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Abstract

The paper presents a thorough study of sources of randomness/disorder in multi-filament yarns that are relevant for
their performance in textile reinforced concrete. For the analysis of bundles with infinite number of fibers we use a con-
tinuous analytical model with refined kinematic hypothesis. In parallel, we apply a more general discrete numerical bun-
dle model covering the cases of finite number of fibers and spatial variations of material properties. The considered
distributions of material properties include variations of parameters (local stiffness and strength) both from filament
to filament and over the length of each filament. In the present paper, we study the influence of variations in filament
properties across the bundle. In the companion paper (Vořechovský, M., Chudoba, R., 2006. Stochastic modeling of
multi-filament yarns. II. Random properties over the length and size effect. International Journal of Solids and Struc-
tures), the variations of material properties over the length are considered. Both papers provide the basis for correct
interpretation of the data obtained from the tensile test on multi-filament yarn with varied specimen length. As the
actual goal of the present work is to derive yarn characteristics relevant for crack bridges in cementitious composites
we systematically assess the significance of the studied sources of disorder in the context of extremely short bundle
lengths.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Multi-filament yarn; Fiber bundle models; Delayed activation; Size effect
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2005.06.063

* Corresponding author. Tel.: +422418050289; fax: +422418022303.
E-mail addresses: rch@lbb.rwth-aachen.de, rch@baustatik-aachen.de (R. Chudoba), vorechovsky.m@fce.vutbr.cz (M. Vořechovs-
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Nomenclature

A cross-sectional area
COV coefficient of variation
D filament diameter
e bundle strain
E Young�s modulus
Gi(hi) cumulative probability distribution of a random parameter
H(Æ) Heaviside unit step function
Mh(e), M0(e) mean load–strain function of an imperfect and perfect bundle
qe,i(e), qe,i(ei) global and local representation of the constitutive law
T wave period
T(+), T(�) yarn force before and after filament rupture
T(e) load–strain function of the bundle
l nominal length of the test specimen
n number of filaments in the bundle
p number of material point, finite elements
w(v,a) function describing the filament position in the bundle
R set of points representing the bundle load–strain diagram
a general parameter for the mapping: filament ! bundle
e filament strain (intrinsic)
k ratio of extra (stretched) filament length to the nominal length
r tensile strength
h filament activation strain (slack)
n filament breaking strain
lh(e), l0(e) mean load–strain function of the filament with and without imperfections
h random vector parameter
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1. Introduction

Composite materials combining cementitious matrix with textile reinforcement have become a subject of
intensive research in the last decade (Curbach and Hegger, 2001). Forming flexibility of textile structures
and quasi-ductile behavior of the produced composites opens up new possibilities especially in two appli-
cation areas of civil engineering:

• production of efficient light-weight structural elements (Hegger, 2002) and
• strengthening and retrofitting of existing buildings (Curbach, 2002).

The heterogeneous nature of the reinforcement and of the matrix introduces sources of randomness at
several scales of the material structure. For robust modeling of the overall material behavior it is inevitable
to identify and analyze the sources of randomness both experimentally and theoretically. The need for a
sound description of the length-dependent behavior of reinforcing yarns is documented in Fig. 1. The per-
formance measured in the tensile test with ltest � 0.1 m must be extrapolated to application-relevant effec-
tive lengths, namely to the effective length occurring in a crack bridge (lbridge � 0.0001 m) and/or to the
length of a structure (lstruct P 1 m).
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Fig. 1. Effective lengths.
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For such an extrapolation, the length-dependent performance must be captured in terms of the funda-
mental failure and interaction mechanisms as they develop during the loading. Obviously, the way of prop-
agation of these mechanisms to the global failure is strongly influenced by the statistical properties of the
yarn structure. In the particular case of very short effective length lbridge, even small irregularities in the
material structure (i.e. differences in filament lengths or activation strains) have dominant influence on
the overall performance and cannot be disregarded. However, the conditions of a crack bridge cannot
be reproduced in the laboratory tests.

On the other hand, for large effective lengths the overall bundle strength is governed by the scatter of
strength along the bundle (statistical size effect). The natural way to obtain the statistical strength distribu-
tion would be to perform filament tensile tests. However, for the tested high-modulus brittle material this
test turned out to be expensive and very difficult to construct in a reproducible manner.

In order to circumvent these difficulties we performed tensile tests on bundles with varied length. By
applying a versatile numerical model we could obtain both the filament data and data characterizing the
structure of the bundle by inverse identification. In other words, the length-dependent response of a yarn
in the tensile test served as an additional source of information to be exploited in the model with the ambi-
tion to extrapolate the data to the conditions occurring in real applications. For this purpose we performed
parametric studies of length-dependent yarn performance for various sources of randomness/disorder. In
spite of the specific motivation, the results can be seen as a general contribution to the description of
the complex size effect inherent to multi-filament bundles.

In order to capture the effect of disorder in the yarn structure on the overall performance the statis-
tical approach is inevitable. The basis for statistical modeling of multi-filament bundles has been estab-
lished by Fisher and Tippett (1928) and Weibull (1939) in form of the weakest-link model. This concept
has been applied in the formulation of the fiber bundle models (FBM) originally introduced by Daniels
(1945) and Coleman (1958). The FBMs are constructed as a parallel set of fibers, each of which has
Weibull distribution of strength (Phoenix, 1978; Harlow and Phoenix, 1978a,b; Smith and Phoenix,
1981). Fibers break if the acting load exceeds their local strength. Upon the fiber failure, there are
two possible rules for the stress redistribution: (1) global load sharing (GLS) with equal redistribution
of the load among all intact and active fibers (filaments) remaining in the set, and (2) some type of local
load sharing (LLS) where the force released by the broken fiber is transferred to its nearest neigh-
bors.

The strength-based formulation of the FBMs have been modified by Phoenix and Taylor (1973) into
more flexible strain-based form providing an explicit expressions for a mean load–deformation curve
and the associated covariance. Using this formulation, the asymptotic distribution for general nonlinear
stress–strain diagram of a single fiber and for the number of fibers growing infinitely large has been pre-
sented in Phoenix (1974). The superior feature of this formulation is the possibility to combine variations
in strength with the variation in other material parameters, like filament length, activation strain and local
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stiffness. Using this model, an investigation of the random slack (delayed activation) of filaments has been
presented in Phoenix (1975). Using a modified kinematic hypothesis Phoenix (1979) extended the strain-
based bundle model for twisted yarn structures.

