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a b s t r a c t

This paper presents a number of theoretical and numerical results regarding correlation coefficients
and two norms of correlation matrices in relation to correlation control in Monte Carlo type sampling
and the designs of experiments. The paper studies estimation formulas for Pearson linear, Spearman
and Kendall rank-order correlation coefficients and formulates the lower bounds on the performance
of correlation control techniques such as the one presented in the companion paper Part I. In particular,
probabilistic distributions of the two norms of correlation matrices defined in Part I are delivered for an
arbitrary sample size and number of random variables in the case when the sampled values are ordered
randomly. Next, an approximate number of designs with perfect uncorrelatedness is estimated based on
the distribution of random correlation coefficients. It is shown that a large number of designs exist that
perfectly match the unit correlation matrix.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical sampling is of interest not only to statisticians, but to
a variety of research fields such as engineering, economics, design
of experiments, and operational research. Analysts are often faced
with time-consuming and expensive sampling (physical or virtual)
to achieve statistically significant output statistics.When sampling
from randomvectors, it is important to control correlations or even
dependence patterns between marginals.

In Part I [1] the correlation control problem was approached
froman optimizationperspective.Wehave developed a combinato-
rial optimization algorithm based on Simulated Annealing to shuf-
fle the realizations in the sampling plan in order to achieve a good
match between the target and estimated correlation matrices.

When applying any correlation control technique, it is impor-
tant to know what the bounds on the correlation errors are. This
information can be useful e.g. for the selection of stopping cri-
teria in algorithms employed for correlation control. In order to
quantify an error in the correlations of a given sample, one must
(i) select a correlation estimator and (ii) define a scalar measure
of the correlation matrix. Regarding the first item, two point es-
timators are among those most widely utilized, namely the lin-
ear Pearson sample correlation and the rank-order Spearman and
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Kendall estimators. When dealing with a multivariate case, a ma-
trix consisting of differences between the target correlation coef-
ficients and the estimated ones was defined in Part I [1] together
with two matrix norms: ρmax and ρrms. These norms represent a
natural choice and they are used in the assessment of correlation
errors; see e.g. [2–4].

When a suitable error matrix norm is defined, an analyst
preparing a sample is interested in achieving the lowest possible
value of that norm. This paper analyzes various situations forwhich
the bounds on the correlation errors ρmax and ρrms are derived
exactly or at least estimated.

Another goal of controlled statistical sampling is usually
to perform the sampling with the smallest possible sample
size, Nsim, and yet achieve statistically significant estimates of
the response. One of the most well-known variance-reduction
sampling techniques of the Monte Carlo type is Latin hypercube
sampling (LHS). This sampling technique will be considered in
some parts of this paper in conjunction with the correlation
between Gaussian-distributed random variables.

The paper is organized as follows. Section 2 analyzes the
formulas for sample correlation coefficients and Section 3 provides
some results in terms of the number of attainable values of
estimated correlation. Section 4 analyzes the correlation emerging
from samples with randomly permuted values. Based on the
probabilistic distribution of correlation, the distributions of errors
ρmax and ρrms are derived for the arbitrary sample size Nsim
and vector dimension Nvar. Section 5 builds on these results and
estimates the numbers of sample permutations that yield perfect
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uncorrelatedness (which is very often requested when analyzing
problems with independent inputs).

2. Revision of correlation estimation

The estimated correlation matrix is a symmetric matrix of the
order Nvar and can be written as the sum

A = I + L + LT (1)
where I is the identity matrix and L is the strictly lower triangular
matrix with entries within the range ⟨−1, 1⟩. There are Nc
correlations (entries in the L matrix) that describe pairwise
correlations:

Nc =


Nvar

2


=

Nvar (Nvar − 1)
2

. (2)

2.1. Norms of correlation error

Eqs. (11) and (14) from the companion Part I [1] define the
norms ρrms and ρmax of the error matrix E , a matrix obtained as
the difference between the target (T ) and the actual (estimated, A)
correlation matrices. In this section, the target correlation matrix
is the unit matrix T = I (uncorrelated variables are targeted) and
therefore the error norms can be reformulated as norms of the
actual correlation matrix A. Moreover, we ignore the weighting of
various entries in the correlationmatrix introduced in [1,5] (or, we
in fact consider unit weights) and the two norms can be written as
follows. The absolute norm reads:
ρmax = max

1≤i<j≤Nvar

Ai,j
 (3)

and the root mean square correlation error

ρrms =

 1
Nc

Nvar−1
i=1

Nvar
j=i+1

A2
i,j, (4)

i.e. the square root of the average of the squares of all off-diagonal
correlation matrix entries.

We now review the sampling versions (estimators) of the three
most frequently used correlation coefficients.

2.2. Pearson correlation coefficient (sampling)

Themost well-known correlationmeasure is the linear Pearson
correlation coefficient (PCC). The PCC takes values from between
−1 and +1, inclusive, and provides a measure of the strength
of the linear relationship between two variables. The actual PCC
between two variables, say Xi and Xj, is estimated using the sample
correlation coefficient Aij as

Aij =

Nsim
s=1


xi,s − Xi

 
xj,s − Xj




Nsim
s=1


xi,s − Xi

2 Nsim
s=1


xj,s − Xj

2 , (5)

Xi =
1

Nsim

Nsim
s=1

xi,s Xj =
1

Nsim

Nsim
s=1

xj,s.

When the actual data xi,s, s = 1, 2, . . . ,Nsim of each vector
i = 1, 2, . . . ,Nvar are standardized into zi,s, i.e. into vectors that
yield zero average and unit sample variance estimates, the formula
simplifies to

Aij =
1

Nsim

Nsim
s=1

zi,s zj,s (6)

which is the dot product (or scalar product) of two vectors divided
by the sample size.
2.3. Spearman correlation coefficient (sampling)

The formula for Spearman (nonparametric or distribution-free)
correlation coefficient estimation is identical to the one for Pearson
linear correlation with the exception that the values of random
variables Xi and Xj are replaced with the ranks πi,s and πj,s,
s = 1, . . . ,Nsim. The ranks are permutations of numbers, s. It
is convenient to transform the ranks into ri,s = πs,i − π i and
rj,s = πs,j − π j where

π i = π j = π =
1

Nsim

Nsim
s=1

s =
Nsim + 1

2
(7)

is the average rank. The (actual) rank correlation is then defined as

Aij =


ri,s rj,s
r2i,s


r2j,s

, (8)

the sums being over the Nsim values in the sample. By noting
that the sum of the first Nsim squared integers is Nsim (Nsim + 1)
(2Nsim + 1) /6, we find that


r2j,s =


r2j,s = (N3

sim − Nsim)/12,
and the rank correlation reads:

Aij =
12


ri,s rj,s

Nsim

N2

sim − 1
 =

12


πi,s πj,s

N3
sim − Nsim

− 3
Nsim + 1
Nsim − 1

. (9)

In the case of ties (identical ranks for pairs of values of a single
variable), the averaged ranks are used. Note that when LHS is
applied to continuous parametric distributions no ties can occur
in the generated data. Therefore, we do not consider ties from here
on. Another formula exists for Spearman correlation suitable for
data with no ties. The (actual) correlation coefficient between any
two vectors each consisting of permutations of integer ranks from
1 through Nsim is

Ai,j = 1 −
6D

Nsim

N2

sim − 1
 (10)

where D is the sum of values ds, i.e. the differences between the sth
integer elements in the vectors:

D =

Nsim
s=1

d2s . (11)

Every mutual permutation of ranks can be achieved by permuting
the ranks πs of the second variable against the identity permuta-
tion corresponding to the ranks of the first variable. Therefore, we
may write

D =

Nsim
s=1

(s − πs)
2

= 2


Nsim
s=1

s2 −

Nsim
s=1

(sπs)


. (12)

This is equal to Nsim (Nsim + 1) (2Nsim + 1) /3 − 2


(sπs), reveal-
ing the equivalence between Eqs. (9) and (10).

