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a b s t r a c t

This paper presents a number of theoretical and numerical results for two norms of optimal correlation
matrices in relation to correlation control in Monte Carlo type sampling and the designs of experiments.
The optimal correlationmatrices are constructed for caseswhen the number of simulations (experiments)
Nsim is less than or equal to the stochastic dimension, i.e. the number of random variables (factors) Nvar. In
such cases the estimated correlation matrix can not be positive definite and must be singular. However,
the correlation matrix may be required to be as close to the unit matrix as possible (optimal). The paper
presents a simplemechanical analogy for such optimal singular positive semidefinite correlationmatrices.
Many examples of optimal correlation matrices are given, both analytically and numerically.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical sampling is of interest not only to statisticians, but to
a variety of research fields such as engineering, economics, design
of experiments, and operational research. Analysts are often faced
with time-consuming and expensive sampling (physical or virtual)
to achieve statistically significant output statistics. The need for the
exploration of multidimensional stochastic domains is the central
topic in statistical, sensitivity and reliability analyses.

In Monte Carlo type simulations, there is more commonly a
need to reduce the number of samples. Moreover, it sometimes
happens that the number of simulations (sample size Nsim) is
smaller than the number of random variables (dimension Nvar).
Similarly, in the (mostly preliminary) designs of experiments
focused on exploration of the space of variables, the number
of experiments might be smaller than the number of factors.
In probabilistic mechanics there is an increasing trend for
incorporating random field modeling in practical simulations.
Simulation of random fields is another example of an application
where the number of simulations is often smaller than the number
of variables. Suppose the analyst requires just a few samples
of a random field. This can happen, for example, when the
random fields are simulated to represent random properties of
a system analyzed by computationally expensive finite element
simulations. In such cases, the number of analyzed samples is very
low, much lower than the number of random variables needed
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for the representation of the fields. The most frequently used
methods for the representation of random fields are (i) the spectral
representation method (see e.g. [1–4]), (ii) Karhunen–Loève
expansion [5–8] and (iii) the simulation based on the sampling
theorem [9], see a comparison of the techniques in [10]. In these
techniques, a sample representing Nvar independent variables is
needed. Even more striking is the situation when the analysis
requires samples of many cross-correlated fields (especially with
small correlation lengths) [8].

In all the mentioned applications, the common requirement is
to regularly cover an Nvar-dimensional space with Nsim points. The
regularity of distribution of the points is often measured through
correlation matrix A estimated from the sample. The requirement
is that matrix A is as close as possible to the unit matrix. The
requirement of mutual uncorrelatedness can be viewed as the
relaxed requirement of independence between variables (factors).

The topic of correlation control in small sample simulation was
considered in well-known works on Latin Hypercube sampling
from random vectors [11–13]. Correlation control in small sample
Monte Carlo type simulation was also the central topic in [14,15],
where a combinatorial optimization algorithm was developed for
the mutual ordering of a sample to achieve a good match between
the target correlation matrix T and actual correlation matrix A
estimated from the sample. In that work, two scalar measures of
the difference T − A were defined and subjected to minimization.
The proposed simulated annealing algorithm turned out to be
extremely effective and we will show that it delivers optimal
results especially when Nsim ≤ Nvar.

In this paper, we exploit the two scalar norms of the error
matrix T − A and denote them as ρmax and ρrms. These norms
represent a natural choice and are commonly used in the
assessment of correlation errors, see e.g. [16–18]. When the
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suitable error matrix norms are defined, an analyst preparing
the sample (numerical or physical experiment) is interested
in achieving the lowest possible value for it. In this paper,
we determine the lower bounds of these two norms and we
also deliver numerical examples of the best possible correlation
matrices for many frequent combinations of Nsim ≤ Nvar.

The paper is organized as follows. Section 2 introduces the two
analyzed norms of correlation error matrices. Section 3 defines
three types of optimal correlation matrices and presents some
general facts about these matrices. Section 4 presents solutions
for the crossover case when Nsim = Nvar. The subsequent sections
present results on the optimal correlation matrices for general
sample sizes Nsim.

2. Correlation matrix estimation, errors and its norms

Let us consider the design matrix X (sampling plan) that is
formed by Nsim columns (simulations) times Nvar rows (variables,
factors). In other words, by a ‘sampling plan’, we mean an Nvar ×

Nsim matrix containing realizations of a random vector, see Table 1
in [14].

The estimated correlationmatrix is a symmetricmatrix of order
Nvar and can be written as the sum

A = I + L + LT (1)

where I is the identity matrix and L is a strictly lower triangular
matrix with entries within the range ⟨−1, 1⟩. There are Nc
correlations (entries in the L matrix) that describe pairwise
correlations:

Nc =


Nvar

2


=

Nvar (Nvar − 1)
2

. (2)

The most frequently used correlation coefficients in L are
the Pearson, Spearman and Kendall correlations. The sampling
versions (estimation formulas) for all three of these correlation
coefficients are presented and thoroughly studied in [19].

2.1. Norms of correlation error

Eqs. (11) and (14) from paper [14] define the norms ρrms and
ρmax of the error matrix E , a matrix obtained as a difference
between the target (T ) and actual (estimated, A) correlation
matrices. Having calculated the difference E between the target
and actual matrices, it is a natural choice to define some suitable
scalar metrics of E .

The most frequent requirement is to generate samples with
uncorrelatedmarginals in which case the target correlationmatrix
is the unit matrix T = I . This case is very general as the desired
dependency pattern can be introduced e.g. by transforming the
uncorrelated sample through copulas, or using the eigenvectors
and eigenvalues of the desired correlation matrix, or using the
Cholesky decomposition, etc. Therefore, in this paper we only
consider the general case of desired uncorrelatedness.

If T is the unit matrix then the error norms can be reformulated
directly as norms of the actual (estimated) correlation matrix A.
Moreover, we ignoreweighting of various entries in the correlation
matrix introduced in [14,15] (or, we in fact consider unit weights)
and the two norms can be written as follows. The absolute norm
reads:

ρmax = max
1≤i<j≤Nvar

Ai,j
 (3)

and the root mean square correlation error metrics

ρrms =

 1
Nc

Nvar−1
i=1

Nvar
j=i+1

A2
i,j, (4)
i.e. the square root of the average of squares of all off-diagonal
correlation matrix entries.

The ρmax norm is more conservative than ρrms because it
considers the extreme deviation from zero errorwhile ρrms is more
of averaging type, see [19].

3. General comments

When the number of simulations Nsim is smaller than, or equal
to, the number of variables Nvar, the orthogonality of the design
matrix (sampling plan) X , i.e. the uncorrelatedness of variables,
must inevitably be abandoned. However, in the exploration of
models by statistical sampling, the correlation of the designmatrix
and the departure from orthogonality can be of huge importance
and may have a catastrophic influence in the detection of the
true active factors of the analyzed problem. In the theory of the
design of experiments, where there are many random variables,
the usual advice is to perform a so-called main-effect design that
requires at least Nsim = Nvar + 1 simulations for investigating Nvar
factors (in an experiment involving Nvar two-level factors, at least
Nvar + 1 simulations are required to estimate all the main effects).
On the other hand, in many applications this requirement may
be wasteful or even impossible to perform (an example might
be an experiment represented by extremely costly finite element
simulation of a nonlinear structure). Therefore, one has to seek
optimal designs that are as close as possible to the target correlation
matrix T = I , i.e. the orthogonality requirement. The two norms
ρrms and ρmax will be minimized to achieve an optimal design.

Whenever Nsim ≤ Nvar the actual correlation matrix A is
singular (rank deficient, i.e. zero determinant). The matrix rank
of the sampling plan X is at most Nsim − 1. The rank of the
corresponding estimated correlation matrix A ∝ XX T must be
equal to it and therefore we write:

r = rank(A) = Nsim − 1 when Nsim ≤ Nvar. (5)

Every estimated correlation matrix A must be symmetric
and nonnegative definite (positive semidefinite—PSD), i.e. all its
eigenvalues are real and nonnegative. Thematrix trace (sum of the
diagonal elements)

tr (A) = Nvar (6)

is equal to the sum of all its eigenvalues λi, i = 1, . . . ,Nvar. When
Nsim ≤ Nvar, there must be r non-zero eigenvalues λ1 ≥ λ2 ≥

· · · ≥ λr among which the matrix order Nvar must be distributed.
The remainingNvar−r+1 eigenvalues are zero. The determinant of
A, computed as the product of all eigenvalues, is zero, too. Also, all
leading principal minors (subdeterminants of square submatrices
along the leading diagonal) of order greater than r are zero.

In this paper, we construct correlation matrices R [or M] that
are optimal in the sense of ρrms [or ρmax respectively]. Additionally,
we construct matrices RM that minimize ρmax among all possible
solutions R, i.e. among solutions with minimal ρrms. These optimal
matrices can be viewed as the best possible matrices to achieve
uncorrelatedness, i.e. the target matrices T that are as close as
possible to I . Before doing so, selected properties of symmetric
Toeplitz matrices are reviewed as they are useful in the presented
derivation.