The FBMs provided a basis for successful micromechanical models considering localization (Beyerlein
and Phoenix, 1997), the effect of the matrix between the filaments (Phoenix et al., 1997) and the nonlinear
behavior (Krajcinovic and Silva, 1982). Extensions of FBMs have been introduced taking into account the
possible multiple cracking of filaments by replacing the brittle filament failure with a continuous damage
parameter (Kun et al., 2000). In order to study more complex interaction patterns, the FBMs must be re-
placed by a deterministic micromechanical model combined with full Monte-Carlo simulation technique.
This approach has been used to analyze the influence of different fiber arrangements on the stress concen-
tration around the broken fibers (Ibnabdeljalil and Curtin, 1997). The prohibitive computational costs have
been reduced by simplified micromechanical models like break-influence superposition based on the shear-
lag model (Beyerlein and Phoenix, 1996) or the lattice Green�s function technique adopted to composite
failure (Zhou and Curtin, 1995). Another source of randomness in form of interaction patterns randomly
distributed over the yarn has been studied by Hidalgo et al. (2002). The disordered structure of filaments
has been captured by continuous redistribution law ranging from the LLS to GLS rules and randomizing
the interaction diameter in a Monte-Carlo simulation.

In the present study, we shall follow two modeling concepts. First, we use a simple deterministic model
of bundle with discrete resolution of individual filaments and combine it with a stochastic simulation. Sec-
ond, we compare the numerical results with the analytical asymptotic solution for mean bundle response
introduced by Phoenix and Taylor (1973). In the simulation we include sources of randomness stemming
both from the yarn structure and from the experimental setup.

In particular, it is inevitable to include the influence of delayed activation and varying filament length.
Furthermore, for some types of yarns (e.g. AR-glass) there are also differences between cross-sectional area
of individual filaments. By considering these cross-sectional variations of filament properties together with
the spatial variations of material properties along the yarn in a single model we are able to capture/repro-
duce the whole loading and failure process during the test, size effect inclusive (Vořechovský and Chudoba,
2006). As a result, we obtain more information about the filament properties and their interactions in the
bundle. The filament bundle model capturing all the interacting effects occurring in the tensile experiment
with varied specimen length provides the stepping stone for robust modeling of the failure process in the
crack bridges of the textile-reinforced concrete.

In the present paper we first describe the effects occurring during the tensile experiment of the yarn with
the special focus on yarn types used in the textile reinforced concrete (TRC), see Section 2. After that, we
introduce the numerical and analytical models covering the effects identified in the tensile experiment
(Section 3) and study their qualitative influence on the load–strain diagram (Section 4). The influence of
delayed activation is then studied on selected wave patterns in detail (Section 5) and discussed in connection
with the performed experiments in Section 6. In the companion paper (Vořechovský and Chudoba, 2006)
we study the influence of random spatial distribution of local strength and local material stiffness along
filaments. In the same paper, the resulting size effect (bundle strength dependence on the length) is studied
with and without the effect of delayed activation.
2. Effects included in the tensile test

As already quoted in the introduction there are two major reasons for constructing the model: (1) de-
tailed interpretation of the experimental data obtained from the tensile test with different yarn lengths
and (2) prediction of the yarn behavior in crack bridges of brittle cementitious composites. In this section,
we shall review the observable effects that should be reproduced by the model.
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Fig. 2. Tensile tests on AR-glass yarns with varied length. Left: raw data. Right: corrected data by subtracting the deformation of the
epoxy clamping.
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Fig. 2(left) shows the load–strain curves obtained from the tensile test on AR-glass yarns with lengths
varied in the range from 30 to 500 mm. The loading rate has been set to 1% strain in a minute. The response
curves allow us to identify the following effects:

A. Gradual growth of stiffness in the initial stages of loading. This phenomenon gets amplified for short
specimens.

B. Reduction of bundle strength and maximum bundle strain with increasing specimen length.
C. Reduction of bundle stiffness with decreasing length of the specimen.

D. Reduction of scatter of stiffness and of bundle strength with increasing specimen length.
E. Brittle failure of short specimens as opposed to ductile failure of long specimens.

In order to model the yarn behavior in various loading conditions these complex effects must be ex-
plained and quantified in terms of simpler or even elementary effects that may be appointed (1) to the mate-
rial constituents, i.e. the individual filaments, (2) to the filament ensemble or (3) to the experimental setup.

In the first case, linear elastic brittle behavior (AR-glass) is assumed. Its characteristics (strength r(v),
material stiffness E(v) and area A(v)) may exhibit variations along the filament: as shown in Fig. 3a. If there
are flaws in the glass microstructure, there may also be locally concentrated reductions of strength. Finally,
the interaction between filaments is realized either by bonding or friction between filament surfaces.

Second, the cross-sectional area varies from filament to filament within the ensemble: Ai(v) 5 Aj(v),
where i, j are filament labels. Further, the disorder distribution in the bundle leads to two effects essentially
influencing the overall behavior depending on the ‘‘wave pattern geometry’’: (1) in case of loose indepen-
dent waves it results in delayed filament activation (also referred to as slack) and unequal stress distribution
in filaments at a given control load, even under GLS, and (2) in case of wave geometry inducing pressure
between filaments, e.g. spiral form in twisted yarns, it leads to higher interaction between filaments through
friction and to damage localization in clusters.

Third, the most crucial part in the construction of the tensile experiment is the clamping of the yarn ends.
In general, an ideal clamping is impossible and some kind of response distortion is always present. There-
fore, it is important to construct the clamping in a way that allows us to factor out its influence from the
measured response. In the applied experimental setup developed at the Institute for Textile Technology of
the Aachen University, the yarn ends were fixed in epoxy resin (Gries and Royé, 2003). Without going into
details of this setup we summarize the sources of distortion of the measured response that must be consid-
ered: First, the length of the individual filaments li varies due to the uneven surface of the epoxy resin (see
Fig. 3a). This effect was observed both for yarns with a flat cross-sections as well as with a circular cross-
section arrangement. Second, for short specimens the deformation of the epoxy resin cannot be neglected
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Fig. 3. (a) Elementary characteristics of filaments and their ordering in the yarn. (b) Physical model. (c) Mathematical model:
superposition of the filament response with varying filament strength, stiffness, length and activation strain. (d) Stiffness activation
through shear for delayed activation. (e) Overloading of two elements in the neighborhood of failed element under LLS rule.
(f) Comparison of bundle load–strain diagrams without and with significant shear interaction between filaments.
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since it significantly distorts the measured deformation. Third, in the post-peak region, the epoxy resin gets
unloaded and contracts with an uncontrolled rate so that the loading rate of the bundle itself gets signif-
icantly increased especially for short specimens. Since the forces transmitted by short and long yarns are
comparable and the deformable epoxy-made clamping is kept identical, the resulting diagram is distorted
mainly for short specimens. Corrected diagrams (deformation of epoxy resin subtracted) are presented in
Fig. 2(right). Later in the paper, we shall review this rather drastic correction and discuss more detailed
interpretation of the changes in bundle-stiffness.
3. Computational model