Spearman correlation can, in general, take any value between
−1 and +1, inclusive, depending on the value of the sum

d2s . The lowest correlation (perfect negative dependence) is
achieved for the reverse ordering of rank numbers (πs = N −

s + 1) and corresponds to the case when the sum D equals
Nsim


N2

sim − 1

/3. Conversely, the maximum correlation (perfect

positive dependence) is achieved for identical ranks (πs = s) and
the sum equals zero. That is why

D ∈ ⟨0; uN⟩, where uN =
Nsim


N2

sim − 1


3
. (13)

2.4. Kendall correlation coefficient (sampling)

Kendall’s [6] (nonparametric or distribution-free) correlation
coefficient estimates the difference between the probability of
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concordance and discordance between two variables, xi and xj. For
data without ties, the estimate is calculated based on the rankings
πi and πj of Nsim samples of two vectors xi and xj. Let us index the
ranks (or samples) by 1 ≤ k, l ≤ Nsim. The formula for sample
correlation is a direct estimation of the difference between the
probabilities:

Aij =
nc − nd

Nsim
2

 =

Nsim
k<l

sgn


πi,k − πi,l
 

πj,k − πj,l



Nsim
2

 (14)

where sgn (z) = −1 for negative z, +1 for positive z, and zero for
z = 0. The numerator counts the difference between concordant
pairs nc and discordant pairs nd. The denominator is the maximum
number of pairs with the same order, i.e. the total number of item
pairs with respect to which the rankings can be compared. The
number of concordant pairs nc is the number of item pairs on
the order of which both rankings agree, i.e. a pair


πi,k, πj,k


and

πi,l, πj,l

of points in the sample is concordant if either πi,k < πi,l

and πj,k < πj,l or, πi,k > πi,l and πj,k > πj,l. Analogically, nd is the
number on which both rankings disagree.

The number of concordant pairs can be calculated by adding
scores: (i) a score of one for every pair of objects that are ranked in
the same order and (ii) a zero score for every pair that are ranked
in different orders:

nc =

Nsim−1
k=1

Nsim
l=k+1


1(πi,k−πi,l)(πj,k−πj,l)>0


(15)

where the indicator function 1A equals one if A is true, and zero
otherwise. Analogically, nd would count only for opposite orders
and the formula would be identical but with opposite orientation
of the inequality sign.

In the case of tied rank, the denominator is usually adjusted.We
do not consider ties from here on. Therefore, the above Eq. (14) can
be rewritten by exploiting the fact that the number of pairs is the
sum of concordant and discordant pairs and therefore the number
of discordant pairs is nd =


Nsim
2


−nc . This can be substituted into

Eq. (14), yielding

Aij =
4 nc

Nsim (Nsim − 1)
− 1 = 1 −

4 nd

Nsim (Nsim − 1)
. (16)

A straightforward implementation of the algorithm based on
the above equations has O


N2

sim


complexity. In practise, it is

convenient to rearrange the two rank vectors so that the first one
is in increasing order. As proposed in [7], a more sophisticated
algorithm based on the Merge Sort algorithm can then be
employed to compute the coefficient in O (Nsim · logNsim) time.

Kendall’s correlation coefficient is intuitively simple to inter-
pret. When compared to the Spearman coefficient, its algebraic
structure is much simpler. Note that Spearman’s coefficient in-
volves concordance relationships among three sets of observa-
tions, which makes the interpretation somewhat more complex
than that for Kendall’s coefficient. Regarding the relation between
Spearman’s correlation (say ρ) and Kendall’s correlation (say τ ),
the bounds of Daniel’s [8] universal inequality |3τ − 2ρ| ≤ 1 have
been independently refined in [9,10]:

τ −

1 − τ 2

≤ 3τ − 2ρ ≤ τ +

1 − τ 2 . (17)

A simple proof of these bounds has recently been given in [11].
Kendall’s correlation can, in general, take any value between−1

and +1, inclusive.
For many joint distributions, Spearman’s rho and Kendall’s tau

have different values, as they measure different aspects of the de-
pendence structure [12]. It has long been known about the rela-
tionship between the two measures that, for many distributions
exhibiting weak dependence, the sample value of Spearman’s rho
is about 50% larger than the sample value of Kendall’s tau [13,14].
Indeed, the ratio between the population versions of rho and tau
has recently been shown to approach (as Nsim → ∞) the limiting
ratio of 3/2 as the joint distribution approaches that of two inde-
pendent variables and [15]. The same ratio has also been proved to
hold for extreme order statistics [16,17].

3. Theoretical bounds on estimated correlation errors

This section analyzes the theoretical bounds of correlation
control algorithm performance for a pair of random variables. We
focus on three correlation coefficients: Pearson, Spearman and
Kendall’s correlations. The most detailed results in the remainder
of this section and also in this paper will be stated for the
Spearman and Kendall rank correlation. This is because these
correlation measures are nonparametric measures and they are
distribution-free; the results for these widely-used coefficients
thus have general validity. Second, it is possible to obtain a
number of important analytical results for the Spearman and
Kendall correlation coefficient measures, whereas for the Pearson
correlation no simple statements can be shown regardless of the
distributions. However, there is a relation between the correlation
measures and, to some extent, a result obtained for one correlation
may be transferred to another one.

3.1. Spearman-uncorrelated pair of variables

One of the target error measures is the maximum deviation of
the target and actual correlation matrix ρmax. Let us analyze the
case of an uncorrelated target random vector characterized by the
(unit) correlation matrix with Spearman’s correlation coefficients.
Clearly, the maximum correlation error ρmax for uncorrelated
variables equals one. Let us now focus on the lower bound of
the error. The sum


d2s in the numerator of Eq. (10) is an

even number; see Eq. (12). On the other hand, the number
Nsim


N2

sim − 1

/6 may be either an even or an odd number,

depending onNsim. IfNsim = 2+4l, where l is a nonnegative integer,
the quantity Nsim


N2

sim − 1

/6 is an odd number. Otherwise, it is

an even number leaving a chance that the numerator matches the
denominator and Ai,j = 0. The errors ρrms and ρmax match in the
case of two random variables (see Eqs. (3) and (4)), and they are
equal to the absolute difference of the correlations |Ti,j − Ai,j|. By
substituting this into Eq. (10) we can, after some algebra, write

ρmax
Nsim


N2

sim − 1


6

=

1 − Ti,j
 Nsim


N2

sim − 1


6
−

Nsim
s=1

d2s

 . (18)

Since the target correlation coefficient Ti,j = 0, the above equation
simplifies into

