
Relation between structural size and the discretization density of brittle 

homogeneous lattice models 

Miroslav Vořechovský1, a, Jan Eliáš1,b 
1
Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, 

Brno, Czech Republic  

a 
vorechovsky.m@fce.vutbr.cz, 

b 
elias.j@fce.vutbr.cz 

Keywords: lattice model, brittle elements, mesh size, bent beams, size effect 

 

Abstract. This paper contains the results of an investigation into the effect of the discretization of 

lattice models. The study is performed with homogeneous models where all elements share the same 

strength. Elemental constitutive law is linearly-brittle, meaning that elements behave linearly but are 

completely removed from the structure as soon as they reach the limit of their strength. The relation 

between structural size and discretization density is studied with unnotched beams loaded in three 

point bending (modulus of rupture test). We report the results for regular discretization and irregular 

networks obtained via Voronoi tessellation. This is carried out for two types of models: these being 

with and without rotational springs (normal and shear springs are always present). The numerically 

obtained dependence of strength on discretization density is compared to the analytical size effect 

formula.  

Introduction and brief model description 

The lattice representation of material is a well-established approach to modeling the failure of brittle 

and quasibrittle materials. Material is treated as a set of discrete rigid-like elements inter-connected 

by springs. In the classical version of these models, the connections behave in an elasto-brittle man-

ner until some failure criteria are reached [1-3]. Then, the elements are completely removed from 

the structure. The response of these brittle models appears to be highly dependent on discretization 

density [4]; this dependence can be avoided by the application of material mesostructure [5].  

In this contribution we focus only on homogeneous brittle lattice models (i.e. without mesostruc-

ture). Thus, all lattice connections share the same elastic parameters and strength criterion. We as-

sume that varying the network density in homogeneous models corresponds to changes in the struc-

tural size of the structure modeled. These mesh-density effects are studied for specimens that fail 

due to a crack initiated from a smooth surface. In particular, we have performed numerous simula-

tions with unnotched three-point-bent specimens. The span S = 3D, where D is the specimen depth.  

The model used is a rigid-body-spring network in accordance with a paper by Bolander & Saito 

[6]. The fracture criteria are taken from the same article, i.e. a Mohr-Coulomb surface with tension 

cut-off is adopted. The solution proceeds in linear elastic steps that are scaled so that one connection 

breaks at each step [7]. The irregular network is generated by Voronoi tessellation on a set of pseu-

do-randomly placed nuclei with limited maximal mutual distance lmin. By changing lmin one can con-

trol the mesh density.  The IRN model (with an irregular network) is compared to a network with 

locally regular geometry (REN).  In the REN model, the crack can only propagate along the axis of 

symmetry through regularly placed squared elements of exact l
min

 size. The rest of the specimen is 

meshed by a lattice of irregular geometry. Consequently, the obtained nominal forces are scattered.  

Two different versions of the mechanical model are studied. They differ in how internal forces 

(between rigid bodies) are transmitted through the connections of adjacent facets. In the first model 

type (denoted NS), only normal and shear springs act. In the NSR model type, rotational springs 

transferring local bending moments are also added. However, only stresses in normal and shear 

springs contribute to the fracture criteria in both model types. 
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Figure 1: Left: On derivation of the peak moment in a bent specimen. Right: Crack patterns at the 

peak load for various sizes of the IRN beam. The left horizontal lines indicate the average height cf.  

Size effect simulations and formulas 

The size of a concrete specimen typically affects the observed nominal strength. Several sources of 

this phenomenon have been documented [8]; the statistical and deterministic size effects are the two 

most significant. Since there is no internal length in our constitutive law/model we can represent 

varying size by varying network density. The characteristic size (depth) D is kept constant at a refer-

ence size D0 = 0.1 m, whereas the network density l
min

 is varied; we can mimic the varying of the 

intrinsic size D by writing min min

0 0 /D D l l= ⋅ , where  min

0l  is the selected reference mesh density. 

Since we are dealing, in fact, with models of the same size, it is not necessary to report the size 

dependence on nominal strength (nominal stress at peak load). It suffices to report the loading forces 

F(D). On the other hand, however, the lengths (e.g. the crack length) must be recalculated.  
Let us now deliver a closed-form expression for the observed size effect. Consider the midspan 

rectangular cross-section BD. The depth is discretized into 2N rigid bodies’ contacts of the same 
size, and therefore the stress profile is a piecewise constant function along the depth D and approx-
imates the actual linear profile. When the outermost spring reaches the extreme tensile stress f 