The full coverage of the specified elementary effects would be possible using the finite element model
including the specified sources of randomness. However, by realizing that we are dealing with bundles con-
sisting of up to 3000 filaments with relatively dense discretization (e.g. for short autocorrelation structure of
the spatially fluctuating material properties) we have to conclude that the computational complexity of the
deterministic model makes the statistical evaluation by means of the Monte-Carlo computation impracti-
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cable due to the prohibitive computational cost. In particular, with n number of filaments and p number of
elements (material points) along each filament the order of structural stiffness matrix becomes n(p + 1). In
case that shear interaction is modeled in adjacent nodes, the stiffness/structural matrix is a symmetric band
diagonal matrix with the number of nonzero elements equal to circa n(p + 1)(n + 1). In a realistic case of
n = 1600 and p = 99 the number of nonzero elements is 1600 · 100 · 1601 = 256.16 · 106. For double pre-
cision numbers, this corresponds to memory size of 2 GB and is obviously unaffordable for stochastic non-
linear computation even using today�s high performance computers.

In case that no interaction between filaments is taken into account the structural matrix is tridiagonal so
that, using the symmetry, the number of nonzero entries is 2n(p + 1). This corresponds to a moderate size of
the system matrix of 2.6 MB. However, using the finite element discretization with Newton–Raphson
scheme to trace the load–displacement diagram for this problem would still be like using a sledge hammer
to crack a nut. As far as the friction between filaments remains negligible, as observed for the studied
AR-glass yarns, it is possible to evaluate the bundle response during the displacement-controlled loading
process explicitly, both analytically and numerically.

3.1. Kinematic model and constitutive law

We distinguish two kinds of parameters (see Fig. 3a): those appointed to ith filament and those ap-
pointed to whole filament ensemble:

(1) The parameters of ith filament make sense independently on the bundle composition. In case of AR-
glass, linear elastic brittle behavior can be assumed with the parameters Ei for Young�s modulus, ri
for strength and Ai for cross-sectional area. We note that these parameters are assumed constant
along the filament here and that the effect of their variability along v will be taken into consideration
in the companion paper.

(2) The bundle parameters quantify the differences between the filaments in the ensemble. Except of the
probability distribution functions of the filament properties GA(Ai), GE(Ei), Gf(ri) we introduce two
kinds of lengths of ith filament that are different from the nominal length l of the bundle (see
Fig. 3b): (a) distance li,k between fixing points of ith filament in the initial state of loading and (b) total
filament length li,k,h in unstretched state. This total length includes the potential slack length. With
reference to Fig. 3b we note that li,k = (1 + ki)l and the total filament length thus becomes:
li;k;h ¼ ð1þ hiÞli;k ¼ ð1þ hiÞð1þ kiÞl: ð1Þ

Here, ki = (li,k � l)/l is the ratio of the extra distance between the clamps to the nominal length (in the
initial state of loading). The parameter hi = (li,k,h � l)/li,k is the local activation strain at which the fil-
aments i starts to transmit force.

Now, we shall include all the mentioned parameters in the load–strain functional relation qe(e). The linear-
elastic, brittle response of ith filament as a function of the filament strain ei is given as
qe;iðeiÞ ¼
0 for ei < 0;

EiAiei for 0 6 ei 6 ni;

0 for ni < ei

8<
: ð2Þ
with ni = ri/Ei standing for the breaking strain. For convenience, we rewrite this relation in a more compact
fashion using the Heaviside (unit step) function (H(z) = 0 for z < 0 and H(z) = 1 elsewhere): qe,i(ei) = EiAi

eiH(ei)H(ni � ei).
In order to include the variations of the parameters across the bundle, we have to relate Eq. (2) to the

control bundle strain e using the compatibility of strains for the control displacement u(ei) � u(e) = el. With
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this condition and with the filament length expressed according to Eq. (1) the local strain in the ith filament
becomes (see Fig. 3b)
ei ¼
u� hili;k
li;k;h

¼ el� hið1þ kiÞl
li;k;h

¼ e� hið1þ kiÞ
ð1þ hiÞð1þ kiÞ

: ð3Þ
We note that in this form, the local strains are related to the actual filament length rather than to the nom-
inal length (ei = e � hi) as it was the case in the original work of Phoenix and Taylor (1973). Our modifi-
cation renders correct results even for very short bundles (l � lbridge) with relatively large scatter of filament
length and activation strain. Another example of a modified mapping between the local strains and the bun-
dle strain has been presented by Phoenix (1979) with the purpose of reflecting the kinematics in the twisted
yarn structures.

By substituting Eq. (3) into Eq. (2) we obtain the load level in ith filament for a given control strain e
qe;iðeÞ ¼ EiAi
e� hið1þ kiÞ
ð1þ hiÞð1þ kiÞ

H e� hið1þ kiÞ½ �H ni �
e� hið1þ kiÞ
ð1þ hiÞð1þ kiÞ

� �
: ð4Þ
The arguments of the Heaviside jump functions can be used to obtain both the global activation strain ti
and the global breaking strain xi of the ith filament as
ti � hið1þ kiÞ ¼ 0 ! ti ¼ hið1þ kiÞ;

ni �
xi � hið1þ kiÞ
ð1þ hiÞð1þ kiÞ

¼ 0 ! xi ¼ hið1þ kiÞ þ nið1þ hiÞð1þ kiÞ:
ð5Þ
3.2. Numerical evaluation of the load–strain diagram for finite n

