoretical failure probability.

The first aim of the paper is to describe briefly
computational methods to simulate:
e uncertainties
e nonlinear behavior of concrete
New and/or updated (significantly improved) theo-
retical methods that have to be developed, verified
and implemented are itemized as follows:
Simulation of uncertainties:
- Small-sample simulation of Monte Carlo type

Latin hypercube sampling for both random vari-
ables and random fields

- Imposing statistical correlation using the simu-
lated annealing approach

- Small number of random variables to represent
random fields based on spectral decomposition
of covariance matrix

- Sensitivity analysis based on nonparametric
rank-order statistical correlation

Nonlinear fracture mechanics simulation:

- Damage mechanics, fracture mechanics and
plasticity theories

- Smeared crack approach, crack band method

- Softening of concrete in both tension and com-
pression

- Combination of nonlinear concrete behavior with
discrete and smeared reinforcement in reinforced
concrete and pre-stressed structures

- Advanced material models; SBETA (Cervenka
2003), fracture-plastic model, microplane model.

The last part of the paper informs on the most in-
teresting applications of the system including both
the practical statistical, reliability analysis of com-
plex real structures and the simulation of the labora-
tory experiments.

The methods were integrated within the complex
software system SARA (Pukl et al. 2003ab, Novak
at al. 2002, Bergmeister at al. 2004). The system
represents a combination of statistical simulation
package FREET (Novéak et al. 2003, 2005) and
nonlinear fracture mechanics software ATENA
(Cervenka & Pukl 2003, Cervenka 2003).
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2 STOCHASTIC TECHNIQUES FOR
UNCERTAINTIES SIMULATION

2.1 Small-sample simulation of Monte Carlo type

For time-intensive calculations like nonlinear frac-
ture mechanics of concrete, the small-sample simu-
lation techniques based on stratified sampling of
Monte Carlo type represent a rational compromise
between feasibility and accuracy. Therefore Latin
hypercube sampling (LHS) was selected as a key
fundamental technique.

The method belongs to the category of stratified
simulation methods (e.g. Mc Kay & Conover 1979,
Novak et. al 1998). It is a special type of the Monte
Carlo simulation which uses the stratification of the
theoretical probability distribution function of input
random variables. It requires a relatively small num-
ber of simulations to estimate statistics of response —
repetitive calculations of the structural response
(tens or hundreds).

The basic feature of LHS is that the probability
distribution functions for all random variables are
divided into Ng;, equivalent intervals (Ng;, is a num-
ber of simulations); the values from the intervals are
then used in the simulation process (random selec-
tion, middle of interval or mean value). This means
that the range of the probability distribution function
of each random variable is divided into intervals of
equal probability. The samples are chosen directly
from the distribution function based on an inverse
transformation of distribution function. The repre-
sentative parameters of variables are selected ran-
domly, being based on random permutations of inte-
gers 1, 2, ..., j, Ngin. Every interval of each variable
must be used only once during the simulation. Being
based on this precondition, a table of random permu-
tations can be used conveniently, each row of such a
table belongs to a specific simulation and the col-
umn corresponds to one of the input random vari-
ables.

It has been proved that best LHS strategy, which
simulates the means and variances very well, is the
approach suggested by Keramat & Kielbasa (1997)
and Huntington & Lyrintzis (1998). The mean of
each interval should be chosen as (Fig. 1):

j x- fi(x)dx Ny
Xy :%7:]\]&/". I x- f(x) dx )

J f; (x) dx Tk
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where f; is PDF of the variable X;, and the integration
limits are:
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Figure 1. Illustration of sampling.

The estimated mean value is achieved accurately
and the variance of the sample set is much closer to
the target one. For some probability density func-
tions (inclusive e.g. Gaussian, Exponential, Laplace,
Rayleigh, Logistic, Pareto, etc.) the integral (1) can
be solved analytically. For others, the extra effort of
doing the numerical integration is definitely worth-
while.