3.1. Notes on symmetric Toeplitz matrices

This subsection summarizes basic facts about symmetric
Toeplitz matrices. This type of matrix will be involved in the solu-
tion of many of the following problems and therefore we present
the common features here in a compact section. Note that this class
of matrices can be viewed as shift-invariant autocorrelationmatri-
ces of a series system of elements with equal spacing, see e.g. [8].
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Toeplitz matrices R are matrices with Ri,j = Ri−1,j−1 (i, j = 2,
. . . , n). In our case of a symmetric matrix with the unit main
diagonal and elements Ri,j = [r|i−j|], where i, j = 1, . . . ,Nvar; r0 =

1, i.e. a matrix in which each descending diagonal from left to right
is constant.

Symmetric Toeplitz matrices are centrosymmetric. Centrosym-
metric matrices (as defined in [20, p. 142]) of order n have
Ri,j = Rn−i+1,n−j+1 (i, j = 1, . . . , n), i.e. they are symmetric about
their center. Centrosymmetric matrices are also called cross-
symmetric [21, p. 361]. Symmetric centrosymmetric matrices are
sometimes called bisymmetric or doubly symmetric matrices. Sym-
metric Toeplitzmatrices form a special subclass of the class of dou-
bly symmetric matrices.

Let J represent the exchange matrix (also known as the contra-
identity, reflection, permutation or flip matrix) of order n defined
by Ji,j = δi,n+1−j for 1 ≤ i, j ≤ n where δi,j is the Kronecker delta
(i.e., J = J−1 is a matrix with ones on the cross-diagonal and
zeros elsewhere). JJ = I , the identity matrix. Premultiplication of
a matrix M by J reverses the row order of M . Postmultiplication
of M by J reverses the column order of M . The properties of
centrosymmetry for a matrix can be written as MJ = JM ⇐⇒

M = JMJ .
Andrew [22, p. 158] has shown that every eigenspace of cen-

trosymmetric matrices has a basis consisting of vectors in S, where
S is the set of all vectors which are either symmetric or skewsym-
metric. A vector x = (x1, . . . , xn)T is termed symmetric if xi =

xn−i+1 for i = 1, . . . , n and skewsymmetric if xi = −xn−i+1, i =

1, . . . , n. Therefore, a centrosymmetric matrix of even (respec-
tively odd) order n has a basis consisting of one or both of the
forms, i.e. symmetric: [yT , (Jy)T ]T (respectively [yT , m, (Jy)T ]T )
or skewsymmetric: [yT , −(Jy)T ]T (respectively [yT , m, −(Jy)T ]T ).
The symmetric eigenvectors satisfy 8 = J8 and they are associ-
atedwith the eigenvalues termed even. The skewsymmetric eigen-
vectors (8 = −J8) are associated with odd eigenvalues.

From a theorem stated explicitly by Cantoni and Butler [23,
Theorem 2] (but clearly implicit in an earlier work of Andrew
[22, Theorem 2]), a symmetric centrosymmetric matrix of order
n has ⌈n/2⌉ symmetric and ⌊n/2⌋ skewsymmetric eigenvectors,
which can be obtained by solving the eigenvalue problems of two
matrices of these orders (⌈z⌉ denote the smallest integer ≥ z, and
⌊z⌋ denote the largest integer≤ z). It is also known that a repeated
eigenvalue of a real symmetric Toeplitz matrix must be both
even and odd [24]. A very clear description of the computational
procedure for the two eigenproblems is presented in [25].

4. Lower bounds on ρrms and ρmax when Nsim = Nvar

The correlation error behavior drastically changes when the
sample size exceeds the number of variables Nvar. Therefore, it
is very important to study the best possible performance for the
crossover sample size, i.e. when:

Nsim = Nvar = N. (7)

As will be shown below, in this case the optimal correlation
matrices R and M match and therefore they are also equal to RM .
We denote them simply by R. Every R matrix is singular and has
r = N − 1 nonzero eigenvalues.

A realization of a correlation matrix of order Nvar can be viewed
as a point in theNc dimensional space of allNc different correlation
coefficients. The volume of the space of all symmetric matrices
with off-diagonal entries ranging from −1 to +1 is V = 2Nc . It
is known [26] that the set of all PSD correlation matrices is a
solid body in that space occupying a region in the vicinity of the
origin (a point corresponding to mutual uncorrelatedness). Fig. 1
illustrates the situation forNvar = 3. The visualized boundary of the
set of positive definite matrices consists of semi positive definite
matrices.
Fig. 1. Boundary of the set of all 3-dimensional positive definite correlation
matrices (horizontal planar cuts are ellipses, too). Solid cubes and circles represent
attainable correlation matrices when Nsim = Nvar = 3. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Let us note that the proportion of the PSD correlation matrices
in the volume V is quickly decreasing: it equals one when Nvar =

2, π2/16 ≈ 0.617 when Nvar = 3, 0.183 when Nvar = 4, then for
Nvar = 5, . . . , 10we have approximately 2.2·10−2, 9.5·10−4, 1.3·

10−5, 5.5 · 10−8, 6.4 · 10−11, and 1.9 · 10−14.
We seek such a realization R of A (a point in theNc-dimensional

space) that is closest to the origin, yet represents a singular matrix
and therefore remains on the boundary between positive definite
matrices and negative definite (invalid) matrices. A good choice is
to try to minimize both ρrms and ρmax simultaneously. The latter
means that we try to construct a singular matrix with all off-
diagonal entries Ai,j so that |Ai,j| = C and we also try to minimize
the absolute value C . Such an ideal matrix R yields ρrms =

ρmax = C and will be constructed next using its eigenvalues and
eigenvectors.

The spectral representation (principal component analysis) of
any correlation matrix A (and therefore also R) reads:

A = 838T
= 838−1 (8)

where the eigenvectors (columns of 8) are orthonormal:

88T
= I = 8T8 (9)

i.e. each column (eigenvector) and row are normalized to have unit
Euclidean length:

N
k=1

φ2
i,k =

N
k=1

φ2
k,j = 1, i, j = 1, . . . ,N (10)

and satisfy pairwise orthogonality:
N

k=1

φi,kφj,k =

N
k=1

φk,iφk,j = 0, i ≠ j (11)

and the diagonal eigenvalue matrix 3 contains eigenvalues λi, i =

1 . . .N . Let us order the eigenvalues of A so that λ1 ≥ λ2 ≥ · · · ≥

λN . The smallest eigenvalue λN = 0. Let us now take the remaining
N − 1 eigenvalues to be identical (from reasons described below)
and call the given Amatrix R:

λi =
N

N − 1
, i = 1, . . . ,N − 1 (12)

and the last eigenvector corresponding to the zero eigenvalue then
has the coordinates

φi,N = ±

1/N, i = 1, . . . ,N. (13)

The reason for this is that the diagonal entries of R must equal one.
From Eq. (8) they can be written as:

Ri,i =

N
k=1

λkφ
2
i,k, i = 1, . . . ,N. (14)



M. Vořechovský / Probabilistic Engineering Mechanics 30 (2012) 104–116 107
Using the knowledge of all eigenvalues, we write

Ri,i = 1 = λ

N−1
k=1

φ2
i,k =

N
N − 1

N−1
k=1

φ2
i,k (15)

and therefore for any ith component of the eigenvector φi,N it must
hold that:

N − 1
N

=

N−1
k=1

φ2
i,k = 1 − φ2

i,N (16)

resulting in: φ2
i,N = 1/N . The unit length of the last eigenvector is

satisfied (Eq. (10)).
Expansion of an arbitrary off-diagonal term of R based on

Eq. (8) yields:

Ri,j =

N
k=1

λk φi,kφj,k (17)

where the last eigenvalue is zero and the rest of them are equal and
known (Eq. (12)):

Ri,j = λ

N−1
k=1

φi,kφj,k =
N

N − 1

N−1
k=1

φi,kφj,k. (18)

The sum can be computed using Eqs. (11) and (13):

N−1
k=1

φi,kφj,k + φi,Nφj,N  
±1/N

= 0. (19)

Therefore an arbitrary off-diagonal term in Eq. (18) equals:

Ri,j =
N

N − 1


±

1
N


= ±

1
N − 1

. (20)

This completes the derivation of lower bounds on ρrms and ρmax:

ρrms
Nvar=Nsim=N

≥
1

N − 1

ρmax
Nvar=Nsim=N

≥
1

N − 1
.

(21)

No algorithm for correlation control can perform better than
that. Moreover, these bounds are not always possible to match
due to the limited number of attainable correlations, see [19].
These limitations become even more severe with increasing Nvar
dimension.