With reference to Fig. 3b we may use Eqs. (4) and (5) to obtain the overall load–strain diagram of the
bundle as the sum of force contributions of all filaments at the fixed level of global strain
T ðeÞ ¼
Xn

i¼1

qe;iðeÞ ð6Þ
with a minimum effort by using the following procedure:

(1) Assemble three vectors of n pairs [ej,Tj] of yarn strain and corresponding yarn force, namely t for acti-
vation strains and x(+), x(�) for breaking strains (Eq. (5)):
t ¼ tj; T
ðtÞ
j

h i
; where T ðtÞ

j ¼
Pn
i¼1

qe;iðtjÞ

xðþÞ ¼ xj; T
ðþÞ
j

h i
; where T ðþÞ

j ¼
Pn
i¼1

qe;iðxjÞ

xð�Þ ¼ xj; T
ð�Þ
j

h i
; where T ð�Þ

j ¼ T ðþÞ
j � qe;iðxjÞ

9>>>>>>=
>>>>>>;

j ¼ 1; . . . ; n: ð7Þ
The force T ð�Þ
j transmitted after the rupture of the jth filament is obtained by subtracting its contri-

bution from T ðþÞ
j .

(2) The resulting load–strain diagram is constructed as a sorted union of the three vectors t, x(+) and x(�):
R ¼ [ft; xðþÞ; xð�Þg. The ordering is ascending and is given by the first pair member (yarn strain). If
two pairs share the same strain then first comes the pair with the higher second member (force Tj).
Mathematically this may be expressed as
R :¼ ej; T j

� �
; j ¼ 1; . . . ; 3n; where 8rk; rl 2 R; k < l () ðek < elÞ _ ðek ¼ el ^ T k > T lÞ: ð8Þ
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The vector R represents a set of points of the piecewise-linear bundle load–strain diagram T(e) that is
plotted by connecting the points with straight lines (Fig. 3c).

The described algorithm uses the concept of superposition of the filament response (SFR) and provides
an extremely efficient tool for numerical tracing of the bundle response with discrete resolution of filaments.
Similar algorithm has been used to visualize damage patterns in the anti-plane analysis of a two-phase com-
posite (Alzebdeh et al., 1998).

As already stated, this computation neglects any local interaction between filaments and corresponds to
the GLS. Therefore, the model is only applicable if the influence of shear is small. Fig. 3e shows the local-
ization of failure for a bundle after the rupture of a filament, a phenomenon that cannot be captured by the
present model. Localization of failure into narrow zones due to shearing asserts mainly for long yarns pro-
viding sufficient length to build up forces comparable with the filament strength. Obviously, the increasing
shearing capacity leads to more homogeneous force distribution within the bundle, and consequently to a
more brittle failure as shown in Fig. 3f by the dashed line. In case of delayed activation, the increased shear
transmission leads to faster activation of yarn stiffness due to the interaction of filaments between the waves
(see Fig. 3d). Still, for the studied AR-glass yarns, the friction between filaments could been neglected. This
simplification has been justified by the post-peak amount of friction observed in the tensile experiment and
allowed us to use the GLS rule for stress redistribution upon a filament failure.

The evaluation of the tensile response in terms of the load–strain diagram R in Eq. (8) is absolutely inex-
pensive and, therefore, very suitable for the statistical analysis of random parameters varying both within
the bundle cross-section and along the individual filaments. In order to introduce variations in parameters
of the filament load–strain function given in Eq. (4) we shall summarize them in a vector parameter hi, so
that
qe;iðeÞ ¼ qe;i;hðe; hiÞ with hi ¼ Ai;Ei; ri; hi; kif g: ð9Þ
In the following studies the qualitative effect of variation in each of these parameters shall be visualized
separately for selected distributions. Following the distribution, each filament gets associated with a sepa-
rate instance of hi. Then, the load–strain diagram R is evaluated as described in Eqs. (4)–(8).

3.3. Continuous asymptotic model for infinite n

As n grows large, the mean load–strain diagram and the covariance function of load for two es can be
obtained analytically as shown by Phoenix and Taylor (1973). In particular, the mean bundle response is
obtained as n multiple of the mean filament response: Mh(e) = nlh(e). The effect of scatter of the vector
parameter h on the mean filament response is evaluated using the integral form:
lhðeÞ ¼
Z
h

qeðe; hÞdGhðhÞ ð10Þ
with Gi(hi) standing for the cumulative probability distributions of the parameter hi. Filament behavior is
governed by the global constitutive law (Eq. (4), index i dropped). For example, the mean load–strain curve
for variable delayed activation h is explicitly given as
lhðeÞ ¼
Z
h
qeðe; hÞdGhðhÞ: ð11Þ
There are two ways to interpret this equation: From a statistical point of view the mean filament load–
strain diagram lh(e;h) represents an average filament response for infinite number of realizations of a single
filament test qe(e;h) with the scatter of h governed by the distribution Gh(h). Alternatively, the integral
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evaluation of the mean bundle load Mh(e) = nlh(e) can be seen in analogy with the discrete numerical eval-
uation of the bundle force T(e) in Eq. (6) by summing filament contributions over the cross-section at a
given bundle strain e. Similarly, in Eq. (11) we perform integration over fractions of distribution G(h) at
a given bundle strain e. In this view, the yarn corresponds to a homogeneous frictionless one-dimensional
bar with the cross-sectional area nA.

The integral formulation shall be used in the sequel to verify the results of the numerical model. For spe-
cial distribution functions the integral renders explicit analytical load–strain relation that may be even con-
verted to an analytical formula of the mean size effect, i.e. an explicit expression for the mean strength as a
function of the yarn length. However, the applicability of the analytical expressions for asymptotic mean
and covariance is limited to the verification of numerically obtained results. One reason is that both the
statistical moments and shape of the distribution is unknown for finite n even though the asymptotic form
of peak load distribution for n ! 1 is known (Daniels, 1945, 1989; Phoenix and Taylor, 1973). Another
good reason for using the discrete numerical model is the possibility to study the effect of spatial random-
ization of filament properties (in the companion paper).

Using the introduced models we may now approach to parametric studies of the scatter of material
parameters on the overall response accompanied with evaluation and discussion of the resulting length-
dependent performance.
4. Parametric studies

In the examples below we study the influence of randomness of each single parameter separately and in
combination if the parameters exhibit interactions. In this paper, the study is limited to the parameters k, h
and A varying across the bundle: i = 1, . . .,n. The effect of randomized parameters E, r and n is studied in
the companion paper (Vořechovský and Chudoba, 2006). The filament material is AR-glass with the fol-
lowing material parameters r = 1.25 GPa, E = 70 GPa, diameter D = 26 lm and the corresponding break-
ing strain is given as n = r/E = 1.786%. In case of a perfect bundle the load–strain diagram can be simply
written as T(e) = M0(e) = nEAeH(n � e).