ρmax
Nsim


N2

sim − 1


6
=

Nsim

N2

sim − 1


6
−

Nsim
s=1

d2s

 .
Two different minima are possible for the term on the right hand
side of the equation depending on whether we subtract the even
sum from an odd or an even number. The term can best be equal
to 1 if Nsim = 6 + 4l; otherwise, it is equal to zero (recall the
lower bound on the sum


d2s ). From this we conclude that the

optimal solution, or the lower bound on error ρ
Spear
max in Spearman

correlation, is

min ρSpear
max (0) =


6

Nsim

N2

sim − 1
 if Nsim = 6 + 4l,

0 otherwise,
(19)
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Fig. 1. Correlation error when the target correlation Ti,j = 0 (logarithmic graph with added zero ordinate). Solid symbols denote average algorithm performance. The
uppermost dashed-dot line stands for the average correlation error arising from random ordering; see Eq. (45).
where l is a nonnegative integer. We now confirm this result
by a different argument. Note that requesting zero Spearman
correlation Ai,j in Eq. (9) is equivalent to requesting that the sum
of products of rank values equals
Nsim
s=1

πi,s πj,s =
Nsim (Nsim + 1)2

4
. (20)

The left hand side is always an integer. If Nsim = 2 (mod 4), the
right hand side is not an integer and the zero correlation cannot be
achieved (modulo operation finds the remainder of the division of
one number by another, written in parenthesis). For large Nsim =

2 (mod 4) we can approximate Eq. (19) and write the formula for
correlation error as 6N−3

sim. This formula is approximate, yet very
accurate. In other words, the worst convergence of the best results
is polynomial (a power law with an exponent of −3), and the
associated error graph in a double logarithmic plot is a decreasing
straight line of the same slope; see Fig. 1 (left).

3.2. Kendall-uncorrelated pair of variables

In analogy with Section 3.1, which is devoted to Spearman’s
correlation, we now analyze the smallest possible absolute values
of Kendall’s coefficient for a pair of variables. Kendall’s tau can
only attain zero when the numerators and denominators in
Eq. (16) match: 4 nc = Nsim (Nsim − 1) or 4 nd = Nsim (Nsim − 1)
(or equivalently when nc = nd). The number nc [nd] can only
take integer values and therefore the ratio Nsim (Nsim − 1) /4 must
be an integer to achieve zero correlation. This only happens
when either Nsim or (Nsim − 1) is divisible by four. Otherwise,
the value of Kendall’s correlation closest to zero is achieved for
a unit difference between nc and nd, leading to correlations of
±2/[Nsim (Nsim − 1)]. To conclude, the smallest correlation error
of the proposed algorithm in the case of targeting two Kendall-
uncorrelated variables:

min ρKendall
max (0) =


0 if Nsim = 4l,
0 if Nsim = 4l + 1,

2
Nsim (Nsim − 1)

otherwise,
(21)

where l is a nonnegative integer. This bound is presented in Fig. 1
(left).

3.3. Pearson-uncorrelated pair of variables

When any algorithm is used to reorder samples of Gaussian
variables to obtain Pearson-uncorrelated variables, the situation is
different. When Nsim = 4 the sample set of a pair of Gaussian
LHS-sampled vectors consists of the values {−b, −a, a, b}. If the
first vector ı⃗ remains unchanged, the second can be reordered
into vector p⃗ or q⃗, both giving zero Pearson correlation with ı⃗;
Table 1
Two pairs of Pearson-uncorrelated vectors.

ı⃗ p⃗ q⃗ ı⃗ · p⃗ ı⃗ · q⃗

−b −a a ab ab
−a b −b −ab −ab
a −b b −ab −ab
b a −a ab ab

0 0 0 Sum = 0 Sum = 0

see Table 1. Whenever Nsim is divisible by four, one can find these
quaternaries consisting of two symmetrical pairs and solutions
leading to zero Pearson correlation. Also, for each such sample
size, one can also increase Nsim by one (add the zero sample
value to both variables; see the very last row of Table 1). This
preserves the zero correlation, and that is why we can conclude
thatwheneverNsim or (Nsim − 1) is divisible by four, the zero target
Pearson correlation can be matched exactly for any symmetrically
distributed pair of samples of variables.

In the rest of the cases (Nsim = 2, 3; 6, 7; 10, 11; . . .), the
lowest possible Pearson correlation must be estimated using a
different argument. In particular, it is beneficial to estimate the
distance from zero to the nearest attainable correlation. This is
performed in the following subsection. Here, we conclude by
writing the formula for the correlation error of the proposed
algorithm in the case of targeting two Pearson-uncorrelated
variables:

min ρPears
max (0)


= 0 if Nsim = 4l,
= 0 if Nsim = 4l + 1,
≈ 1/Γ (Nsim) otherwise,

(22)

where l is a nonnegative integer and Γ is the Gamma function (the
following equality Γ (n) = (n − 1)! holds for natural numbers,
n). Note that whenever Pearson’s correlation can achieve zero,
Spearman’s correlation can surely equal zero as well (compare
Eqs. (19) and (22)). This can be easily explained: if the sample
values are arranged so that they cancel each other out in the
summation of products (recall the computation of Pearson’s
correlation, or better: covariance), the transformed ranks r must
cancel each other out in Eq. (8), as well. The opposite does not
hold when Nsim = 3 (mod 4). To conclude, when Nsim =

2 (mod 4) neither Spearman’s nor Pearson’s correlation canmatch
zero exactly.

The quality of the predictions of the error can be assessed in
Fig. 1. It can be seen that in the Spearman case, the predictions
are exact (see on the left). In the Pearson case (right hand side),
the accuracy of prediction by Eq. (22) depends on the choice of
the sampling scheme such as LHS-mean or LHS-median; see [1].
In the numerical simulations, once Nsim exceeds a critical number
of approximately 15, the predicted error is much lower than
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Fig. 2. The general shape of the lower bound on correlation errors for the whole
spectrum of target correlations.

the actual results of the algorithm from Part I [1]. The average
algorithm performance tends to follow a power law, i.e. a straight
line with a decreasing slope of ≈ −

5
2 . This sudden change of

error rate must be attributed to the algorithm andwill be analyzed
in Part III [18]. The error rate of order O


N−5/2

sim


will be shown

to be present also in multivariate settings. We have found that
the vertical position of the straight line, and therefore also the
critical sample size, Nsim, depends on the number of trials Ntrials
at a given temperature (a trial represents a random swap of two
sample values; see Part I). The higher the number of trials, the
better the result (lower correlation error). The number of trials
recommended in Part I equals Ntrials = 10NsimNvar. This number
should rather be proportional to Nsim!, which would reflect the
combinatorial nature of the problem. However, this would lead to
explosion in computational demands with a large sample size. We
have found that for a good balance between acceptable accuracy
and computational expenses the above Ntrials is a good choice.

A final note regarding Fig. 1 (right) is that the best solutions,
represented by empty circles and boxes in the Pearson case, were
obtained only for Nsim < 20. To obtain exact results for sample
sizes ranging from 15 to 20 we had to resort to a full permutation
search. For greater Nsim the search becomes very expensive and
also the accuracy (numbers of orders lower than 10−15) starts
to seriously depend on the accuracy of the evaluation of the
inverse transformation of the standardized Gaussian distribution
employed for sample value determination.