In the case of the three random variables, four similar cor-
relationmatrices happen to equal the bounds; see the red circles in
Fig. 1. There are four such optimal solutionsR corresponding to the
points in themiddle of four convex surfaces of the tetrahedron-like
boundary shape (the surface has four sharp vertices and contains
six straight lines that connect them). However, it can be seen that
the number of attainable correlations is very limited and in higher
dimensions there are no such points on the surface in the optimal
directions dictated by equal correlation magnitudes. In reality,
therefore, ρrms is closer to the lower bound in Eq. (21) than the
conservative measure ρmax.

Recalling the entries of an optimal matrix R that are featured in
Eq. (20), one of the possible patterns thatmatches the lower bound
is as follows:

Ri,j
Nsim=Nvar

= (−1)i−j+1 1
Nvar − 1

, i ≠ j. (22)

Another example of an optimal matrix R can be obtained by
requiring the same off-diagonal terms of R, i.e. Ri,j = ρ. Matrix R
can be written as

R = I + ρ (F − I) (23)
Fig. 2. Convergence of sub-determinants ofmatrices in (Eqs. (22) and (24)) towards
Eq. (28).

where I is the identitymatrix and F is anNvar×Nvar matrix of ones.
The eigenvalues of such an R are (1 − ρ)+ρNvar (withmultiplicity
1) and (1 − ρ) (with multiplicity Nvar − 1). Setting the former
eigenvalue to zero yields ρ = Ri,j for i, j = 1, . . . ,Nvar:

Ri,j
Nsim=Nvar

= −
1

Nvar − 1
, i ≠ j. (24)

An interesting fact about both solutions (Eqs. (22) and (24)),
is that all submatrices of the order n ≤ Nvar along the principal
diagonal have the following eigenvalues:

λi =


Nvar

Nvar − 1
i = 1, . . . , n − 1

Nvar − n
Nvar − 1

i = n.
(25)

That is why the leading principal minors (principal subdetermi-
nants) read:

Dn =

n
i=1

λi =


Nvar

Nvar − 1

n−1 Nvar − n
Nvar − 1

(26)

which is a decreasing function. To compare it for various
dimensions Nvar we scale the principal subdeterminant order n
from 1 . . .Nvar to a nondimensional order j = (n − 1)/(Nvar − 1)
so that the first leading principal minor has j = 0 and the last one
has j = 1. In other words, n = j (Nvar − 1)+1. The above equation
then reads

Dj = (1 − j)


Nvar

Nvar − 1

j(Nvar−1)

. (27)

The asymptotic decreasing function of subdeterminants is

lim
Nvar→∞

Dj = (1 − j) exp(j). (28)

This limiting function is plotted in Fig. 2 together with examples of
the leading principal minors for selected dimensions Nvar.

5. Lower bounds on ρrms and ρmax when Nsim = 2

The optimal correlation matrix R has only one nonzero
eigenvalue λ1 = Nvar and corresponding eigenvector with coor-
dinates±1/

√
Nvar. That is why in Eq. (17) any Ai,j = ±1which also

follows from the sample correlation formulas. The lower bounds on
both ρrms and ρmax do not depend on Nvar and they equal the unit
upper bound:

ρrms
Nsim=2

= ρmax
Nsim=2

= 1. (29)
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6. Lower bound on ρrms for a general case of Nsim ≤ Nvar

The two limiting cases of Nsim = 2 and Nsim = Nvar are solved.
Wenowpresent the solution to the general problemofNsim ≤ Nvar.
First consider an optimal correlation matrix R (optimal in the ρrms
sense). Using Eq. (4) the minimized norm can be rewritten as:

ρrms (R) =


Nvar
i=1

Nvar
j=1

R2
i,j − Nvar

Nvar (Nvar − 1)
(30)

(subtract the Nvar unit diagonal entries from the sum of squared
correlations, then divide it by the number of the off-diagonal
entries and then take the square root). It is known that the square of
(the optimal) correlationmatrix has a trace equal to the sum of the
squared eigenvalues. We can truncate the sum after considering
the r nonzero eigenvalues only:

tr

R2

=

Nvar
i=1

λ2
i =

r
i=1

λ2
i . (31)

Note also that each ith diagonal entry of R2 represents the sum of
squared correlations from the ith row (or column) of R. Therefore,
we can also write:

tr

R2

=

Nvar
i=1

Nvar
j=1

R2
i,j. (32)

This sum also appears in Eq. (30). The correspondence between
Eqs. (32) and (31) can be used in Eq. (30). Thus, minimization
of ρrms is equivalent to the minimization of the sum of the r
squared (nonzero) eigenvalues, i.e. eigenvalues whose sum is
Nvar. This implies that optimality in terms of ρrms is achieved for
equal nonzero eigenvalues, i.e. the trace tr (R) = Nvar is distributed
uniformly over the r nonzero eigenvalues:

λi =


Nvar

r
when i = 1, . . . , r

0 when i = r + 1, . . . ,Nvar.

(33)

Thus, tr

R2


= Nvar
2/r and inserting this result into Eq. (30) finally

yields the lower bound for ρrms, it being the norm for optimal
singular correlation matrices R:

ρrms
Nvar≥Nsim

≥ ρrms (R) =


Nvar − r

(Nvar − 1) r

=


Nvar − (Nsim − 1)

(Nvar − 1) (Nsim − 1)
. (34)

It can be checked easily that the above obtained results in Eq. (21)
(and Eq. (29)) for the limiting cases Nvar = Nsim (and Nsim = 2
respectively) are recovered. Graphs of this lower bound for
selected problem dimensions Nvar are plotted in Fig. 3.

Note that for any given nonnegative difference d = Nvar −Nsim,
the lower bound reads

d + 1
(Nsim + d − 1) (Nsim − 1)

(35)

and thus the error remains asymptotically inversely proportional
to the sample size, see the dashed lines in Fig. 3.

Note also that the optimal value of ρrms (R) in Eq. (34) never
exceeds the following bound:

ρrms (R) ≤
1

√
(Nsim − 1)

(36)
Fig. 3. Lower bound on correlation error ρrms (errors for matrices R) given in Eq.
(34). The shaded area represents the range between the upper and lower bounds
on correlation error when Nsim = 1024.

see Fig. 3. This corresponds to the average performance for the case
when sample ordering in X is left random, see [19] for details.

It can be shown that the following equality holds between the
multiple and power of the optimal R matrix:

λ1R = (R)2 (37)

which, by induction, implies

(λ1)
p−1 R = (R)p (38)

where p is an arbitrary natural power. Since the two matrices on
either side of the equation match, their traces must also match:

tr

(λ1)

p−1 R


= tr

Rp . (39)

The trace on the right hand side reads: tr (Rp) =
r

i=1 (λ1)
p.

Therefore, Eq. (39) can be rewritten as:

(λ1)
p−1 Nvar = r · (λ1)

p (40)

which is true because the eigenvalue has been found to equal λ1 =

Nvar/r .
It is clear now that the error ρrms of any actual correlation

matrixA resulting from the proposed correlation control algorithm
[14,15] lies between the lower bound given in Eq. (34) and the
upper bound given in Eq. (36) which corresponds to the average
error ρrms in random ordering [19], see Fig. 3. What remains
unclear is (i) whether the optimal solution can be numerically
achieved and (ii) whether such optimal correlation matrix R is
unique. The first question can be answered by the analysis of
attainable values of correlation coefficients which was performed
in [19]. The answer to the second question follows. Numerically,
the optimal correlation matrix can be obtained by solving its
eigenvectors 8 given the spectrum of eigenvalues 3 from Eq. (33)
and requesting (i) 88T

= 8T8 = I and (ii) unit main diagonal of
R = 838T . Indeed, the solution is not unique. For concreteness,
we present two equally good (optimal) correlation matrices
constructed for Nvar = 4 variables and Nsim = 3 simulations that
correspond to the same Euclidean distance from the origin in the
space of all Nc correlations:


R4,3

RM
4,3


=


1 0.9 0 −0.4359

√
2/2 1 0.4359 0
0

√
2/2 1 0.9

−
√
2/2 0

√
2/2 1

 . (41)

The common feature of all optimal correlation matrices R is that
the sum of squared correlations in any row (column) equals the
nonzero eigenvalue Nvar/r . After subtracting the diagonal unit, we
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have (Nvar − r) /r , which must be distributed over the remaining
Nvar − 1 entries in that row (column):

Nvar
i=1,i≠j

R2
i,j = λ1 − 1 =

Nvar − r
r

. (42)

So, the average sum of squares in each row is (Nvar − r)/
[r (Nvar − 1)], which is exactly what appears in squared Eq. (34).
It means that the average squared correlation of any variable with
the remaining Nvar − 1 variables is identical to the average of all
squared correlations in R.