For the sake of simplicity, in discrete bundle model we use 16 filaments only, while the real number of
filaments in the studied yarn is approximately 100 times higher. In order to have the resulting forces in the
figures comparable to the real values, the forces are given in cN. Diagrams of the mean bundle response
obtained analytically using Eq. (10) are always plotted with dashed line for comparison.

4.1. Scatter of filament lengths

As mentioned previously, in the applied experimental setup the yarn ends were fixed in epoxy resin
enfolding all the filaments in the cross-section. The cut through the clamping in Fig. 6(left) shows that
the yarn cross-section has been homogeneously penetrated by the resin and enables gradual transmission
of force into the individual filaments. The difficulty with this kind of clamping is that the resin penetrates
also in the v-direction (see Fig. 3a) with the consequence that the individual filaments have different lengths.
For the purpose of the parametric study we introduce lmin = mini=1,. . .,n(li,k), lmax = maxi=1,. . .,n(li,k) and
Dmax = lmax � l, Dmin = lmin � l. In the load–strain diagrams shown in Fig. 4 we set the nominal length
equal to the shortest filament length (l = lmin, Dmin = 0) and Dmax = 2 mm roughly corresponding to
1 mm maximum unevenness at both ends of the yarn. The diagrams in Fig. 4 are plotted for the nominal
lengths 100, 50, 10, 5, 1 and 0.5 mm with constant E, r, A and zero slack h = 0. Further, the distribution of
relative length differences in the range ki 2 h0,kmax = Dmax/li is assumed uniform: gk(k) = 1/kmax for
0 6 k 6 kmax and gk(k) = 0 elsewhere.
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Fig. 4. The influence of distributed addition of 0–2 mm to the nominal length l = (a), . . ., (f), kmax = 2/100, 2/50, 2/10, 2/5, 2/1, 2/0.5,
respectively.
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We remark that the choice of the nominal length l is arbitrary in the evaluation of T(e) or M(e). The use
of the shortest filament is a natural choice in the present study. Obviously, a different choice of l leads to a
different scaling of the response diagram along the horizontal axis e.

As can be seen in Fig. 4 the scatter of filament length leads to scatter of filament stiffness. As a result, the
maximum strength cannot be reached simultaneously in all filaments which causes reduction of the maxi-
mum tensile force transmitted by the yarn. This is especially true for short specimens (Fig. 4c and d) with
relatively ductile failure. The examples in Fig. 4e and f represent the qualitative tendencies in filament
length variations approaching the condition of a crack bridge. In these cases the nominal length is shorter
than the maximum additional length of 2 mm.

For infinite number of filaments, zero slack h = 0 and uniform distribution of k � R: gk(k) =
1/kmaxH(k)H(kmax � k) Eq. (10) reads
Table
Mean

Case
Condit

Strain
Mean
Asymp
lk e; k � Rð Þ ¼
Z
k
qeðe; kÞdGk kð Þ ¼ EAe

kmax

Z kmax

0

1

1þ kð ÞH n 1þ kð Þ � e½ �dk

¼
EAe ln 1þ kmaxð Þ=kmax 0 6 e 6 n ðlinearÞ;

EAe
ln 1þ kmaxð Þ � ln e=nð Þ

kmax

e > n ðnonlinearÞ

8<
: ð12Þ
with its maximum lk(e*) lying either on the linear or nonlinear branch depending on the value of kmax, see
Table 1. For later discussion we remark that the mean prepeak stiffness reduces by the factor
rk ¼ ln 1þ kmaxð Þ=kmax: ð13Þ
1
peak load depending on kmax

(i) Fig. 4a–d (ii) Fig. 4e and f
ion kmax 6 [exp(1) � 1] � 1.718 kmax > [exp(1) � 1] � 1.718

at mean peak load e* n n(1 + kmax)/exp(1)
peak load lk(e*) EAn ln(1 + kmax)/kmax EAn(1/kmax + 1)/exp(1)
totic mean strength limkmax!0lkðe�Þ ¼ l0ðe�Þ ¼ EAn limkmax!1lkðe�Þ ¼ EAn= expð1Þ



Fig. 5. Left: size effect for two different choices of nominal length (bi-logarithmic plot). Left: l = lmin (Dmax = 2 mm). Right: l = lmax

(Dmin = �2 mm).
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An explicit size effect equation in terms of nominal length l = lmin and constant Dmax = 2 mm can now be
obtained by the substitution kmax = Dmax/l, in the previous paragraph:
lk e�; l ¼ lmin;Dmaxð Þ ¼
EAnl ln 1þ Dmax=lð Þ=Dmax case ðiÞ;
EAn 1þ l=Dmaxð Þ= expð1Þ case ðiiÞ:

�
ð14Þ
We note, that different form of the size effect equation is obtained with alternative definitions of the
nominal length, e.g. with l = lmax and Dmin = �2 mm so that Dmax = 0 and l + Dmin P 0 with negative
kmax = Dmin/l (compare Fig. 5(left and right)):
lk e�; l ¼ lmax;Dminð Þ ¼
EAn

lþ Dmin

Dmin

ln 1� Dmin

lþ Dmin

� �
case ðiÞ;

EAn
l

Dmin expð1Þ
case ðiiÞ:

8>><
>>: ð15Þ
In this formulation, the size effect is a linear function of l for short yarns (case ii) and nonlinear for long
yarns (case i). This example illustrates that the variable k is oriented and is negative for filaments shorter
than l. By choosing different l we may change the scaling of the global strain e. As a consequence, the stiff-
ness reduction introduced in Eq. (13) is valid only for case l = lmin. By plotting the same diagrams for nom-
inal length chosen as l = lmax and Dmin = �2 mm, the short bundles would appear stiffer than the long ones.
On the other hand, the choice of l has obviously no influence on the maximum bundle load.

The question of the right choice of the nominal length comes as a corollary of introducing the global
bundle strain e. The proper choice of l becomes important when quantifying the bundle performance in
a crack bridge. In such case an energetic considerations must be included in order to determine the correct
effective bundle length.