2.2 Imposing statistical correlation

Once samples are generated, the correlation structure
according to the target correlation matrix must be
taken into account. There are generally two prob-
lems related to the statistical correlation: First, dur-
ing sampling an undesired correlation can occur be-
tween the random variables. For example, instead of
the correlation coefficient zero for the uncorrelated
random variables, i.e. an undesired correlation, can
be generated. It can happen especially in the case of
a very small number of simulations (tens), where the
number of interval combination is rather limited.
The second task is to introduce the prescribed statis-
tical correlation between the random variables de-
fined by the correlation matrix. The columns in LHS
simulation plan should be rearranged in such a way
that they may fulfill the following two requirements:
to diminish the undesired random correlation and to
introduce the prescribed correlation. It can be done
by using different techniques published in literature
on LHS (e.g. Huntington & Lyrintzis 1998, Iman &
Conover, 1982) but we found some serious limita-
tions while using them.

A robust technique to impose statistical correla-
tion based on the stochastic method of optimization
called simulated annealing has been proposed re-
cently by Votechovsky & Novak (2003). The impo-
sition of the prescribed correlation matrix into the
sampling scheme can be understood as an optimiza-
tion problem: The difference between the prescribed
K and the generated S correlation matrices should be
as small as possible. A suitable measure of quality of
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the overall statistical properties can be introduced,
e.g. a norm which utilizes the deviations of all corre-
lation coefficients:

3

overall =

The norm E has to be minimized from the point of
view of the definition of the optimization problem
using simulated annealing optimization approach, N,
random variables realizations are related to the or-
dering in the sampling scheme.

2.3 Simulation of random fields

At higher level of uncertainties modeling, the spatial
variability of mechanical and geometrical properties
of a system and intensity of load should be repre-
sented by means of random fields. Because of the
discrete nature of the finite element formulation, the
random field must also be discretized into random
variables. This process is commonly known as ran-
dom field discretization. The computational effort in
reliability problem generally increases with the
number of random variables. Therefore it is desir-
able to use small number of random variables to rep-
resent a random field. To achieve this goal, the
transformation of the original random variables into
a set of uncorrelated random variables can be per-
formed through a well-known eigenvalue orthogo-
nalization procedure. It is demonstrated that a few of
these uncorrelated variables with largest eigenvalues
are sufficient for the accurate representation of the
random field.

Let us consider the fluctuating components of the
homogenous random field, which is assumed to
model the material property variation around its ex-
pected value. Correlation characteristics can be
specified in terms of the covariance matrix C,, con-
structed by discretization using autocorrelation func-
tion and geometry of FEM mesh. An eigenvalue or-
thogonalization procedure will transform variables
into uncorrelated space:

Cy = PAD" “

The covariance matrix in the uncorrelated space Y is
diagonal matrix A = Cyy. Then the vector of uncor-
related Gaussian random variables Y can be simu-
lated in the traditional way (Monte Carlo simula-
tion). The transformation back into correlated space
yields the vector X using eigenvectors @ :

X =®Y ®)

The utilization of LHS method for simulation of
Gaussian uncorrelated variables is the new simple
idea of improvement of random field simulation us-
ing orthogonal transformation of covariance matrix
suggested by Novak et al. (2000). The superiority of
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this stratified technique remains here also for accu-
rate representation of random field, thus leading to
the decrease of number of simulations needed. This
was proved numerically by Vofechovsky & Novak
(2005).

2.4 Sensitivity analysis

An important task in the structural reliability analy-
sis is to determine the significance of random vari-
ables. With respect to the small-sample simulation
techniques described above the straightforward and
simple approach uses the non-parametric rank-order
statistical correlation between the basic random
variables and the structural response variable (Iman
& Conover 1980, Novék et al. 2004). The sensitiv-
ity analysis is obtained as an additional result of
LHS, and no additional computational effort is nec-
essary.

The relative effect of each basic variable on the
structural response can be measured using the partial
correlation coefficient between each basic input
variable and the response variable. The method is
based on the assumption that the random variable
which influences the response variable most consid-
erably (either in a positive or negative sense) will
have a higher correlation coefficient than the other
variables. Because the model for the structural re-
sponse is generally nonlinear, a non-parametric
rank-order correlation is used by means of the
Spearman correlation coefficient or Kendall tau.