There are, however, infinitely many matrices R represented
by points of intersection of (i), a hypersphere with a radius of
ρrms (R) ×

√
Nc in the Nc-dimensional space of all correlations

with (ii), the boundary of the set of all positive definite correlation
matrices that contains all singular correlationmatrices with rank r
(an analogous surface to that in Fig. 1). Are there some solutions
that are better than others among these? For example, the two
matrices R4,3 and RM

4,3 are equally good with respect to ρrms, but
RM
4,3 has a better ρmax =

√
2/2 ≈ 0.707. Frequently, the sampling

plan X cannot be ρrms-optimal and ρmax-optimal simultaneously.
The problem is thatwe seek the nearest point to the origin on a part
of the surface described earlier, but we generally cannot take the
directions given by equal correlationmagnitudes as can be done for
Nvar = Nsim. A ρrms-optimal design may not be satisfactorily under
the ρmax criterion, and vice versa. Hence, to construct a satisfactory
sampling plan, some trade off between ρrms and ρmax should be
considered. A good strategy seems to be to find an ρrms-optimal
sampling plan with a small ρmax (e.g. to prefer RM

4,3 over R4,3).
The task is now to find R-matrices minimizing ρmax. These

matrices will be denoted as RM from here on.
Let us illustrate the problem for the above mentioned case of

Nsim = 3 and Nvar = 4. Generally, the correlation matrix has six
entries in the lower triangle:

R =

1 a b −c
a 1 c b
b d 1 a
c e f 1

 . (43)

Imposing the equality condition of sums of squared correlations
in any row and any column, one finds that the absolute values |a|
and |f | must match. Similarly, |b| and |e| must match. Finally, |c|
and |d| also must match. The matrix simplifies into only several
possible patterns (combinations of signs), one of which is shown
in the upper triangle. The vector size 1+a2 +b2 +c2 = Nvar/r = 2
must be fulfilled. Next, we request that the third leading principal
minor be zero: 1 + 2abc − (a2 + b2 + c2) = 0. Since the sum in
the parentheses equals one, at least one of a, b or c must be zero.
One of the possible solutions is the set a = 0, b = ±

√
1 − c2 (a

circle in b, c). There are another two circles corresponding to b = 0
and c = 0. All of these solutions lead to the zero determinant of
the whole matrix. Then, further minimization of ρmax implies the
condition c2 = 1− c2, i.e. c = ±

√
2/2. An equivalent solution has

been found in RM
4,3. Note that many solutions exist equivalent to

RM
4,3, corresponding to those points on the circles where the angle

between variables with nonzero correlations is π/4.
The task of the numerical search of optimal RM matrices for

the general dimensions Nvar and Nsim can be viewed as an inverse
eigenvalue problem. It concerns the reconstruction of a matrix
from prescribed spectral data (information about eigenvalues or
eigenvectors). The objective is to construct amatrix that maintains
a certain specific structure as well as that given spectral property.
One can employ optimization algorithms to attack the problem.

Wehave developed a simple iterative technique to find amatrix
with the desired eigenvalues (diagonal matrix 3). Suppose we
have a symmetric matrix R(i) with ones on the main diagonal in
the ith iteration. Then we find its eigenvector matrix 8(i) and the
diagonal eigenvalue matrix 3(i) so that R(i) = 8(i)3(i)8

T
(i). Then,

we calculate a new iteration by (i) replacing the actual eigenvalues
with the target ones: R(i+1) = 8(i)38T

(i) and (ii) setting the
diagonal entries of R(i+1) to ones. The iterations are repeated until
the eigenvalues of R(i) match the requested 3. By perturbing the
initial symmetric matrix R(0) one can find an optimal solution RM

that has the prescribed eigenvalues.
We have developed another technique to construct the optimal

matrices. The technique is based on analogy with a simple
mechanical system. This is described next.

7. Mechanical analogy for R, RM and M matrices when Nsim ≤

Nvar

The correlation matrices R that attain the lower bound on
ρrms in a general case of Nsim ≤ Nvar can be shown to be nicely
analogous with a simple mechanical system. This can be explained
in a particularly illustrative way.

The entries of the correlation matrix can be viewed as the
cosines of angles between random variables. Zero correlation
corresponds to a right angle (uncorrelatedness) while the extreme
correlation of ±1 corresponds to angles of zero or 180° (zero or π
radians).

Now imagine a systemofNvar rigid bars all connected by a single
hinge located in the origin of the coordinate system. These bars
represent random variables. All pairs of these bars (directions) are
also connected by perfectly elastic nonlinear rotational springs, all
with the same constitutive law.

Minimization of ρrms corresponds to the minimization of a sum
of squared cosines (correlations). Similarly, the total stored energy
of the system is obtained as a sum of the energies accumulated in
all springs. Therefore, each rotational spring connecting variables i
and j contributes to the sum of the stored elastic energy by Ei,j:

Ei,j = cos2

αi,j


(44)

where αi,j is the angle between this pair. The number of pairs
(rotational springs) is Nc, see Eq. (2).

Once the number of bars exceeds the dimension of the space (r),
the total elastic energy (corresponding to ρrms) cannot equal zero.
The springs are stretched and the system automatically reaches a
state of extremal energy. The constitutive law (momentMi,j in each
rotational spring acting in the plane of the pair of springs) can be
derived by differentiating the energy function with respect to the
corresponding angle:

Mi,j =
∂Ei,j
∂αi,j

= −2 cos

αi,j

sin

αi,j


= sin

2

αi,j −

π

2


. (45)

This equation is visualized in Fig. 4. The elastic energy stored in
each such spring according to Eq. (44) is proportional to the shaded
area. It increases from the zero difference betweenαi,j and the right
angle π/2 (the only case of zero energy). As can be seen in Fig. 4,
the springs are highly nonlinear. The current stiffness of the springs
depends on the angle and it can be calculated as

ki,j =
∂Mi,j

∂αi,j
= −2 cos


2αi,j


= 2 − 4 cos2


αi,j

. (46)

The dimension of the space where all these bars are interacting
equals r = Nsim − 1. For example, the situation of Nsim = 4 corre-
sponds to three-dimensional space inwhich one canplace a system
with a maximum of three bars to obtain zero energy (the bars are
aligned with the three orthogonal directions). Having more bars
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Fig. 4. Rotational spring for mechanical analogy with optimal matrices R.

causes the springs to be stretched. The minimal energy that can be
attained is dictated by the result in Eq. (34) and equals:

Π
Nvar≥Nsim

= Nc
Nvar − (Nsim − 1)

(Nvar − 1) (Nsim − 1)
=

Nvar

2
Nvar − r

r
. (47)

Is the configuration of bars in the system that attains this
minimal energy unique? No. It can be shown that there is an
energetic plateau and the extremal energy can be obtained by
infinitely many configurations. These configurations correspond
to correlation matrices with the same spectrum of eigenvalues—
such as the two examples in Eq. (41). In this example, once the
configuration corresponding to cosines in R4,3 is found, one can
start pushing the pair of bars with the greatest absolute cosine of
their angle towards each other to achieve RM

4,3 while remaining at
the energetic minimum (i.e., keeping ρrms).

We have performed numerical tests with a dynamical simu-
lation program implementing the described system. It should be
noted that the system has an obvious unstable point with extremal
energy that corresponds to all angles being equal to zero. A small
temporary disturbance from such an unstable state leads to re-
arrangement into a desired configuration with minimal ρrms. In
order to avoid being trapped in an unstable configuration, it is
advisable to begin the simulation with a random configuration.
Once the system finds a state with minimal ρrms (an R matrix),
one can perturb it to reach RM . In the numerical simulation pro-
gram this can be achieved by temporarily slightly increasing the
stiffness ki,j of the spring connecting the bars with some angle αi,j
that has the greatest absolute difference from the right angle. This
adjustment makes the (damped) system slide over the energetic
plateau towards the desired state (usually exhibiting some spe-
cial symmetries). Fig. 5(b) illustrates the difference between a con-
figuration corresponding to R matrix optimal in the sense of ρrms
(before the additional adjustment, red lines) and the configuration
RM with the same ρrms and further minimized ρmax. The number of
variables is Nvar = 5 and the sample size is Nsim = 3 (top) and 4
(bottom). The numerical values of the correlations corresponding
to the R matrices in Fig. 5(b) are:

R5,3
R5,4



=


1 0.7118 0.2149 −0.3512 −0.9076

−0.361 1 0.8389 0.4076 −0.3512
−0.3383 0.2998 1 0.8389 0.2149
0.3696 0.6666 −0.2906 1 0.7118
0.5342 −0.0461 0.6148 0.0358 1

 . (48)

The two corresponding matrices RM are formulated in Eq. (75).
We note that themechanical system can easily be implemented

for solving a spatial dimension r that is greater than three.
Placement of the endpoints of the bars is, in fact, placing points
on the ‘‘surface’’ of a unit hypersphere, or (r − 1)-sphere, it being
the boundary of an r-dimensional ball with unit radius, where r
is the arbitrary natural dimension. The Euclidean coordinates of
all Nvar endpoints in r-dimensional space can be arranged in an
(Nvar × r)matrix denoted B. The corresponding correlationmatrix
is then obtained simply as:

R = BBT . (49)

Each row i of the B matrix (a point in Cartesian coordinates)
can be expressed using the corresponding (r − 1) hyperspherical
coordinates (angles) ϕi,1, . . . , ϕi,r−1 as:

Bi,j =


cos


ϕi,j

·

j−1
k=1

sin

ϕi,k


for j = 1, . . . , r − 1

j−1
k=1

sin

ϕi,k


for j = r.