3.4. Generally correlated pair of variables

The above results regarding the lower bounds of correlation
error with two Spearman or Kendall or Pearson-uncorrelated
variables (Eqs. (19), (21), (22)) do not hold for a general value
of the target correlation coefficient Ti,j. The problem is that, in
a general case, the target value of the fraction in Spearman’s or
Kendall’s correlation coefficient (Eqs. (10), (16)) is not equal to
unity anymore. Similarly, given two vectors containing samples
of random variables, only selected Pearson correlations can be
achieved by permuting themutual ranks of samples. From here on,
we will call those Ts that allow ρmax(T ) = 0 ‘troughs’ and denote
them by t .

This paragraph is valid for all three studied correlation
coefficients: Spearman, Kendall and Pearson. As explained above,
some target correlations exist (the troughs, t) that can be fulfilled
exactly by permutingmutual sample ranks. The number of troughs
tk, k = 0, . . . , n, for a given sample size Nsim, is nn = (n + 1).
The first [last] troughs are t0 = −1 [tn = +1], irrespective of
the number of simulations Nsim. Between any pair of consecutive
troughs, tk and tk+1, the target correlation cannot be fulfilled
exactly (ρmax > 0). It can be shown that in the middle of the
distance between these pairs there are points in which the best
achievable correlations have peaks. We call these points the peaks
qk: qk =

1
2 (tk−1 + tk), k = 1, . . . , n. This situation is depicted in

Fig. 2. The error ρmax is a linear function of the distance from its
zero value in the troughs. The slope of the straight line is either
±1. That is why the best correlation error for any peak is equal
to its distance to the nearest trough: ρmax(qk) =
1
2 (tk − tk−1) =

qk−tk−1. The profile of the lower bound on errorρrms is a piecewise
linear function for the whole range of Ti,j ∈ ⟨−1; +1⟩, alternately
connecting troughs and peaks. It can be shown that the graph is
symmetric with respect to the zero correlation Ti,j (the solution of
the best error for a given Ti,j holds also for −Ti,j). The knowledge
of the troughs tk, k = 0, . . . , n for each sample size gives full
information on the lower bound of the correlation norm ρmax.

3.4.1. Spearman correlation
For Spearman’s correlation, an analysis of the best achievable

correlation norm ρrms = ρmax can be easily carried out by
analyzing Eq. (18). First, by exploiting the bounds on the sum


d2s

(Eq. (13)), we can see that the error ρrms can equal zero for Ti,j =

±1. The number of troughs (associated with the different possible
results of the sum


d2s ) is much smaller than the amount of Nsim!

permutations (i.e., the number of differentmutual orderings of two
rank columns). In fact, n is much less than that and is O(N3

sim).
This result can be obtained by analyzing all possible values of the
sum


d2s . It can be shown that for every positive integer Nsim

the sum


d2s can take all even numbers from the interval given
in Eq. (13). An exception occurs when Nsim = 3, as for this the
sum D cannot equal four and therefore there are only four troughs:
−1; −0.5; 0.5; 1; see Fig. 3 (left).

For Spearman’s correlation, there are nn = n + 1 uniformly
distributed troughs tk, k = 0, . . . , n within ⟨−1; +1⟩ associated
with even numbers within the bounds from Eq. (13), where n =

Nsim(N2
sim −1)/6 is the number of positive even numbers from that

interval except zero. It can be shown that the best correlation error
also exhibits good symmetry. For a given permutationπs of sample
ranks (s) of the second variable, it can be shown that its correlation
error from identity is equal to oneminus the correlation error from
reverse ranks (r = Nsim − s + 1). This follows from the equality
Nsim
s=1

(s − πs)
2

= uN −

Nsim
s=1

(r − πs)
2 (23)

where πs is an arbitrary permutation of ranks s = 1, . . . ,Nsim.
The proof of this statement can be obtained by noting that


(s −

πs)
2

+


(r − πs)
2

= · · · = 4


s2 − 2(Nsim + 1)


s, which
is independent of the chosen permutation πs. It therefore must be
equal to the sum of the zero lower bound and the upper bound
uN (identical and reverse ranks). This can be used to prove the
upper bound in Eq. (13). The consequence of the symmetry is
that the problem of finding the best permutation of ranks for a
given Spearman correlation coefficient Ti,j collapses into finding a
solution for the absolute value of Ti,j, and in the case of a negative
target correlation, one must reverse the ranks.

The errors at the peaks are 6/

N3

sim − Nsim

again; compare

with Eq. (19). The surface of the lower bounds on the correlation
error min ρ

Spear
max (Ti,j) is therefore fully characterized; see Fig. 3 (left

and top). Numerical results from simulations with the proposed
algorithm match this surface. Note that the peaks of correlation
errors are polynomials in Nsim, with approximately the power of
minus three, and therefore the graphs of peaks versus Nsim in a
logarithmic plot again displaywhat is approximately a straight line
with a slope of minus three; see Fig. 1.

3.4.2. Kendall correlation
As for Kendall’s sample correlation, the range ⟨−1; +1⟩ is

filled with equidistant attainable correlations t associated with
all possible integer numerators in Eq. (16). In this respect, the
situation is similar to Spearman correlation. The distance between
any two adjacent correlations tk and tk+1 is

∆tKend = 4/(N2
sim − Nsim). (24)

The number of attainable correlations (troughs) tk, k = 0, . . . , n
is nn = n + 1 = 2/∆tKend + 1 =


Nsim
2


+ 1.
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Fig. 3. Attainable correlations andminimumerror for the full range of target correlations T and various sample sizes. Top: Spearman correlation. Bottom: Pearson correlation
of Gaussian variables sampled via LHS-mean.
Fig. 4. Number of attainable correlations (troughs) t .

3.4.3. Pearson correlation
We now turn our attention to Pearson’s correlation. The

correlation estimation formulas are identical for Spearman and
Pearson coefficients except that Spearman works with uniformly
distributed integer values (ranks) while Pearson works with
nonuniform real numbers. This difference suggests that the
number of achievable correlations will be greater in the Pearson
case. The peaks and troughs happen at different correlations T .
The positions of troughs (and therefore also of peaks and errors
at peaks) depend on the distribution of sampled variables and on
the sampling scheme. For example, in the case of the compared
sampling schemes LHS-median and LHS-mean, the numerically
obtained trough distributions for the two Gaussian variables differ.
The troughs are generally not uniformly distributed between
−1 and +1 (see Fig. 3 (bottom)) and therefore the minimum
errors ρmax at peaks vary over the correlation range. Numerical
simulations show that the greatest gaps between peaks and
troughs occur in the vicinity of T = −1 and +1. This means that
peaks are greater in the vicinity of these correlations than for Ti,js
close to zero; see Fig. 3 (bottom right).

Since the number of troughs (the number of different attainable
correlations by rank permutations) is much greater in the Pearson
case compared to the Spearman and Kendall cases, the spacing
between them is less and therefore the peak errors are smaller
as well. That is why, overall, the surface of lower bounds on
correlation error is lower in the case of Pearson’s correlation,
compare Eqs. (19), (21) and (22). Fig. 4 compares the numbers
of attainable correlations for Spearman and Kendall coefficients
and with a Pearson coefficient obtained with Gaussian variables
sampled via LHS (LHS-mean and LHS-median give identical
numbers).