We may conclude that the variations in the filament lengths act in an opposite way compared to statistical
size effect. Second, this effect introduces ductile failure of short specimens (see Fig. 4). This contrasts with the
response measured in the test (see Fig. 2(right)). The reason is the uncontrolled rate of unloading in the epoxy
resin clamps resulting in increased loading rate of the bundle that is not reflected in the measuring equipment.

4.2. Scatter of filament diameters

The cross-sectional area of the filaments in the bundle exhibits relatively high scatter. In the particular
case depicted in Fig. 6(left) the diameter takes values between 23 and 29 lm. Let us assume the variation of



Fig. 6. Left: yarn penetrated by epoxy resin. Right: influence of scatter of filament diameters.
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the filament diameter with the mean value �D ¼ 26 lm and COV(D) = 10% (standard deviation 2.6 lm).
With a cumulative distribution GD(D) and with k = h = 0 the mean load–strain diagram introduced in
Eq. (10) gets the form:
lA e;Dð Þ ¼ eEH n� eð Þ p
4

Z
D
D2 dGDðDÞ: ð16Þ
We immediately see that all filaments fail simultaneously at the bundle strain e = n. Assuming a given diam-
eter distribution GD(D) the ratio between the mean response of a bundle with and without scatter of D (tak-
ing its mean value) is obtained as
rD ¼ lDðeÞ
lðeÞ ¼ 1

D
2

Z
D
D2 dGDðDÞ:
In case of Gaussian distribution GD(D) this ratio reads rD = (1 + COV(D)2). For the assumed value of
COV(D) = 10% the mean bundle force (and mean bundle stiffness) gets increased by negligible amount
of 1% (see Fig. 6(right)).

We may conclude that the scatter of the filament diameter does not significantly change the mean yarn
response MA(e) compared to M0(e). However, it brings about a scatter of the load–strain response and the
peak load.

4.3. Scatter of filament activation strain (slack)

The waviness of filaments leads to their delayed activation during the loading process. In order to study
its qualitative influence on the response we have defined a uniform filament activation density function gh(h)
(see Fig. 7) distributed over the activation range 0 6 h 6 hmax. Considering k = 0, hmax represents the acti-
vation strain of the last filament. For simplicity we again set the nominal length l equal to the length of the
shortest filament.

The analytical solution of the integral equation (11) renders the mean filament load–strain diagram lh(e)
consisting of three branches:
lh;1 eð Þ ¼ EA
hmax

Z e

0

e� h
1þ h

dh ¼ EA
hmax

eþ 1ð Þ ln 1þ eð Þ � e½ �;

lh;2i eð Þ ¼ EA
hmax

Z e

e�n
1þn

e� h
1þ h

dh ¼ EA
hmax

eþ 1ð Þ ln 1þ nð Þ � n
1þ n

� �
;



(a) (b) (c)

Fig. 7. Comparison of three constant densities of delayed activation.
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lh;2ii eð Þ ¼ EA
hmax

Z hmax

0

e� h
1þ h

dh ¼ EA
hmax

eþ 1ð Þ ln 1þ hmaxð Þ � hmax½ �;

lh;3 eð Þ ¼ EA
hmax

Z hmax

e�n
1þn

e� h
1þ h

dh ¼ EA
hmax

eþ 1ð Þ ln
1þ hmaxð Þ 1þ nð Þ

1þ e

� �� �
� hmax þ

e� n
1þ n

� �
: ð17Þ
(1) ascending with gradual increase of stiffness e 2 h0,min(n,hmax)i (filaments get only activated),
(2) ascending branch e 2 hmin(n,hmax),max(n,hmax)i, is a linear function of strain e given by
(i) lh,2ii if hmax < n (no activation and no breaks),
(ii) lh,2i if hmax > n (both activation and breaks),
(3) generally ascending and descending branch e 2 hmax(n,hmax),hmax + n(1 + hmax)i (only breaks).

In Fig. 7 we illustrate the three qualitatively different forms of the load–strain diagram depending on the
relation between hmax and n.

It is worth to note that the original formulation of Phoenix and Taylor (1973) leads to a simpler form of
load–strain diagram (compare Fig. 8). The explicit formula can be obtained by integrating
l̂hðeÞ ¼ EA=hmax �

R h2
h1
ðe� hÞdh; h1 ¼ ð0 _ e� nÞ; h2 ¼ ðhmax _ eÞ. In analogy with Eq. (17) the load–strain

curve consisting of l̂h;1, l̂h;2i, l̂h;2ii and l̂h;3 can be constructed using the four combinations of the given inte-
gration limits. As shown in Fig. 8 the main difference of this solution is that in case of n < hmax the second
branch is a constant function (Fig. 9).

For the purpose of deriving the size effect equation it is sufficient to seek the maximum value lh(e*) in the
branch (3). The asymptotic mean peak load lh(e*) = lh,3(e*) is attained at e� ¼ maxðe�3; nÞ where e�3 is a
stationary point:
dlh;3 eð Þ
de

¼ 0 ! e�3 ¼ 1þ nð Þ 1þ hmaxð Þ exp=
n

1þ n

� �
� 1:
By substituting the action point e* into lh,3(e): l�
h ¼ lh;3ðe�Þ and by taking hmax = Dmax/l with Dmax a given

constant, we obtain the size effect equation l�
hðl;DmaxÞ in terms of nominal length. The formula is rather

complicated, but the noticeable fact is that the strength asymptote for extremely short yarns is constant:



Fig. 8. Comparison of load–strain diagrams for uniform Gh(h) with large hmax/n according to Phoenix and Taylor (1973) (dashed line)
and according to our kinematic assumption (solid line).

Fig. 9. Mean size effect curve for yarn with uniform delayed activation density. Comparison of the formulation due to Phoenix and
Taylor (1973) and refined formulation based on Eq. (4).