2.5 Reliability analysis

In cases when we are constrained by small number
of simulations (tens, hundreds) it can be difficult to
estimate the failure probability. The following ap-
proaches are therefore utilized here; they are ap-
proximately ordered from elementary (extremely
small number of simulations, inaccurate) to more
advanced techniques.

e Cornell’s reliability index - the calculation of re-
liability index from the estimation of the statisti-
cal characteristics of the safety margin

e The curve fitting approach - based on the selec-
tion of the most suitable probability distribution
of the safety margin.

e FORM approximation (Hasofer-Lind’s index)

e Importance sampling techniques

e Response surface methods
These approaches are well known in reliability lit-

erature and also providing all details is beyond the

aim of this paper. In spite of the fact that the calcula-
tion of the failure probability (or/and reliability in-
dex) using some of these techniques does not always
belong to the category of very accurate reliability

techniques (first three in the list), they represent a

feasible alternative in many practical cases.

783



3 NONLINEAR TECHNIQUES AND
MATERIAL MODELS FOR CONCRETE

An algorithm for nonlinear analysis is based on three
basic parts: Finite element technique, constitutive
model, and nonlinear solution methods, which
should compose a balanced approximation. Never-
theless, the constitutive models decide about the ma-
terial behavior, and therefore they are treated here
more extensively. Advanced techniques are imple-
mented in finite element software for realistic com-
puter simulation of damage and failure of concrete
and reinforced concrete structures (Cervenka 2000,
2002). Since concrete is a complex material with
strongly nonlinear response, special constitutive
models for the finite element analysis of concrete
structures are employed. The constitutive relation in
a material point (constitutive model) plays the most
crucial role in the finite element analysis and decides
how the structural model represents reality. Only the
most important features and material models are ref-
erenced here.

3.1 Crack band method and smeared crack
approach

Tensile behavior of concrete is modeled by non-
linear fracture mechanics combined with the crack
band method and smeared crack concept, Fig. 2.
Main material parameters are tensile strength, frac-
ture energy and shape of the stress-crack opening
curve. A real discrete crack is simulated by a band of
localized strains. The crack strain is related to the
element size (localization limiter). Consequently, the
softening law in terms of strains for the smeared
model is calculated for each element individually,
while the crack-opening law is preserved. This
model is objective due to the energy formulation and
its dependency on the finite element mesh size is
negligible, which was confirmed by numerous stud-
ies (e.g. Cervenka & Pukl 1995).
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Figure 2. Smeared crack model for tensile behavior of con-
crete.
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3.2 Material model SBETA

The concrete in plane stress condition can be well
described by a damage model. The model is based
on the equivalent uniaxial law, which covers the
complete range of the plane stress behavior in ten-
sion and compression. The effect of biaxial stress
state on the concrete strength is captured by the bi-
axial failure function, Fig. 3. For the tensile response
(cracking) the crack band method described above is
applied. Similar method is applied for the compres-
sive softening. Next important features of the model
are: reduction of compressive strength after crack-
ing, tension stiffening effect, reduction of the shear
stiffness after cracking, fixed and rotated cracks
models.
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Figure 3. Biaxial failure function and equivalent uniaxial law.

3.3 Fracture-plastic model

This constitutive material model for concrete com-
bines the plasticity with fracture (Cervenka & Cer-
venka 1999). The fracture is modeled by an
orthotropic smeared crack model based on Rankine
tensile criterion. Hardening-softening plasticity
model based on Menétrey & Willam (1995) three-
parameter failure surface is used to model concrete
crushing. The model differs from the other published
formulations, exhibits the ability to handle also
physical changes like for instance crack closure, and
it is not restricted to any particular shape of harden-
ing/softening laws.