Fig. 1 and the related Eq. (22) shows that the worst errors at
the peaks of Pearson pair correlation are well approximated by
1/ (Nsim − 1)!. This number can be used to estimate the number of
attainable correlations within the interval ⟨−1, 1⟩. If we consider
equidistant spacing between troughs (which is not true exactly),
the distance between the troughs must be twice the error at the
peaks (see Fig. 2). The number of peaks must then be two over
the distance, because the correlation range equals two. Then, the
number of Pearson troughs must be approximately equal to one
plus the inverse of the error at the peaks, i.e. nn = 1+ (Nsim − 1)!.
The fact that for small Nsim this function does not agree with the
numerically obtained numbers nn in Fig. 4 can be explained by the
nonuniform distribution of troughs in these cases. For greaterNsim,
however, the trend seems to be captured well.

We note that an issue to consider is the accuracy of the inverse
transformation of the Gaussian cdf which is used to obtain the
sample set. These values are used directly to compute Pearson’s
correlation and therefore the number of troughs is very sensitive to
numerical accuracy when Nsim is large. This problem is not present
in the case of Spearman and Kendall correlations.

4. Distribution of a random correlation

In this section, we study the frequency of the attainable
Spearman, Pearson and Kendall correlations that appear in
random mutual ordering of pairs of vectors representing random
variables. It is a common practice to sample values from
random vectors with independent marginals separately for each
random variable, i.e. without employing any special technique for
correlation control; see e.g. [19]. We begin with the analysis of
a random correlation between two random variables (the three
analyzed types of correlation coefficients are studied separately).
Multivariate cases are then studied with the help of the defined
norms of correlation matrices ρrms and ρmax.

4.1. Spearman correlation of two random variables

In the case of Spearman correlation, this task is equivalent to
the study of the frequency of possible values of the sum D, Eq. (11).
For eachNsim one can permute the rank orders against identity and
compute the sum D. For Nsim . 14, it is cheap to simply test all
Nsim! permutations. The probability of any particular value of D (or
a correlation t , a discrete random variable) is proportional to the
number of permutations giving rise to this value. This probability
is computed as pk = nk/Nsim!, where k = 0, . . . , n; here, n =

uN/2 and nk is the number of occurrences of the kth value of the
sum Dk (or the trough tk). When Nsim is high, the probabilities can
estimated as pk

.
= nk/Ntrials, where Ntrials is the number of tested

random permutations.
Let us note that the enumeration of probabilities for a few very

large absolute correlations can also beperformedanalytically. First,
the values t = ±1 corresponding to identical or reverse orders
each have a probability of p0 = 1/Nsim!. The next possible value of
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Fig. 5. Distribution of a randomSpearman correlation. (a) and (b) exact histogrampolygons comparedwith Gaussian and Beta distributions; (c) number of optimal solutions.
the sum D1 = 2 corresponds to an interchange of two consecutive
rank numbers which can be carried out for Nsim − 1 different
pairs. Thus, p1 = (Nsim − 1) /Nsim!. Next to it, D2 = 4, and by
counting the number of ways of performing two interchanges of
pairs of adjacent terms, the frequency to be divided by Nsim! is:
(Nsim − 2) (Nsim − 3) /2 =


Nsim
2


. For D3 = 6 the frequency is

Nsim−3
3


+2


Nsim−2

1


, forD4 = 8wehave


Nsim−4

4


+4


Nsim−3

2


+

Nsim−2
1


, for D5 = 10 we have


Nsim−5

5


+ 6


Nsim−4

3


+

2


Nsim−3
2


+ 2


Nsim−3

1


, etc. Expressions rapidly become very

complicated. Next, we resort to another technique to quantify the
probabilities pk.

The range of D (and thus also the ⟨−1; 1⟩ range of t) gets
filled very quickly as Nsim increases. For large Nsim it is easier to
work with the distribution of correlations as with a continuous
variable than with a discrete variable. The continuity correction
can be made simply by assuming that the range of D (Eq. (13))
is equivalent to the range of correlations. The distance between
any two consecutive Ds is two; therefore, the distance between
adjacent correlations tk and tk+1 is

∆tSpear = 4/uN = 12/(N3
sim − Nsim). (25)

The continuous probability density function (pdf) of correlations
can be obtained from the discrete probability mass function as

fE (tk) =
pk

∆tSpear
= pk


N3

sim − Nsim


12
. (26)

The numerically obtained histogram polygons are plotted, for
selected Nsim, in Fig. 5a. As Nsim increases, the serrated profile of
histograms gets smoothed from the tails towards the core range.
In the same figure, we show a comparison with two continuous
distributions, namely Beta and Gaussian distributions, which are
discussed next.

The distribution of t must be symmetric around the zero mean
value. The dispersion ofD equalsN2

sim(Nsim+1)2(Nsim−1)/36, from
which the standard deviation of a random Spearman correlation is

σ
Spear
t =

1
√
Nsim − 1

, (27)

a formula obtained by Student and incorporated in Pearson’s [20]
memoir, see [21].

Using exact simulations for Nsim up to 14 and using a statistical
analysis of 109 simulations for Nsim ∈ ⟨14; 2000⟩, we have found
that the pdf of random Spearman correlation can be nicely fitted
by Beta distribution t ∼ B(α, β, a, b) with the following pdf

fB (t) =
1

(b − a) B (α, β)


t − a
b − a

α−1 
b − t
b − a

β−1

(28)
where the Beta function B (α, β) = Γ (α) Γ (β) /Γ (α + β)
appears as a normalization constant to ensure that the total
probability integrates to unity. The four parameters can be set
using the following arguments. The location parameters (bounds)
are the bounds of correlation: a = −1, b = +1. Since the
distribution must be symmetric (see Eq. (23)), the two shape
parameters must match: α = β . Finally, by exploiting the result
regarding the standard deviation (Eq. (27)), one finds that α =
1
2 (Nsim − 2). The general formula for Beta distribution in Eq. (28)
therefore collapses into one parameter form

fB (t;Nsim) =
Γ (Nsim − 2)

Γ 2
 1
2Nsim − 1

 
1 − t2

 1
2Nsim−2

2Nsim−3
. (29)

This formula can be written using the Beta function B (·) as
1 − t2

 1
2Nsim−2

B
 1
2 ,

1
2Nsim − 1

 ,

which was previously obtained by Pitman [22] by noting that
the first four moments of t are very close to the Pearson Type II
curve. The Beta approximation is very good already for Nsim as
small as 6; see Fig. 5a. For very large Nsim (hundreds or more), it
is useful to use the result obtained by Hotteling and Pabst [21],
who have proved that the asymptotic distribution (Nsim → ∞)
of Spearman’s correlation is Gaussian. Using the zero mean and
standarddeviation according to Eq. (27)wemaywrite theGaussian
pdf as

fG (t;Nsim) = fG (0) exp

t2

1 − Nsim

2


(30)

where fG (0) is the peak pdf of the Gaussian approximation

fG (0) =


Nsim − 1

2π
. (31)

ForNsim > 4 the Beta distribution in Eq. (29) is unimodal, themode
being zero, and the peak pdf reads

fB (0) =

Γ


Nsim−1

2


√

π Γ


Nsim
2 − 1

 . (32)

The motivation for the above-cited papers (or the papers cited
in the section concernedwith the random correlation distribution)
on the distribution approximation of random Spearman correla-
tion was mainly the significance testing of such correlation; see
also [23–34] for the most important papers in this area. We, how-
ever, have the ambition to explore the probabilities of various cor-
relations even for amultidimensional setting. In particular, wewill
focus on the probability of obtaining a (nearly) zero correlation in
Section 5.1. The pdf at themodewill become very important there,
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because we will count the number of solutions yielding uncorre-
latedness.