R. Chudoba et al. / International Journal of Solids and Structures 43 (2006) 413–434 427
lim
l!0

l�
h ¼ EA 1þ nð Þ= exp cð Þ � 1½ �; c ¼ n= 1þ nð Þ: ð18Þ
The size effect equation of l̂hðeÞ again consists of two branches depending on the relation between hmax and
n:
l̂�
h ¼ l̂h l;Dmaxð Þ ¼

EAn2= 2hmaxð Þ ¼ lEAn2= 2Dmaxð Þ n 6 hmax;

EA n� hmax=2ð Þ ¼ EA n� Dmax

2l

	 

n > hmax:

(
ð19Þ
The asymptote of l�
h for l ! 0 (Eq. (18)) is constant while l̂�

h (Eq. (19)) linearly approaches zero. The
different asymptotic response may be explained using Fig. 10. In the kinematic relation underlying the
derivation of l̂�

h the filament length is assumed equal to the nominal length l (Fig. 10(left)). As l! 0 linearly
the range of delayed activation given by hmax ! 1 linearly as well. As a result, the load–strain diagram gets
a form of a flat rectangle with dominating second branch l̂h;2iiðeÞ and limit peak load approaching zero as



Fig. 10. Physical interpretation of slack in two models with resulting asymptotic behavior as l! 0. Left: Phoenix and Taylor (1973).
Right: definition according to Eq. (3).
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shown in Fig. 8. On the other hand, in the refined case of l�
h, the filament length is independent of the nom-

inal length (Fig. 10(right)). The limit case l! 0 corresponds to the bundle with the longest filament
approaching Dmax with load–strain diagram getting a shape of triangle dominated by the second branch
lh,2ii(e) and a constant peak load. Both cases of asymptotic behavior are only theoretical and valid provided
the number of filaments is infinite and the load is transmitted continuously. In the discrete case this is not
true and the limiting bundle mean strength equals to the strength of a single filament. This is because there
are no two filaments active simultaneously.

We conclude that delayed activation induced by waviness drowns the statistical size effect and must be
included in the interpretation of the measured data in order to assess the length dependent strength of the
bundle accurately. The effect of differences in filament lengths induced by h on the evolution of bundle
stiffness for e 6 n is generally negligible as documented in Fig. 8.

4.4. Interaction of scatter of filament lengths and delayed activation

The mean load–strain curve with both effects included has the form of twofold integral
lh;k eð Þ ¼
Z
h

Z
k
qeðe; h; kÞdGh hð ÞdGk kð Þ

¼ EA
Z
h

Z
k

e� h 1þ kð Þ
1þ hð Þ 1þ kð ÞH n� e� h 1þ kð Þ

1þ hð Þ 1þ kð Þ

� �
� H e� h 1þ kð Þ½ �dGh hð ÞdGk kð Þ: ð20Þ
Even though h and k represent independent sources of imperfection (filament waviness and uneven clamps)
their distributions Gk(k) and Gh(h) exhibit interactions induced by the chosen definition of strains (Eq. (3)).
This means for example that the same hmax produces different effect on the response at different levels of
kmax. The reason is that according to the kinematic hypothesis in Eq. (1) the relative extra length k influ-
ences the extra length due to delayed activation in the form Dh = hl(1 + k); in other words the slack length
depends on the initial distance of fixing points.

The interaction is documented in Fig. 11(right) on the development of stiffness. For the sake of compar-
ison with previous results we again assume uniform distributions Gk(k) and Gh(h). The reduction of mean
prepeak stiffness due to scatter of k has been expressed by factor rk (Eq. (13)). The stiffness obtained by
applying rk to stiffness of lh(e) illustrated by the dotted line overestimates the real stiffness obtained for
lk,h(e) using Eq. (20).

The analysis of the interaction effect is important especially in the context of very short tensile tests and
of crack bridges as documented in Fig. 11.

The situation close to our laboratory tests with l = 30 mm is shown in Fig. 11(left): kmax ¼ 2=30 ¼ 0:066,
hmax = 0.009. We see that the effect of different lengths can be neglected even in the shortest tested bundle.
This justifies the correction of stiffness of the bundle test made in Fig. 2(right).

Fig. 11(right) shows the possible situation in crack bridges: kmax = 1.2 meaning that the furthest points
are 2.2 times further than the closest ones. The maximum slack hmax = 1.2n = 0.0214. (kmax here is 18 times



Fig. 11. Interaction of scatter of k and h. Left: situation of a yarn tensile test. Right: situation of a crack bridge.
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higher than before, hmax is 2.38 times larger than before). We note that the interaction shifts the action
point e* to the right, here it can be reasonably approximated as e* = (1 + kmax/2) Æ max(hmax,n). This
approximation may help to narrow the region of numerical evaluation of integral equation (20) in the con-
struction of the mean size effect curve.
5. Correspondence between the delayed activation and waviness

In order to provide the correct interpretation of the experimental data we need to explain the qualitative
correspondence between the waviness and the delayed activation. As shown in Fig. 12, the activation den-
sity function changes with the length of the specimen. During the production of the yarn and during the
preparation of the experimental setup several wave patterns may be included in the yarn structure. It is
helpful to classify the fundamental wave patterns according to their influence on the delayed activation with
respect to the changing nominal specimen length l (Fig. 12). We may distinguish the following three limiting
cases: (A) length differences growing linearly with l leading to length independent delayed activation and
(B) averaging of length differences and diminishing delayed activation for increasing l. In order to answer
the question which case is relevant for a particular type of yarn we evaluate the delayed activation for se-
lected types of waviness shown in Fig. 13. The study includes patterns (a) and (b) that are introduced during
the production process, (c) arising during the test preparation, and (d) appearing during the packaging.
l [mm]

il [mm]

l [mm]

maxθ [-]

Fig. 12. Distribution of relative extra length for changing nominal length and possible shapes of maximum slack hmax.



Fig. 13. Wave patterns with corresponding activation profiles (i = 0, . . ., (n � 1)).
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Let the filament geometry within the bundle be defined by the wave function w(v,a), where a 2 h0,1i is the
parameter specifying the filament position within the bundle. The total length of a single filament is

computed as li ¼
R l
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ wðv; aÞ02

q
dv and the activation strain is obtained as hi = (li � l)/l (provided

ki = 0). The estimation of the activation density corresponding to the wave pattern can then be constructed
as a histogram of hi, i = 1, . . .,n. In Fig. 13 we show the four selected types of w(v, a) with the obtained his-
tograms hi for varied nominal length. The histograms are plotted as bars divided in 10 segments, each rep-
resenting 10% fraction of filaments with corresponding activation strain range. We assume that filaments do
not hinder each other in deformation so that no modification of the formulation of local strains is needed.