∞
, the 

cross-section reaches its maximum bending moment M. Due to the symmetry along the neutral axis 
we can only consider the lower half of the depth (N elements) and calculate the bending moment as 
a doubled sum of force contributions multiplied by the corresponding arms. Each i-th force contri-

bution can be written as (Figure 1 left): ( 1/ 2) / 2 ( 1/ 2)iT i BDf N N∞= − − . Each such force has the 

following arm from the neutral axis: ( )1/ 2 / 2ir D i N= − . The resisting moment is double the sum 

for moment contributions:  
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As N tends to infinity, the bending moment converges to the well-known value 
2 / 6M f BD∞ ∞= . The external bending moment equals / 2 3 / 3M F D= ⋅ . Equalizing these two 

expressions and considering that l
min

=D/(2N), one ascertains that: 
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We can introduce a new length constant, Db = min

0l . Then, Eq. (2) becomes identical with 

Bažant’s size effect formula for type 1 deterministic size effect (see pages 41–43 of [8]). The incre-

ment to the asymptotic force F 
∞ 

is inversely proportional to D and therefore diminishes for large D 

(or small minl ). What remains to be clarified is the choice of the extreme stress f 
∞
. An obvious 
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choice would be the direct tensile strength (fl
∞
= 5 MPa) of the model. This is because very large 

specimens fail at the initiation of a crack right at the midspan bottom face, which must therefore 

equal the tensile strength,  yielding the asymptotic force Fl
∞ 

= 11.11 kN. Unfortunately, the stress 

profile in not perfectly linear in reality. The real stress profile is affected by wall-like stress distribu-

tion (the span of the beam is only 3D) and by the local compressive stress concentration around the 

point load. The nonzero Poisson’s ratio causes additional deviation from the linear stress profile; see 

[9] or [10]. As an approximation, we used a nonlinear least-square fitting procedure to determine 

the two free parameters Db and F
∞
 in Eq. 2. The fits are plotted in Figure 2 and compared to the 

computed data.  

Now, what if the rotational springs are employed? In each element (or contact area), its spring 

adds a new additional moment ∆Mi; see the last strip in Figure 1 left. These contributions are equal. 

In each bin there is a pair of forces ∆Ti that represent two triangles (below and above the constant 

stress σi. Each of these triangles are as long as half of the strip (=D/(4N)) and the maximum stress 

difference is ∆σ. The stress ∆σ is one half of the difference between the current strip and the adja-

cent strip: ( )1 / 2 / (2 1)i i f Nσ σ σ ∞
−∆ = − = − . The pair of forces ∆Ti representing the two triangles 

are: 
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Each of these two forces act over the distance of D/(6N) from the “neutral” state and form an ad-

ditional increase in the total bending moment. The magnitude of each such moment contribution (in 

each strip-bin) is twice the arm multiplied by the force ∆Ti: 2 / 6i iM T D N∆ = ⋅ ∆ ⋅ . In total, there are 

2N such partial moments over the whole cross-section and therefore the total moment increment is 

2N × the contribution iM∆  and ( )22 /12 2 1iM N M f BD N N∞∆ = ⋅ ∆ = − . The moment increment is 

not reflected in the failure condition. Transforming it into the increment of maximal force gives:  
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Adding this increment to the total force from Eq. 2 yields the upgraded size dependence. The in-

crement ∆F increases the maximal load especially for small sizes because it is proportional to the 

inverse of D
2
 while the increment to the asymptotic stress in Equations 2 was only inversely propor-

tional to D.  The irregularity of the network geometry (IRN) allows the model to choose the “weak-

est” area to initiate and propagate the crack. Contrary to REN, where the rupture of the first connec-

tion leads to the failure of the whole beam, the load applied to break the first spring in the IRN 

model (elastic limit in Fig. 2) is, on average, much lower than the peak forces. The peak forces in 

IRN models are greater than those of REN models, whereas the elastic limits are lower in IRN mod-

els. 

Qualitatively, however, both force dependencies of IRN are similar to REN and follow the ten-

dency proposed by Eq. 2 and Eq. 4, respectively. The deviations for larger specimens (finer mesh 

densities) are caused by the local stress deviation described earlier, meaning namely the stress fluc-

tuations in the lowermost layer caused by Poisson’s ratio.  

Instead of one crack, many small cracks are created inside the bottom area of the IRN specimen 

(Figure 1b) and the model allows for the redistribution of forces after many such local ruptures. 

These cracks do not form a continuous line at maximal load. The fact that the zone has, on average, 

approximately the same height for all sizes (over size ratio 1:32) supports our claim that the data 

can be approximated reasonably well by Bažant’s size effect formula, which is similar to Eq. 2.  
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Figure 4: Dependency of the peak load on the network density (or structural size D) and comparison 

to the size effect formulas (Equations 2 and 4).  a) REN meshes with a different Poisson’s ratio.  

b) Plot of elastic limits and peak loads of beams with an irregular network. Average values and 

standard deviations are computed from 50 realizations for every size. 

Summary 

The effect of the discretization of homogeneous lattice models was studied on three-point bending 

simulations. We report the results for regular and irregular geometry. The dependence of strength is 

compared to derived size effect formulas and we show that the fineness of the discretization of spec-

imens of the same size can mimic variations in the size of lattice models with the same discretiza-

tion.  
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