4.2. Pearson correlation of two random variables

As pointed out byKowalski [35], the exact sampling distribution
of the Pearson correlation coefficient for Nsim samples from
a bivariate normal distribution has already been obtained by
Fisher [36]. In the case of uncorrelated variables, the density of t
becomes

fB (t;Nsim) =
Γ

 1
2Nsim −

1
2


Γ

 1
2Nsim − 1

 √
π


1 − t2

 1
2Nsim−2

, (33)

which is identical to Eq. (29) written for the Spearman correlation
(use the Legendre duplication formula for the Gamma function).
From this we may conclude that the asymptotic distribution is
again zero-meanGaussian and the standard deviation fromEq. (27)
holds also for the Pearson correlation coefficient

σ Pears
t =

1
√
Nsim − 1

. (34)

4.3. Kendall correlation of two random variables

The sampling distribution of Kendall’s tau has been found [6]
to tend to a Gaussian distribution with zero mean and a standard
deviation of

σ Kendall
t =


2 (2Nsim + 5)

9Nsim (Nsim − 1)
. (35)

As Nsim becomes large, the standard deviation becomes

σ Kendall
t ≈

2
3

1
√
Nsim.

(36)

The reason for the limiting standard deviation of the sampling
Kendall correlation being about 2/3 of the Spearman correlation
is a direct implication of the facts summarized at the end of
Section 2.4. The distribution of Kendall correlation is very smooth
and approaches a Gaussian distribution very rapidly compared to
the Spearman coefficient. In fact, the Gaussian distribution is a very
good approximation of the exact sampling distribution even for
quite small Nsim.

4.4. Distribution of norms of a random correlation matrix

This section studies the distribution of the two particular norms
defined in Part I as they occur when randomly permuting ranks of
random variables. The target correlation matrix is the unit matrix
T = I (uncorrelated variables are desired) and therefore the
error norms can be reformulated as norms of the actual correlation
matrix A in the same way as was done in Section 2.1; see Eqs. (3)
and (4). This is because when the correlation matrix entries Ai,j
are the results of random ordering of Nsim variable sample values
for each of the Nvar variables, we can understand the two matrix
norms to be two statistics ofA andworkwith them aswith random
variables.

It is immediately seen that the first norm, ρmax, is related
to extremes (maxima) of Nc identically distributed variables
(correlations) and that itwill bemore conservative than the second
norm, ρrms, which is more of an average quantity. Unfortunately,
the Nc variables are not independent. Why? Because given a
random ordering of Nvar samples (vectors of realizations; the
first vector can be kept ordered for simplicity), only Nvar − 1
correlation matrix entries are independent. The rest of the entries
are dependent and this dependence influences the conditional
distribution of the rest of the correlations. In addition, their
distribution is not defined over the whole range of ⟨−1; 1⟩; it is
defined over a subrange of it, because the correlationmatrixAmust
be positive semidefinite (PSD).

From the geometry of correlation matrices it is known that
PSD matrices form a solid body in the [−1, 1] hypercube, where
the coordinates are the correlations; see e.g. [37]. This body has
its center at the origin (corresponding to the unit correlation
matrix). If some correlations are given, the distribution of another
entry in the matrix is generally a subrange of ⟨−1; 1⟩. However,
our random given correlations have the majority of their pdf
accumulated around the zero value and we expect that the
conditional distribution of a new entry is not much different from
the distribution of a random correlation (which is Gaussian in
limit). Indeed, extensive simulation results show thatmany results
obtained from the analysis of Nc independent and identically
distributed (IID) correlations can be used.

In the remainder of this section, focused mainly on asymptotic
properties, we work with the distribution of each correlation
coefficient as with a Gaussian random variable with zero mean
and variance σ 2

t . We know that σt depends solely on the sample
size Nsim and the dependence for Spearman, Kendall and Pearson
correlations is given by Eqs. (27), (35) and Eq. (34) respectively. As
will become clear below, the asymptotic properties of errors are
combinations of independent effects of the (i) sample size (through
σt ) and the (ii) number of variables Nvar. The following subsections
present results valid for Pearson and Spearman correlations,
i.e. correlations that share the same formula for σt (compare
Eqs. (27) and (34)). Derivation of the results for Kendall correlation
can be easily obtained analogically by performing the same steps
and employing Eq. (35) instead.

4.5. Distribution of ρrms for random ordering

The root mean square error ρrms (Eq. (4)) is very similar to the
following function of a vector ofNc IID standard Gaussian variables

Z =

 Nc
1

X2
i , (37)

which is known to follow the χ (or Chi) distributionwith themean
value µZ and variance σ 2

Z given by

µZ =
√
2

Γ
Nc+1

2


Γ

Nc
2

 , σ 2
Z = Nc − µ2

Z . (38)

In fact, we analyze a linear transformation of Z: statistic ρrms = aZ ,
where a = σt/

√
Nc . This is because, at the limit, the random

correlation Ai,j follows a Gaussian distribution with zero mean and
standard deviation σt . It is known that the mean value of ρrms is
simply µrms = aµZ and variance σ 2

rms = a2σ 2
Z . That is why the

mean value of ρrms is

µrms = σt


2
Nc

Γ
Nc+1

2


Γ

Nc
2

  
rµ(Nc )

= σt · rµ (Nc) (39)

and the standard deviation of ρrms reads

σrms = σt


1 −

µ2
Z

Nc
= σt


1 − r2µ (Nc)  

rσ (Nc )

. (40)

The probability density function of ρrms for any Nc and input
standard deviation σt of a random Gaussian correlation is the
scaled χ distribution

frms (x; σt ,Nc) =
2


1− Nc

2


Γ

Nc
2

 
x
√
Nc

σt

Nc 1
x

exp


−
x2Nc

2σ 2
t


. (41)
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Fig. 6. Displays correlation norms ρrms (left column) and ρmax (right column) when Nvar arrays with Nsim values each permute randomly. Top row: stroboscopic evolution of
the theoretical distributions for Nvar = 2, 11(1) and various sample sizes Nsim . Bottom row: comparison of numerically estimated mean values (empty circles) and standard
deviations (solid triangles) with analytical formulas (see text).
It is interesting to see that the mean value (Eq. (39)) of the matrix
norm ρrms is independently influenced by Nsim and by Nvar (related
to Nc through Eq. (2)). However, the mean value of the error,
in fact, almost does not depend on Nvar[Nc] at all because rµ
quickly converges to unity; see the inset of Fig. 6 (top middle).
On the contrary, the standard deviation is nearly exactly inversely
proportional to the number of variables Nvar, because rσ (Nc) →

Nvar
−1; see Eq. (40) and the inset of Fig. 6 (top middle). In other

words, it might be surprising that, for a given sample size Nsim,
adding more random variables does not increase the average error
ρrms, and the standard deviation decreases:

lim
Nsim→∞

µrms = N−1/2
sim (42)

lim
Nsim→∞

σrms = N−1/2
sim Nvar

−1. (43)

Note that in the case of Kendall correlation coefficient, the right
hand side of Eqs. (42) must be multiplied by 2

3 , see Eq. (36). Nu-
merical simulations show that for an extremely small number
of simulations (Nsim < 10) the standard deviation is slightly
overestimated. Therefore, we recommend slightly changing
Eq. (40) by replacing σt with (Nsim + 3)−1; see the dashed lines
in Fig. 6 (bottom left). Again, for Kendall correlation, one has to ac-
cordingly adjust Eq. (35) for σt .