The first wave pattern (a) consists of periodic waves with equal amplitudes shifted by Ui in v-direction.
The corresponding ranges of activation strains oscillate around the limiting activation strain (approxi-
mately 1.1%). For large l the differences in filament lengths become negligible and the influence of delayed
activation disappears (case B in Fig. 12).

The second pattern (b) consists of regular periodic waves with a uniform distribution of amplitudes ai.
The corresponding histograms show that most of the filaments get activated in the beginning of loading.
After a few oscillations this kind of wave pattern leads to the stabilized length-independent delayed activa-
tion for sufficiently long specimens (case A in Fig. 12).

The third pattern (c) shows a single wave over the nominal length l. There is a higher fraction of fila-
ments with larger amplitudes. The chosen linear distribution of amplitudes results in uniform activation
density functions that get reduced to simultaneous activation for large l (case B).

The last pattern (d) shows the length distribution resulting from the coiling of the yarns onto the bob-
bins. Obviously, this length distribution leads to uniform delayed activation density that does not change
with the length l. The length differences scale up linearly with the nominal length (case A in Fig. 12).
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The performed geometrical classification of wave patterns will be used in the next paragraph to assess the
plausibility of the identified delayed activation density and to make inferences about the dominating pat-
terns in the structure of the studied yarn.
6. Identification of the parameter distributions

In the majority of cases the nonlinearity of the load–strain curve in the initial stages of loading can be
assigned solely to the scatter of activation strains. Therefore, the initial part of the response curve lends
itself for an isolated identification of the activation density. In particular, its determination may be held
separately upon the following conditions:

• All filaments have been activated at the onset of breaking: hmax 6 n provided 0 6 h 6 hmax. This condi-
tion is fulfilled for all studied specimen lengths.

• Interaction effects of k and h discussed in Section 4.4 can be neglected. This is true for all studied spec-
imen lengths as documented in Fig. 11(left) on the shortest specimen.

• Other discrepancies do not disturb the curve T(e) (such as differences in E-modulus etc.) rendering this
estimation too rough.

As suggested by Phoenix (1974) the cumulative density of delayed activation Gh(h) can be determined
directly from the measured load–strain data Ttest(e) by constructing its normalized derivative:
G hð Þ � 1

kmax

dT test eð Þ
de

; kmax ¼ max
8e

dT test eð Þ
de

:

However, in our case it was rather tedious to construct the numerical derivative from the available Ttest(e)
curves so that we decided to perform an indirect matching of the model T(e) based on the predefined shape
of the activation density function. The selected profile of the activation density function g(h) is a piecewise
linear function with four parameters (see diagrams in left Fig. 15).

The densities obtained by fitting are shown in the left four diagrams of Fig. 15 and re-plotted as a se-
quence of histograms in Fig. 14(left) in order to make them comparable with the densities resulting from
the wave patterns studied in Section 5. Considering first the evolution of the activation range in terms of
hmax we see that its change is negligible between l = 220 and l = 500 mm. This suggests the existence of pat-
terns (b) and (d). Comparing the profile of the activation density function we observe that most of the fil-
aments get activated in the beginning of loading so that the yarn structure more likely exhibits features of
(b) than of (d). Furthermore, the existence of the periodic structure (b) is supported visually as can be seen
in Fig. 14(right). For short specimens (l = 45 mm and l = 30 mm) the effect of periodicity becomes negligi-
ble since the specimen length is in the range of the wave period l � T. The activation range hmax gets larger
and its profile approaches uniform activation density. Such tendency may be ascribed to the wave pattern
(c) resulting from imperfections in clamping in the preparation of short specimens.
Fig. 14. Left: activation density function reflecting the tensile tests. Right: waves in the tested yarn.
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Fig. 15. Delayed activation densities and load–strain curves (experiment and simulation). Left: zoom into T(e) diagrams displayed on
the right.
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The load–strain curves calculated for the considered lengths using the obtained activation densities are
plotted in the right four diagrams of Fig. 15. In agreement with the studies in Section 4.3 we observe an
increase of the peak load for longer test specimens due to the isolated effect of delayed activation. This ten-
dency contrasts with the statistical size effect in the traditional sense bringing about strength reduction for
longer specimens.

Obviously, the experimental data must be interpreted as a combination of several effects and the size
effect must be considered in a complex sense: including sources of randomness affecting local strength
and/or stiffness both across and along the bundle. The evaluation of such a complex size effect on the exam-
ple of the studied yarn is deferred until the last section of Part II.
7. Conclusions

In order to study the effect of disorder in the yarn structure and of imperfections in the experimental
setup we have applied a strain-based formulations of a fiber bundle model in two versions: (1) continuous
analytical model according to Phoenix and Taylor (1973) and (2) discrete numerical model based on the
superposition of filament load–strain diagrams (SFR). Both formulations have been equipped with a re-
fined constitutive law based on a kinematic hypotheses with improved representation of local strains. As
we could document on examples, this extension results in strong nonlinearity of mean size effect curve
for short yarns with large disorder.

The simulations have been done with reference to the experimental data obtained from the tensile test on
AR-glass yarns 2400 tex with varied specimen length. The applied models do not include local load sharing
upon filament failure. Such a simplification was justified for the studied type of yarn since the global load
sharing clearly dominated. The modeling concept allowed us to separate and quantify the distorting effects
of the experimental setup from the response data and make the interpretation of the experimental results
feasible.

The analyses were focused on irregularities across the bundle, namely scatter of filament length, scatter
of filament diameter and scatter of activation strain. The analysis of scatter along the filaments has been



R. Chudoba et al. / International Journal of Solids and Structures 43 (2006) 413–434 433
postponed until Part II. The parametric studies using both the analytical and the numerical model have
shown that the scatter of filament lengths and filament waviness strongly reduce the efficiency of yarns with
short effective lengths. Further, we could identify a strongly nonlinear dependence of the statistical slack
distribution on the bundle length or eventually on the distribution of filament lengths (clamp distances)
across the bundle. These sources of strength reduction must be included in the performance assessment
of the quasi-ductile composites with dry yarns acting in crack bridges on extremely short lengths.

The discrete numerical model developed in this paper provides a tool for thorough analysis of interacting
sources of disorder in the bundle. It serves as a basis for stochastic analysis of the complex size effect com-
prising all the introduced effects, including the influence of finite number of filaments in the bundle. The
modeling technique employing the random field simulation and the evaluation of the complex size effect
is described in detail in the companion paper (Vořechovský and Chudoba, 2006).
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