(50)

Note that the last angular coordinate ϕi,r−1 of any variable i
ranges over (0; 2π⟩ and the remaining angles range over ⟨0; π⟩.
The correlation matrix can thus be stored by using the Nvar ×

(r − 1) matrix of angular coordinates ϕi,j. Whenever Nsim < 1
2

(Nvar + 3), this is a more compact storage format than saving Nc
correlation coefficients.

To illustrate this point, we present the matrices for the optimal
correlation matrix RM

3,3 = M3,3 (three variables each represented
by three simulations). This optimal matrix is visualized in two
different figures, namely by a red circle in Fig. 1 and in a different
space also in Fig. 5, top left. Thematrix (one vector) of three angular
coordinates ϕ3,3 =


0, π

3 , 2π
3

T
, from which the corresponding

matrices can be constructed as:

B3,3 =


1 0
1
2

√
3
2

−
1
2

√
3
2

 , RM
3,3 =


1

1
2

−
1
2

1
2

1
1
2

−
1
2

1
2

1

 . (51)

Matrix B can be viewed as a product of the eigenvector matrix
and the diagonal matrix of the square roots of the eigenvalues
(recall the spectral representation in Eq. (8)):

R = BBT
= 831/2  

B

(31/28T ). (52)

The eigenvectors corresponding to the zero eigenvalues can be
ignored. In the case of R matrices, the nonzero eigenvalues are
identical and therefore the B matrix becomes just the 8 matrix
multiplied by a scalar:

B =


λ18 (53)

so that the rows of B (rigid bars) are scaled to unit length.
In the above studied numerical example in Eq. (51), the two

eigenvectors of correlation matrix RM
3,3 were selected as

83,3 =




2
3

0

1
√
6

1
√
2

−
1

√
6

1
√
2

 . (54)

Visualizations of RM matrices in Fig. 5 has been selected so that
the first row of B matrix is a vector aligned with x axis, i.e. the
coordinates of the first row vector read (1, 0, . . . , 0).

Note also that when the ρmax criterion is the object of
minimization (to obtainM), the energy function in the mechanical
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a b

Fig. 5. Visualization of optimal singular correlation matrices. (a) RM (solid circles). All of these solutions are also M matrices except for Nvar = 5 and Nsim = 4 (visualized
with solid boxes). (b) Examples of optimal correlation matrices R (empty circles) used in Eq. (48) with those from (a). Top row: Nsim = 3 (dimension r = 2). Bottom row:
Nsim = 4 (dimension r = 3).
system must be redefined accordingly. What suffices is to make
the energy equal to the cosine of angle αi,j that has the greatest
absolute deviation from the right angle. As the configuration of the
damped system evolves in time, different angles may alternately
be featured in the energy function. When a proper time step
and damping is used, the system stabilizes at the best possible
configuration. More details on the mechanical model are left for
a subsequent paper.

Our studies on the optimal RM matrices suggest that such
matrices form special patterns. To illustrate this, the two following
subsections present general solutions to the problem for the two
limiting cases, i.e. (i), whenNsim = 3, and (ii), whenNsim = Nvar−1.

8. Optimal matrices RM when Nsim = 3

We have found that one particular pattern of the optimal RM

matrices can be written as symmetric Toeplitz matrix R =

Ri,j

. In

particular, it takes the following form:

RM
i,j

Nsim=3
=


2
r


cos


π
i − j
Nvar


(55)

where the multiplier
 2
r


= 1. Such an optimal correlation matrix

hasρrms according to Eq. (34) and the absolute extreme correlation:

ρmax
Nsim=3


RM

= cos


π

Nvar


. (56)

This extreme correlation appears right next to the main
diagonal and negatively also in the corners of the secondary
diagonal of RM , see e.g. the example RM

4,3 in Eq. (41). It is easy to
check that the sum of squared off-diagonal correlations in any row
(column) equals (Nvar − r)/r , as required in Eq. (42):

Nvar
j=const, i≠j


RM
i,j

2
=

Nvar−1
i=1

cos2


iπ
Nvar


=

Nvar − 2
2

. (57)

In the above equation, we exploited the fact that

κ =


Nvar odd : 2

Nvar−1
2

i=1

cos2


iπ
Nvar



Nvar even : 2

Nvar
2 −1
i=1

cos2


iπ
Nvar




=
Nvar − 2

2
. (58)

Why are all the correlations in Eq. (55) cosines depending on
Nvar? Themechanicalmodel illustrates the answer.WhenNsim = 3,
one finds away to distributeNvar directions in two dimensions. The
solution corresponds to a regular ‘‘fan’’ of bars where all the pairs
of consecutive bars (|i − j| = 1) contain the angle of π/Nvar (see
Eq. (56)). This angle corresponds to all the entries of the correlation
matrix RM right next to the principal diagonal. The maximal
angle is π (Nvar − 1) /Nvar. The cosine of this value corresponds
to the correlation between the first and the last variables (the
correlations in the corners on the secondary diagonal). The top row
of Fig. 5 illustrates the solution for various Nvar.

This paragraph characterizes the solution RM . The two or-
thonormal eigenvectors corresponding to the repeated nonzero
eigenvalue of the symmetric Toeplitz matrix RM can be taken as
the symmetric and skew symmetric eigenvectors (recall the results
from Section 3.1). The individual coordinates i of the eigenvectors
then read:

φ
sym
i =


2

Nvar
sin


π
i − 1

2

Nvar


(59)

φskew
i =


2

Nvar
cos


π
i − 1

2

Nvar


, i = 1, . . . ,Nvar.

The eigen-properties are now explicitly given. We now examine
the determinants of the suggested pattern of RM . The leading
principal minor D1 = 1 and the second leading principal minor
D2 = sin2(π/Nvar). All other subdeterminants along the leading
diagonal equal zero.

Let us now study the ratio between ρmax and ρrms for the
optimal matrices RM :

ν(Nvar) =
ρmax

ρrms
=

cos


π
Nvar




Nvar−2
2(Nvar−1)

=
√
2


Nvar − 1
Nvar − 2

cos


π

Nvar


. (60)

The ratio ν initially grows with Nvar to attain its maximum of
≈1.436 when Nvar = 17 and then it decreases and converges
towards its limit:

lim
Nvar→∞

ν =
√
2 ≈ 1.414 (61)

i.e. the ratio of errors never exceeds 1.436 and reaches up to
approx. 41% for large Nvar.

9. Optimal matrices RM when Nsim = Nvar − 1

We have found that the optimal RM can again form a symmetric
Toeplitz matrix with ones on the diagonal and the following off-
diagonal entries:

RM
i,j

Nsim=Nvar−1
= (−1)i−j+1


2
r


cos


π
i − j
Nvar


. (62)
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This pattern is very similar to Eq. (55). The only difference is that
the signs on each row/column alternate. The multiplier

 2
r


=

2
Nvar−2 . Again, each row (column) features a pair of nonzero off-
diagonal entries that are equal in their absolute values. Such an
optimal correlation matrix has ρrms according to Eq. (34) and the
absolute extreme correlation:

ρmax
Nsim=Nvar−1


RM

=
2

Nvar − 2
cos


π

Nvar


. (63)

Again, it is easy to check the validity of Eq. (42), i.e. that the sum
of squared off-diagonal correlations in any row (column) equals
(Nvar − r)/r . Using Eqs. (57) and (58) we can write:

Nvar
i=1, i≠j


RM
i,j

2
= κ


2

Nvar − 2

2

=
2

Nvar − 2
. (64)

This happens to be the inverse value of the same sum in Eq. (57).
The duality between the case of Nsim = 3 and Nsim = Nvar − 1 will
be shown (Section 10) to be a more general feature of RM .