Fig. 6 (top left) presents the distributions of ρrms for Nvar =

2, 11(1). It can be seen that the (properly scaled) distributions
almost perfectly collapse into one for a given number of Nvar and
various sample sizes Nsim. The stabilization of the mean µrms is
already visible for this small Nvar value. The convergence of σrms
to a power law can be seen by comparing it with the triangles in
Fig. 6 (bottom left).
4.6. Distribution of ρmax for random ordering

The first norm (Eq. (3)) represents the maximum of Nc absolute
values of random correlations (entries in the upper triangle of the
correlation matrix). We first derive the limit distribution of the
absolute value of random correlation and then find the limiting
distribution of the maxima.

The limiting pdf fe of each correlation Ai,j is Gaussian (fG) with
zero mean and standard deviation σt . Its absolute value |Ai,j| must
have a double density gabs = 2 fe over the half interval ⟨0; 1⟩ (zero
left bound). Both the (elemental) pdf (see curve ‘2’ in Fig. 6 (top))
and the cumulative distribution function (cdf) can be expressed
using the standard Gaussian pdf φ and cdf Φ as

gabs (x) =
2
σt

φ


x
σt


, Gabs (x) = 2Φ


x
σt


− 1 (44)

and the mean value and standard deviation are

µabs = σt


2
π

≈ 0.8 σt , σabs = σt


π − 2

π
≈ 0.6 σt . (45)

It might be interesting to show that for two random variables
Nvar = 2,Nc = 1 the two norms match: ρrms = ρmax. Indeed,
the Half-Normal distribution is identical to the χ distribution with
one degree of freedom: frms (x; σt , 1) = gabs (x) (compare Eqs. (41)
and (44)). Inevitably in such a case, their moments also match:
µrms = µabs and σrms = σabs.

If we, again, consider the Nc entries of the correlation matrix to
be a vector of IID variables, ρmax is a random variable defined as the
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maximum of these IID variables; see Eq. (3). The cdf and pdf of the
maxima of Nc IIDs read

Fmax (x) = Hn (x) = GNc
abs (x) (46)

fmax (x) =
dFmax (x)

dx
= Nc GNc−1

abs (x) gabs (x) . (47)

What is the limiting form of this distribution for large Nc? In
order to avoid degeneration of the limit distribution we look for
the linear transformation Y = an + bn x, where an and bn are
constants depending on n = Nc in such a away that the limit
distribution limn→∞ Hn (an + bnx) = limn→∞ GNc

abs (an + bnx) =

H (x) becomes non-degenerated. The extremal types theorem from
the extreme value theory states an important result for a random
variableMn = max{X1, X2, . . . , Xn}where X1, X2, . . . is a sequence
of IID random variables. If two sequences of real numbers, an and
bn, exist so that bn > 0, and limn→∞ P[(Mn − an) /bn ≤ x] = H (x)
where H is a nondegenerate distribution function, then H must be
one of the three feasible limit distributions for maxima, namely
Gumbel, Fréchet or Weibull distribution (see [38] [39]; previous
versionswere stated by Fisher and Tippett in 1928 [40] and Fréchet
in 1927 [41]). It can be easily checked that our distribution Gabs
belongs to the Gumbel domain of attraction for maxima (see
Eq. 3.18 of [42]) and therefore H is the standard Gumbel (max)
distribution. The normalizing constants are the mode m = an
and the scale parameter β = bn. The inverse of our elemental
distribution is F−1 (p) = σtΦ

−1
 p+1

2


. The normalizing constants

can be chosen as (see page 101 of [42]): an = F−1

1 −

1
n


and

bn = F−1

1 −

1
ne


− an. In our case an = σtΦ

−1

1 −

1
2n


and

bn = σtΦ
−1


1 −

1
2ne


− an. We now exploit the similarity of the

two formulas with those written for the extremes of the standard
Gaussian distribution: the differences are that (i) n is multiplied
by two in our case and (ii) we work with the non-unit standard
deviation σt . Therefore, we adapt the well known result for the
standard Gaussian case (see e.g. Theorem 1.5.3. in [43]) so that

β0 =
1

√
2w

, m0 =
√
2w −

ln (w) + ln (4π)
√
8w

, (48)

where w = ln (2Nc) = ln

Nvar

2
− Nvar


. The corresponding mean

value and standard deviation of theGumbel approximation are also
dependent solely on the number of variables (correlations) Nc :

µ0 = m0 + γ β0, σ0 = β0
π
√
6

(49)

where γ
.
= 0.577216 is the Euler–Mascheroni constant.

The solution for Gaussian elemental distribution with non-unit
variance σ 2

t is obtained simply by multiplying the moments and
parameters with σt :

µmax = µ0 σt , σmax = σ0 σt (50)
mmax = m0 σt , βmax = β0 σt . (51)

Therefore, both the mean value and standard deviation are
asymptotically inversely proportional to the square root of Nsim
(because this is also true for σt ; see Eqs. (27), (34), (35)). Similarly
to ρrms, these formulas for the asymptotic mean and the standard
deviation of ρmax feature the independent effect of sample size
Nsim and number of variablesNvar. Unfortunately, for smallNsim the
Gaussian standard deviation σt is relatively high and µmax exceeds
unity whenever Nsim ≈ σ−2

t < µ2
0. This happens more often

for large Nc [or Nvar respectively]. However, the real maximum
correlation error ρmax cannot exceed one. For this reason we
propose a simple correction that ‘bends’ the straight mean curve
at the turning point Nsim = µ2
0 (see Fig. 6 (bottom right)) while

retaining the asymptotic behavior for large Nsim:

µ⋆
max =


µ2
0

µ2
0+σ−2

t
+ σ−2

t µ−2
0

−1/2

. (52)

Also, numerical simulations show that the standard deviation is
overestimated for small Nsim and large Nvar: it must suddenly
become zero when the mean approaches unity; see Fig. 6 (bottom
right). However, we do not propose any correction for the standard
deviation σmax.

Finally, the cdf and pdf of ρmax can be approximated by the
Gumbel distribution as

lim
Nc→∞

Fmax (x) = exp [− exp (−y)] , y =
x − mmax

βmax

lim
Nc→∞

fmax (x) =
1

βmax
exp [y − exp (−y)] (53)

where the parameters are found by inverting Eq. (49):

βmax =
σmax

√
6

π
, mmax = µ⋆

max − γ βmax. (54)

Note that the Gumbel limit distribution is attained for very
large Nvar. However, simulation results show that the Gumbel
approximation is reasonably good even for moderate Nvar. For very
small Nvar the distribution shape differs from the Gumbel one and
therefore the illustrative stroboscopic evolution of distribution for
Nvar = 2, 11(1) in Fig. 6 (top right) is not perfectly legitimate; it
is displayed for the purpose of comparison with the evolution for
ρrms in the same figure, top left. It should also be noted that for very
small Nsim the Gaussian approximation with a standard deviation
of σt to Ai,j is inaccurate because the real frequency polygons of a
random correlation have a serrated profile; see e.g. Fig. 5 (left).