3.4 Microplane model

The basic idea of the microplane model is to aban-
don constitutive modeling in terms of tensors and
their invariants and formulate the stress-strain rela-
tion in terms of stress and strain vectors on planes of
various orientations in the material, now generally
called the microplanes. The microplane model M4
(Bazant at al. 2000) is implemented into the finite
element package, it represents the most advanced
material model available for modeling of quasibrittle
failure of concrete in the package.
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4 SELECTED TYPES OF APPLICATIONS

4.1 Probabilistic analyses of concrete structures

The presented approach has been successfully used
for probabilistic nonlinear analysis of concrete struc-
tures (Bergmeister et al. 2004, Pukl et al. 2003ab). A
practical example of stochastic failure simulation
and reliability assessment of existing bridge struc-
ture was a cantilever beam bridge on the Brennero
highway in Italy with a length of 167.5 m, Fig. 4.
For the reliability assessment of the Colle d’Isarco
bridge the resistance (maximum line load capacity)
with mean value of 235 kN/m and standard devia-
tion of 18 kN/m was obtained from statistical simu-
lation considering the randomness of materials in-
cluding their statistical correlation. The Cornell’s
reliability index as a function of the mean line load
is plotted in Fig, 5 for different COV of load. The
horizontal line represents the target reliability index
4.7 as specified by Eurocode (2001) for 1 year.

Figure 4. Colle d’Isarco bridge. Brennero highway, Italy.
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height 2.10 m. Due to the ongoing construction pro-
ject the bridge has to be demolished. Before the
demolition a range of non-destructive tests as well as
finally a full-scale destructive load test were per-
formed, Fig. 6. The stochastic simulation served as
the predictive numerical study for planning the test
set-up. The statistical properties of the selected ran-
dom variables including statistical correlation were
collected from several sources (9 variables for con-
crete, 4 for prestressing strands).

The application of random fields is very suitable
for solution of soil-structure interaction tasks. The
influence of spatial variation of Young modulus and
material constants of Drucker-Prager criterion
(based on cohesion and angle of internal friction)
was studied. The stability of concrete tunnel tube in
complicated geological conditions has been ana-
lyzed. The thickness of geological layers was be-
tween 10 and 25 m, the diameter of the tunnel tube
was 11 m, the typical wall thickness 0.5 m. The
whole analyzed part of the soil with tunnel had the
dimensions of 50 x 60 m. It was solved in plane
strain state and discretized in 5000 finite elements.
Drucker-Prager plasticity was used for modeling of
soil behavior. The spatial variability was simulated
using Gaussian random fields with correlation length
of 2 m. A model sample is illustrated in Fig. 7.
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Figure 5. Reliability index vs. load.

A single span bridge located in Vienna was as-
sessed by Pukl et al. (2002). It is a fully post-
tensioned box-girder bridge made of 18 segments
with the lengths of 2.485 m each. The segments
were cast from B500 concrete and are reinforced
with St 50 mild steel. The post-tensioning tendons
consist of 20 strands St 160/180. The total length of
the bridge is 44.60 m, the width 6.40 m and the

Figure 7. Realization of random field of soil property around
concrete tunnel.
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4.2 Statistical size effect studies

The probabilistic simulation approach was used to
capture the statistical size effect obtained from ex-
periments. The probabilistic treatment of nonlinear
fracture mechanics in the sense of extreme value sta-
tistics has been recently applied for two crack initia-
tion problems which exhibits the Weibull-type sta-
tistical size effect: Dog-bone shaped concrete
specimens in uniaxial tension (Lehky & Novak
2002), Fig. 8, and the size effect of four point bend-
ing plane concrete beams due to the bending span,
(Novak et al. 2003, Bazant at al. 2004). The usage of
system at level of random fields is illustrated for
random crack initiation for four-point bending in
Fig. 9 (regions with lower concrete strength are red),
a bundle of random load-deflection curve for a par-
ticular size is presented in Fig. 10. Due to spatial
randomness the mean of the peak load decreases
comparing to the deterministic capacity. A new size
effect law for crack initiation was verified using this
approach too (Bazant et al. 2005).
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Figure 8. Random crack initiation and size effect curves — ex-
periment vs. simulation.

Figure 9. Four-point bending and patterns of random fields.
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Figure 10. Random load — deflection curves (red curve — de-
terministic calculation).