Computation of eigenvectors of RM can, in this case, be greatly
simplified by using the following. We will demonstrate it for even
Nvar; the extension to the odd dimension is simple. Firstly, it is
helpful to partition the matrix into four symmetric square blocks
each of which has the order Nvar/2:

RM
=


P JCJ
C JPJ


(65)

and where J is the flip matrix defined in Section 3.1. As shown in
Lemma 3 of [23], the above matrix and
P − JC 0

0 P + JC


=


K 0
0 S


(66)

are orthogonally similar. In the above equation, entries of the
square symmetric matrices K and S read (i, j = 1, . . . ,Nvar/2):

Qi,j = Pi,j − PNvar−i+1,j

Si,j = Pi,j + PNvar−i+1,j.
(67)

Theorem 2 in [23] shows that the Nvar/2 skew symmetric
eigenvectors φj of RM can be determined by solving the equation

(P − JC)  
K

uj = λjuj (68)

in which we are only interested in 1
2 (Nvar − 2) orthonormal

eigenvectors uj corresponding to the nonzero eigenvalues λj =

Nvar/ (Nvar − 2) , j = 1, 2, . . . , 1
2 (Nvar − 2). From this solution,

all the skew symmetric eigenvectors of RM can be constructed
by adding negative reflected coordinates uj and normalizing the
resulting vectors:

φskew
j =

1
√
2


uj, −Juj

T
. (69)

The symmetric eigenvectors can be constructed similarly from
the solution of the following half-sized problem:

(P + JC)  
S

vj = λjvj. (70)

Here, we again use the 1
2 (Nvar − 2) eigenvectors vj with nonzero

eigenvalues λj = Nvar/ (Nvar − 2) to construct the symmetric
eigenvectors as: φ

sym
j = 1/

√
2

vj, Jvj

T . In our case, however, the
following equality holds for the two half-sized submatrices:

S = (P + JC) = J (P − JC) J = JKJ (71)

meaning that the matrix in Eq. (70) is, in fact, the matrix from the
problem in Eq. (68) flipped along the secondary diagonal. All the
orthonormal eigenvectors vi can be taken as Juj, j = 1, 2, . . . ,
1
2 (Nvar − 2). Therefore, the symmetric eigenvectors of RM read:

φ
sym
j =

1
√
2


Juj, uj

T
. (72)

To conclude, the set of 1
2 (Nvar − 2) orthonormal eigenvectors of

matrix RM that correspond to the repeated eigenvalue λ = Nvar/
(Nvar − 2) can be obtained as a collection of the skew symmetric
vectors in Eq. (69) and of the symmetric eigenvectors in Eq. (72).
Therefore, it suffices to find eigenvectors of K in Eq. (68) from
which the eigenvectors of RM can be easily constructed. The
eigenvectors uj of K that correspond to the repeated eigenvalue
can be written, for example, as:

ui,j =


0 i > j
dj i = j

cj · (−1)i−j+1 sin


π
i − 1

2

Nvar


i < j.

(73)

In other words, they form a lower triangular matrix with
the diagonal elements dj. The components of the eigenvector
corresponding to the zero eigenvalue read:

ui,Nvar/2 =


2

Nvar
(−1)i sin


π
i − 1

2

Nvar


. (74)

The pairs dj and cj are found from the conditions of orthonormality;

dj ∈

√
2, 1


and cj ∈


0,

√
2

.

To give an example that directly compares the matrices for
Nsim = 3 and Nsim = Nvar − 1, we present two centrosymmetric
Toeplitz matrices RM for Nvar = 5. In particular, the lower triangle
presents the situation when Nsim = 4 and the upper triangle
Nsim = 3 (studied in the previous section). The constants are: a =

cos(π/5) =
1
4


1 +

√
5


, b = cos(2π/5), c = a · 2/3, d =

b · 2/3:


RM
5,3

RM
5,4


=



1 a b −b −a

c 1
. . .

. . . −b

−d
. . . 1

. . . b

−d
. . .

. . . 1 a
c −d −d c 1

 . (75)

A noticeable fact is that the sorted absolute correlations for
Nsim = 3 and Nsim = Nvar − 1 are identical up to a constant ratio of
2/3. This fact is going to be discussed next in Section 10.

Again, the ratio between ρmax and ρrms for the optimal matrices
RM reads:

ρmax

ρrms
=

2
Nvar−2 cos


π

Nvar




2
(Nvar−1)(Nvar−2)

= ν(Nvar). (76)

The ratio is strictly identical to that in Eq. (60) obtained for Nsim =

3. Therefore, the limit given in Eq. (61) for large Nvar holds.

10. Optimal matrices R,RM and M for arbitrary Nsim < Nvar

The optimal matrices RM for arbitrary sample sizes Nsim ∈

(3;Nvar − 1) do not seem to follow any general simple pattern.
We have found, however, that, for a given dimensionNvar, there

is a special relationship between pairs of solutions RM for sample
sizes
• Nsim = n and a somewhat associated sample size
• Nsim = Nvar − n + 2.
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Fig. 6. Ratio ρmax/ρrms for the optimal correlation matrices RM .

Table 1
Values of ρmax for the optimal matricesM (numerator) and RM (denominator). If no
fraction is used, the two values of ρmax match.

Nsim Nvar

3 4 5 6 7 8 9 10

2 1 1 1 1 1 1 1 1
3 0.5 0.70711 0.80901 0.86603 0.90097 0.92388 0.93969 0.95106

4 0.33333 0.44721
0.53934 0.44721 0.57735 0.64759

0.67112
0.66936
0.69094

0.68615
0.69195

5 0.25 0.33333
0.43301

0.39039
0.43301

0.41426
0.44721

0.43426
0.48889

0.43426
0.44096

6 0.2 0.28621
0.36039

0.33333
0.40267

0.33333
0.39111 0.33333

7 0.16667 0.24094
0.30796

0.27825
0.34547

0.28076
0.29397

8 0.14286 0.2
0.26848

0.23607
0.29655

9 0.125 0.18274
0.23776

10 0.11111

To be specific, the smaller of the two sample sizesmust satisfy: 2 ≤

n < 1
2Nvar + 1. The previously obtained solutions RM for the pair

Nsim = 2 andNsim = Nvar constitute boundary solutions of a certain
type betweenwhich the pairs for the above sample sizes are found,
symmetrically distributed with regard to the average sample size.
Another studied pair is when Nsim = 3 and Nsim = Nvar − 1.

Let us nowconsider the extremeabsolute correlationsρmax(RM)
for that pair of solutions. Assume the maximum correlation
ρmax(RM) for the smaller sample Nsim = n is known. Then, the
maximum absolute correlation for the complementary problem
with the sample Nsim = Nvar − n + 2 is just a multiple η of the
other one. The ratio between the two norms happens to be the ra-
tio between the corresponding eigenvalues:

η(Nvar, n) =

ρmax

RM


Nvar, Nsim=Nvar−n+2

ρmax

RM


Nvar, Nsim=n

=

λ1

RM


Nvar, Nsim=Nvar−n+2

λ1

RM


Nvar, Nsim=n

=
n − 1

Nvar − (n − 1)
. (77)

Note that the inverse value of this ratio was featured above in Eq.
(42).

The ratio η does not only hold for the extreme absolute
correlations. We have found that it also holds for all absolute
correlations in the two matrices RM . Specifically, if one takes a
sorted list of all absolute correlations (angular deviations from
orthogonality) in RM for a certain dimension Nvar and sample size
Nsim = n, the analogical list for the same dimension and Nsim =

Nvar − n + 2 is just the η-multiple of the previous list. This is
exemplified in Eq. (75) and there aremore examples in Appendix A,
where solutions RM for small dimensions are presented, see Eqs.
(86), (88), (92) and (93).

In other words, if one knows the distribution of Nvar rigid bars
from the mechanical analogy in (n − 1)-dimensional space, the
same number of bars in the space of dimension (Nvar − n + 1)
have, between all pairs, the same deviations from right angles
multiplied by η.

This gives us a tool to construct the matrix R
M

= Ri,j for Nsim =

Nvar − n + 2 when the matrix RM
= Ri,j for the smaller sample

size Nsim = n is known. How? The absolute values of entries Ri,j
can be just replaced by η-multiples to obtain the absolute values of
entries Ri,j. It is easy to check that such a construction from known
RM (which fulfils the identity in Eq. (42)) fulfils the same identity
as well.

Let us now focus on the ratio ν between ρmax and ρrms:

ν (Nvar,Nsim) =

ρmax

RM


Nvar, Nsim

ρrms

RM


Nvar, Nsim

. (78)

We have found that, for given Nvar, this ratio attains its maximum
for Nsim = 3 and the same maximum also for Nsim = Nvar − 1.
These two maxima were studied in Eqs. (60) and (76). Numerical
results suggest that the ratio ν symmetrically decreases as the
sample size Nsim approaches the midpoint of the studied interval
Nsim ∈ ⟨3,Nvar − 1⟩, i.e. for Nsim =

1
2Nvar + 1. This is illustrated in

Fig. 6. We remark that for the two boundary sample sizes Nsim = 2
and Nsim = Nvar, the ratio equals 1, because the two norms match,
see Eqs. (29) and (21).

We now prove that the ratio ν is identical for any pair with
Nsim = n and Nsim = Nvar − n + 2. Using Eqs. (77) and (34) yields:
ν (Nvar,Nsim = Nvar − n + 2)

=

η (Nvar, n) ρmax

RM


Nvar, Nsim=n

ρrms

RM


Nvar, Nsim=Nvar−n+2

= η (Nvar, n) ρmax

RM

Nvar, Nsim=n


(Nvar − 1) (Nsim − 1)
Nvar − (Nsim − 1)

= ρmax

RM

Nvar, Nsim=n


(Nvar − 1) (n − 1)
Nvar − (n − 1)

=

ρmax

RM


Nvar, Nsim=n

ρrms

RM


Nvar, Nsim=n

= ν (Nvar,Nsim = n) . (79)
The numerical results (numerators in Table 1) obtained for

M matrices suggest that neither decreasing the number of
simulations Nsim nor increasing the dimension Nvar can decrease
the error ρmax:
ρmax (M)
Nvar−1, Nsim

≤ ρmax (M)
Nvar, Nsim

≤ ρmax (M)
Nvar, Nsim−1

. (80)

We conclude this section by formulating the final conjectured
inequality: for a given stochastic dimension Nvar and sample
size Nsim < Nvar, the extreme absolute correlations in the optimal
matrices M and RM are found within the following bounds:

ρrms(RM) ≤ ρmax(M) ≤ ρmax(RM) ≤ 1.436 ρrms(RM) (81)
where the term ρrms(RM) is explicitly given in Eq. (34).

11. Conclusions

This paper presents a number of theoretical and numerical
results concerning two norms of optimal correlation matrices in
relation to correlation control in Monte Carlo type sampling and
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designs of experiments. The optimal singular correlation matrices
are constructed for the cases when the number of simulations Nsim
is less than or equal to the number of random variables Nvar. The
need to use sparse data (sample) in higher dimensions is a general
trend in the field of probabilistic engineering practise. The main
results are:
• An explicit formula for the root mean square error ρrms of the

optimal correlation matrices R that minimize this error.
• Tight bounds for the error ρmax of the optimal matrices RM

selected from all possible R matrices to subsequently minimize
the absolute error ρmax.

• Bounds for the error ρmax of the optimal matrices M , i.e.
matrices that are optimal in terms of this norm.

• A mechanical analogy between the correlation matrices and a
model of bars. The associated dynamical model can be used to
find the optimal matrices R,RM and M .

• Anumber of numerical examples of optimalmatricesR,RM and
M constructed for Nvar ∈ ⟨2; 9⟩.

• Formulas for all entries of the optimal matrices RM for general
problem dimension Nvar, where the sample size Nsim = 3,
Nsim = Nvar − 1 and Nsim = Nvar.

An open problem to be solved is to check and possibly prove the
conjectured inequalities in Eqs. (81) and (80).Moreover, derivation
of the lower bound on the error ρmax of the optimal matrices RM

andM (similar to the bound in derived Eq. (34)) would be helpful.
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Appendix. Numerical examples of optimal singular correlation
matrices RM andM

Patterns of the optimal correlation matrices RM for the case of:
• Nsim = 3 are given by Eq. (55);
• Nsim = Nvar − 1 are given by Eq. (62);
• Nsim = Nvar are given e.g. by Eq. (22) or by Eq. (24).

Selected solutions for the M matrices were already given
analytically. In particular, these solutions were given for the cases
whenM = RM , which happens for Nsim = 3 and Nsim = Nvar.

The remainder of this Appendix shows examples of RM and
M for the remaining cases. The dimensions of these correlation
matrices range from five to nine variables.

A.1. Solutions for Nvar = 5

M5,4 =


1 a −a −a a

1 a −a −a
1 a −a

1 a
1

 (82)

which is a centrosymmetric Toeplitz matrix with the eigenvalues
{2, 2, 1, 0, 0}. The constant a = 1/

√
5 ≈ 0.44721.

A.2. Solutions for Nvar = 6

M6,4 = RM
6,4 (83)

RM
6,4

M6,5


=


1 a a −a −a −a
b 1 a a −a a

−b b 1 a a −a
b −b b 1 a a
b −b −b b 1 −a

−b b b −b b 1

 . (84)

The constants a = 1/
√
5 ≈ 0.44721 and b = 1/3 ≈ 0.33333.

A.3. Solutions for Nvar = 7

M7,4 = RM
7,4 (85)


RM
7,4

RM
7,5


=



1 0 0 c −c c c
0 1 0 c c −c c
0 0 1 c c c −c
d d d 1 b b b
d −d −d e 1 −b −b
d d −d −e −e 1 −b

−d d −d e e −e 1

 ,

where

b = 1/3 ≈ 0.33333 (6×)

c = 1/
√
3 ≈ 0.57735 (12×)

d =
√
3/4 ≈ 0.43301 (12×)

e = 1/4 = 0.25 (6×).

(86)

Note that RM
7,4 and RM

7,5 constitute a pair of matrices related in
the sense of Eq. (77). In this case, n = 4 and the ratio η(7, 4) =

3/4. One can check that d/c = e/b = η(7, 4). Note also that the
three zero correlations correspond to three mutually orthogonal
variables, see Fig. 5(a).


M7,5
M7,6


=



1 −f f −f f f f
g 1 f f 0 f 0
g −g 1 −f −f f f

−g g g 1 f −f f
−g g g g 1 f 0
g g g g −g 1 −f

−g −g g −g g g 1

 ,

where f ≈ 0.39039 (18×)
g ≈ 0.28621 (21×).

(87)

A.4. Solutions for Nvar = 8 RM
8,4

1
η
RM
8,6



=



1 r1 r8 r1 r10 −r11 −r1 r5
−r1 1 r8 r10 r1 −r1 −r11 r5
r8 r8 1 r1 r1 r7 r7 −r2
r1 r10 −r1 1 r12 r1 −r4 −r9

−r10 −r1 r1 r12 1 −r4 r1 −r9
r11 r1 r7 r1 r4 1 −r6 −r3
−r1 −r11 −r7 r4 r1 −r6 1 −r3
r5 r5 r2 r9 −r9 −r3 r3 1


,

where

r1 ≈ 0.67112 (9×) r7 ≈ 0.30392 (2×)
r2 ≈ 0.65310 (1×) r8 ≈ 0.27802 (2×)
r3 ≈ 0.56668 (2×) r9 ≈ 0.26572 (2×)
r4 ≈ 0.48481 (2×) r10 ≈ 0.09898 (2×)
r5 ≈ 0.47784 (2×) r11 ≈ 0.00665 (2×)
r6 ≈ 0.34247 (1×) r12 ≈ 0.00469 (1×)
η = 0.6.

(88)

The pair of solutions RM
8,4 and RM

8,6 is another example of
matrices related through η in the sense of Eq. (77).
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2)

3)

4)

5)

6)
 RM
9,4

1
η
RM
9,7

 =



1 −r1 −r1 −r4 r3 r5 −r1 r3 −r8
−r1 1 r1 −r6 −r1 −r7 r6 r4 r1
r1 r1 1 r1 r8 r2 r7 −r5 r2
r4 −r6 −r1 1 r1 r1 r6 −r1 −r7
r3 r1 r8 r1 1 r1 −r4 −r3 −r5
r5 r7 r2 r1 −r1 1 −r1 r8 r2

−r1 −r6 r7 r6 r4 r1 1 −r1 −r1
r3 −r4 −r5 −r1 r3 −r8 r1 1 r1
r8 r1 −r2 r7 −r5 r2 −r1 r1 1


, where

r1 ≈ 0.69094 (15×)
r2 ≈ 0.49748 (3×)
r3 ≈ 0.45317 (3×)
r4 ≈ 0.29216 (3×)
r5 ≈ 0.26765 (3×)
r6 ≈ 0.04431 (3×)
r7 ≈ 0.03348 (3×)
r8 ≈ 0.00897 (3×)
η = 0.5

(9

 RM
9,5

1
η
RM
9,6

 =



1 −r1 −r1 r1 r2 r4 −r4 −r5 −r1
−r1 1 r3 r2 −r1 −r5 r1 −r2 −r4
−r1 −r3 1 −r3 r1 −r1 r1 r3 −r3
r1 −r2 r3 1 −r5 r1 r1 −r4 −r2

−r2 −r1 r1 −r5 1 −r4 r4 r1 −r1
r4 r5 r1 −r1 −r4 1 r2 r1 r1
r4 r1 r1 r1 −r4 r2 1 r1 −r5
r5 −r2 r3 −r4 −r1 r1 −r1 1 r2

−r1 r4 r3 r2 −r1 −r1 −r5 r2 1


, where

r1 ≈ 0.48887 (9×)
r2 ≈ 0.45574 (1×)
r3 ≈ 0.27120 (2×)
r4 ≈ 0.20573 (2×)
r5 ≈ 0.04137 (2×)
η = 0.8

(9


M9,4
M9,5


=



1 −m3 m1 m1 m1 m3 m1 m1 −m3
−n1 1 m1 −m1 m3 m1 −m1 m3 m2
−n1 n1 1 −m3 m1 m1 m3 m2 m3
n1 −n2 n1 1 m3 −m1 m1 m1 m3

−n1 n1 n1 n1 1 m1 m1 −m3 −m1
n1 n1 −n2 n1 n1 1 −m3 −m2 −m2
b n1 −n1 −n1 −n1 n1 1 m3 −m1
n1 n1 n1 n1 −n2 n1 n1 1 m1
−b n1 −n2 −n1 n1 n1 b −n1 1