4.3 Verification of (code) design formulas

The proposed approach can be efficiently used for
the code verification and calibration purposes. The
questions always arise concerning the correctness
and reliability level of design code formulas vs.
newly proposed formulas at academic level. More-
over, recent development introduced the significant
inconsistency: Eurocode demands a nonlinear analy-
sis using first mean values and second design values
of material parameters. No real guaranties and in-
formation on safety can be obtained using the partial
safety concept as accepted in the present design
codes. The approach generally fails if the internal
forces entering safety margin (failure criteria) are
not proportional to the load level, as in case of com-
plex nonlinear treatments.

One of the hot topics is certainly shear failure of
reinforced concrete beams, where the size effect
phenomenon plays an important role and is the tar-
get of research. The attempt was made to contribute
to the discussion and to treat four different ap-
proaches (ACI 318 2002, Eurocode 2 2003, Bazant
& Yu 2003, Collins & Kuchma 1999) with respect
to a particular experimental data from Toronto Uni-
versity (Collins & Kuchma 1999) and virtual statis-
tical simulation taking into account the randomness.
Statistical distributions of nominal strengths for dif-
ferent sizes of beams were obtained using statistical
simulation, Fig. 11 shows the scatter for different
sizes and how the individual formulas follow the ex-
periment. These first results indicate clearly that
ACI approach is absolutely unsafe (naturally, as no
size effect is considered) and Eurocode is on rather
conservative side with respect to the proposed for-
mulas by Bazant and Collins. The assessment of
the result in the probabilistic manner can be done
comparing experimental statistical distribution of
nominal strength with values obtained from design
formulas.
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Figure 11. Nominal strength vs. size for different design alter-
natives: formulas, experiment and simulation.

4.4 Identification of material model parameters

The nonlinear numerical analysis requires the use of
an appropriate and realistic material model. Gener-
ally, the more sophisticated model the more model
parameters are needed. Basic parameters as com-
pressive strength, modulus of elasticity, etc. are usu-
ally known. Typically, some other parameters can be
estimated using the recommended formulas from lit-
erature, but in most cases these formulas can be used
only as a first approximation of the parameters. The
objective is very often to find such a set of material
parameters, which gives the best agreement between
the simulated and experimental (if available) load-
deflection curves.

The recently proposed identification strategy is
based on a coupling of the stochastic nonlinear frac-
ture mechanics analysis and the artificial neural net-
work (Lehky & Novak 2004, Novék & Lehky 2004,
Cervenka et al. 2005, Strauss et al. 2004). Funda-
mental scheme of the approach is shown in Fig. 12,
neural network is trained by values of load-
deflection curve and values of identified parameters
(considered to be random variables) in repetitive
stochastic way using stratified simulation.

An application of such identification approach is
the shear wall shown in Fig. 13 (Cervenka et al.
2005). Loading by the vertical force was applied
first to represent a dead load. Then a horizontal force
was applied and increased to failure. The behavior
during the experiment reported extensive diagonal
cracking prior to failure followed by an explosive
crushing of concrete under the maximum load. The
experimental and simulated failure and a bundle of
load-deflection curves used to train neural network
in order to provide best estimates of 10 material pa-
rameters are shown in Fig. 13.

Proceedings ICOSSAR 2005, Safety and Reliability of Engineering Systems and Structures

s B [ETRELCTURAL BEasweT]
B4 s

SLATER4]
SO
PARAMETIRS

feern (M |

1000 4

Horizontal force [kN]

0 2 4 6 8 10 12 14
Horizontal deformation [mm]

Figure 13. Random load-deflection curve realizations — 20
simulations of LHS, experimental and virtual failure.

5 CONCLUSIONS

Efficient techniques of both nonlinear numerical
analysis of concrete structures and stochastic simula-
tion methods were combined in order to offer an ad-
vanced tool for the assessment of the real behavior
of concrete structures from the statistical and reli-
ability points of view. A wide range of applicability
both practical and theoretical, as was shown by se-
lected types of examples, gives an opportunity for
further intensive development — bridging first theory
and praxis, and second, reliability and nonlinear
computation.
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