, where

m1 ≈ 0.66936 (19×)
m2 ≈ 0.40421 (4×)
m3 ≈ 0.07357 (13×)
b = 1/3 ≈ 0.33333 (3×)
n1 ≈ 0.43426 (30×)
n2 ≈ 0.13148 (3×)

(9


M9,6
M9,7


=



1 b b −b b −b b b b
−m1 1 b b −b −b b −b b
m1 −m1 1 b −b b −b b b

−m2 m1 m1 1 −b b b b −b
m3 m1 m1 m1 1 b b b b
m1 m1 −m1 m1 m1 1 b b b
m1 m1 m1 m1 −m1 −m2 1 b −b
m1 m1 m1 −m1 −m4 m3 m1 1 −b

−m1 −m1 m1 m1 −m1 m1 −m1 m1 1


, where

b = 1/3 ≈ 0.33333 (36×)
m1 ≈ 0.27825 (31×)
m2 ≈ 0.22673 (2×)
m3 ≈ 0.19257 (2×)
m4 ≈ 0.16051 (1×)

(9


M9,8


=



1 u u u u −u u −u u
1 u u u u −u u −u

1 −u −u u u u u
1 −u u u u u

1 u u u u
1 u −u u

1 u −u
1 u

1


, where u = 0.2 (36×). (9

Box I.

M8,4



=



1 m3 −m4 m1 −m1 −m1 −m3 m1
1 −m1 m4 m3 m1 m1 m1

1 −m1 −m1 −m2 m4 0
1 m4 −m2 −m1 0

1 m1 −m3 −m1
1 m1 0

1 m1
1


,

where

m1 ≈ 0.647594 (15×)
m2 ≈ 0.421881 (2×)
m3 ≈ 0.176203 (4×)
m4 ≈ 0.108793 (4×)

(89)

RM
8,5

M8,5



=



1 0 a 0 a −a a a
h 1 0 a a a −a a
k −k 1 0 −a a a a

−k k h 1 a a a −a
k k k k 1 −a 0 0
k k k k h 1 0 0

−k −k k k k −k 1 −a
−k −k k k −k k h 1


,

where
a = 1/

√
5 ≈ 0.44721 (20×)

h = 3 −
√
8 = k2 ≈ 0.17157 (4×)

k =
√
2 − 1 ≈ 0.41421 (24×)

(90)
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M8,6
M8,7


=



1 b b b b b b −b
s 1 −b b b b b b
t t 1 b b b b b

−t t t 1 −b b b b
t t −t t 1 b b b
t −t t t t 1 −b b
t −t −t t −t −t 1 b
t t −t −t −t t s 1


,

where
b = 1/3 ≈ 0.33333 (28×)

s ≈ 0.10404 (2×)

t ≈ 0.24094 (26×).

(91)

A.5. Solutions for Nvar = 9

Eqs. (92)–(96) are given in Box I.

References

[1] Shinozuka M. Simulation of multivariate and multidimensional random
processes. The Journal of the Acoustical Society of America 1971;49(1 Part 2):
357–68.

[2] Shinozuka M, Deodatis G. Simulation of stochastic processes by spectral
representation. Applied Mechanics Reviews 1991;44(4):191–204.

[3] Spanos PD, Ghanem RG. Stochastic finite element expansion for random
media. ASCE Journal of Engineering Mechanics 1989;115(5):1035–53.

[4] Kala Z. Stability problems of steel structures in the presence of stochastic and
fuzzy uncertainty. Thin-Walled Structures 2007;45(10–11):861–5.

[5] Sakamoto S, Ghanem R. Polynomial chaos decomposition for the simulation
of non-Gaussian nonstationary stochastic processes. Journal of Engineering
Mechanics 2002;128(2):190–201.

[6] Puig B, Poirion F, Soize C. Non-Gaussian simulation using Hermite polynomial
expansion: convergences and algorithms. Probabilistic EngineeringMechanics
2002;17(3):253–64.

[7] Phoon K, Huang H, Quek S. Simulation of strongly non-Gaussian processes
using Karhunen–Loéve expansion. Probabilistic Engineering Mechanics 2005;
20(2):188–98.

[8] Vořechovský M. Simulation of simply cross correlated random fields by series
expansion methods. Structural Safety 2008;30(4):337–63.

[9] Grigoriu M. Simulation of stationary process via a sampling theorem. Journal
of Sound and Vibration 1993;166(2):301–13.
[10] GrigoriuM. Evaluation of Karhunen–Loéve, spectral, and sampling representa-
tions for stochastic processes. Journal of Engineering Mechanics 2006;132(2):
179–89.

[11] Iman RC, Conover WJ. Small sample sensitivity analysis techniques for
computer models with an application to risk assessment. Communications in
Statistics: Theory and Methods 1980;A9(17):1749–842.

[12] ImanRC, ConoverWJ. A distribution free approach to inducing rank correlation
among input variables. Communications in Statistics B 1982;11:311–34.

[13] Iman RL, Shortencarier MJ. A FORTRAN 77 program and user’s guide for the
generation of Latin hypercube and random samples for use with computer
models. Technical report NUREG/CR-3957 report. US Nuclear Regulatory
Commission. SAND83-2365. 1984.

[14] Vořechovský M, Novák D. Correlation control in small sample Monte Carlo
type simulations I: a simulated annealing approach. Probabilistic Engineering
Mechanics 2009;24(3):452–62.

[15] Vořechovský M, Novák D. Statistical correlation in stratified sampling.
In: Der Kiureghian A, Madanat S, Pestana JM, editors. ICASP 9, international
conference on applications of statistics and probability in civil engineering,
held in San Francisco, USA. Rotterdam (Netherlands): Mill Press; 2003.
p. 119–24.

[16] Owen AB. Controlling correlations in Latin hypercube samples. Journal of
the American Statistical Association (Theory and Methods) 1994;89(428):
1517–22.

[17] Wang Y-T, Lam F, Barrett JD. Simulation of correlated modulus of elasticity
and compressive strength of lumberwith gain factor. Probabilistic Engineering
Mechanics 1995;10(2):63–71.

[18] Huntington DE, Lyrintzis CS. Improvements to and limitations of Latin hyper-
cube sampling. Probabilistic Engineering Mechanics 1998;13(4):245–53.

[19] Vořechovský M. Correlation control in small sample Monte Carlo type
simulations II: analysis of estimation formulas, randomcorrelation and perfect
uncorrelatedness. Probabilistic Engineering Mechanics 2012;29:105–20.

[20] Aitken AC. Determinants and matrices. University mathematical texts,
Edinburgh: Oliver and Boyd; 1939.

[21] Graybill FA. Introduction to matrices with applications in statistics. Belmont
(CA): Wadsworth Publishing Co.; 1969.

[22] Andrew AL. Eigenvectors of certain matrices. Linear Algebra and its
Applications 1973;7(2):151–62.

[23] Cantoni A, Butler P. Eigenvalues and eigenvectors of symmetric centrosym-
metric matrices. Linear Algebra and its Applications 1976;13(3):275–88.

[24] Delsarte P, Genin Y. Spectral properties of finite Toeplitz matrices.
In: Fuhrmann PA, editor. Mathematical theory of networks and systems,
proceedings of the MTNS-83 international symposium, held in Beer Sheva,
Israel. Lecture notes in control and information sciences, vol. 58. Berlin (New
York): Springer-Verlag; 1983. p. 194–213. 1984.

[25] Muthiyalu N, Usha S. Eigenvalues of centrosymmetric matrices. Computing
(Springer) 1992;48(2):213–8.

[26] Rousseeuw PJ, Molenberghs G. The shape of correlation matrices. The
American Statistician 1994;48(4):276–9.


	Optimal singular correlation matrices estimated when the sample size is less than or equal to the number of random variables
	Introduction
	Correlation matrix estimation, errors and its norms
	Norms of correlation error

	General comments
	Notes on symmetric Toeplitz matrices

	Lower bounds on  ρrms  and  ρmax  when  Nsim = Nvar 
	Lower bounds on  ρrms  and  ρmax  when  Nsim = 2 
	Lower bound on  ρrms  for a general case of  Nsim leqNvar 
	Mechanical analogy for  R,   RM  and  M  matrices when  Nsim leqNvar 
	Optimal matrices  RM  when  Nsim = 3 
	Optimal matrices  RM  when  Nsim = Nvar - 1 
	Optimal matrices  R, RM  and  M  for arbitrary  Nsim <Nvar 
	Conclusions
	Acknowledgments
	Numerical examples of optimal singular correlation matrices  RM  and  M 
	Solutions for  Nvar = 5 
	Solutions for  Nvar = 6 
	Solutions for  Nvar = 7 
	Solutions for  Nvar = 8 
	Solutions for  Nvar = 9 

	References