4.7. Ratio of average errors ρmax and ρrms for random ordering

The mean error µrms is asymptotically independent of the
dimension of random vector Nvar; see Eq. (42). The norm ρmax
is more conservative and its mean error increases with Nvar
(Eqs. (48)–(50)). Let us now study the asymptotic ratio between
the two mean values. Both norms are ∝ N−1/2

sim and therefore their
ratio will only be a function of the vector dimension Nvar:

νµ (Nvar) =

lim
Nsim→∞

µmax

lim
Nsim→∞

µrms
=

µ0 σt

σt
= µ0

=
4w + 2γ − ln (w) − ln (4π)

√
8w

(55)

where the meanings of w and γ remain as in Eqs. (48) and (49):
w = ln (2Nc) = ln


Nvar

2
− Nvar


; γ

.
= 0.577216 is the Euler–

Mascheroni constant.
This ratio, obtained for random sample ordering, will be very

important in the analysis of the algorithm’s performance. We will
show that the ratio between average errors remains unchanged
even when the algorithm proposed in part I is employed and the
convergence of both errors to zero is much faster (because the
sample is not random there); see part III.

4.8. Comments

The target of any stochastic optimization algorithm for
correlation control may be understood in this way: we want
to move the mean values of both ρrms and ρmax toward zero
(i.e. toward the left in the two Fig. 6 (top)) and, at the same time,
decrease the variability of those two error measures to zero (i.e.
narrow the distributions in the same figure). If any algorithm for
correlation control starts with a random vector order, remembers
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this state and eventually accepts only improvements, then the
errors for which the distributions have been found in this section
constitute the upper bounds of algorithm error.

The next section is focused on an analysis of the lower bound of
ρrms andρmax error in amultivariate setting, i.e. on the best possible
performance associated with the left bound of error distributions.
It can be shown that for selected Nsim and Nvar both the average
error and the variance of errors can even be reduced to zero (we
recall Section 3.1). This can be achieved by ordering the ranks
(permutations) of sample values to yield optimal solutions.

5. Optimal solutions yielding perfect uncorrelatedness

The target of this section is to show that optimal orderings
exist between vectors representing ranks of samples in the sense
of either Pearson, Spearman or Kendall correlations. We also aim
to count these optimal orderings. In the Pearson case by the term
‘optimal orderings’ we mean that all pairwise correlations are
zero and when Spearman or Kendall correlation is considered we
mean optimal orderings leading to the lower bound in the sense of
Eqs. (19) or (21).

It should be noted that the primary task of an analyst
can be to simulate samples from independent distributions.
This is very often checked by estimating correlations and
requesting uncorrelatedness. It is well known that zero correlation
between two variables does not imply their mutual independence.
Examples are easily constructed in which x is a function of y and
yet the two variables are uncorrelated.

Before we proceed with the presentation of our results, we
would like to point out that the problem of finding optimal
solutions in the form of perfectly mutually orthogonal Latin
Hypercube (LH) designs have been studied by many authors. The
most important works are mentioned below.

Owen [44] and Tang [45] showed how orthogonal arrays can be
used to generate LH designs with better properties than those of
the original LHS method published by McKay et al. [46]. An algo-
rithm that utilizes orthogonal arrays was presented in [45] with a
simple algorithm to construct Orthogonal Latin Hypercubes. Later,
Ye [47] presented a construction algorithm for a class of orthog-
onal LHs for Nsim = 2m or Nsim = 2m

+ 1, m > 2 (the latter is
constructed from the former by adding zeros as an additional sim-
ulation— done in the sameway in Section 3.3). Using his algorithm
he is able to find a solution for Nvar = 2m variables (columns).
Butler [48] showed how to construct LH designs in which terms
in a class of trigonometric regression models are orthogonal to
one another. Quite recently, Steinberg and Lin [49] discussed the
weak points of Ye’s approach. They have described a construction
method for orthogonal Latin Hypercube designs based on a combi-
nation of two ideas co-authored by the two authors, the first being
developed by Beattie and Lin [50] and the second one by Bursztyn
and Steinberg [51]. The first idea is that a certain class of orthog-
onal LH-designs can be constructed as rotations of 2Nvar factorial
designs. The second idea is that rotations can be applied to groups
of factors (variables), thereby greatly increasing the number ofNvar
in the resulting design. Using their method they are able to con-
struct orthogonal LH-designs with Nsim = 2Nvar , where Nvar = 2m.
The number of possibleNvar is almost as large asNsim. However, the
severe sample size constraint (Nsim must be powers of two) is the
primary limitation of their design.

5.1. Spearman-uncorrelatedness

5.1.1. Pair of random variables
It is interesting to study the number of optimal solutions to

the combinatorial optimization problem, i.e. solutions leading to
Table 2
Number of Spearman optimal solutions in the sense of Eq. (19).

Nvar: Two Three Four
Nsim no ≡ no,2 no,3 no,4

4 2 0 0
5 6 0 0
6⋆ (2×)29 (See Table 3) 0
7 184 768 0
8 936 11,984 4,752
9 6,688 483,924 1099,352

10⋆ (2×)49,062 (See Table 3)
11 420,480 942,553,720
12 4298,664
13 44,405,142

Table 3
Number of Spearman optimal solutions no,3 .

Accept corr. Codes for variable p
between p q c+

p c−
p c+

p and c−
p

Sample size Nsim = 6:

ρ+
max 0 0 48

ρ−
max 24 24 48

Both (sum) 24 24 96

Sample size Nsim = 10:

ρ+
max 15,296,207 15,296,207 60,806,010

ρ−
max 15,106,798 15,106,798 60,806,010

Both (sum) 30,403,005 30,403,005 121,612,020

a Spearman correlation of zero or the one given in Eq. (19). The
number of optimal solutions will be called no from here on. The
subscript o stands for optimal and the corresponding sumDo equals
either uN/2− 1 when Nsim = 6+ 4l (resp. uN/2+ 1 because there
are two symmetric correlations), oruN/2otherwise. Thenumberno
grows very fast with Nsim; see Table 2. By plotting the probability
po of receiving the optimal solution from Eq. (19) against Nsim in
a double logarithmic plot, one can note that the graph looks like a
straight line; see Fig. 5c. The asymptotic slope of this line can be
deduced from the fact that the po/∆t converge to the peak of Beta
pdf which converges to the peak of Gaussian pdf approximating
the empirical fE(t):

fo =
po

∆tSpear
=

no,Spear

Nsim!

1
∆tSpear

≈ fB (0) → fG (0) . (56)

Note that for very large Nsim we may say that fG (0) ∝ N1/2
sim and

therefore both the density and frequency of the optimal solutions
may approximated by power laws

fo ≈
1

√
2π

N1/2
sim , po ≈

12
√
2π

N−5/2
sim (57)

and the asymptotic number of optimal solutions is

no,Spear ≈
12

√
2π

Nsim!

N5/2
sim

=
12

√
2πNsim

Γ (Nsim)

Nsim
. (58)

Using Stirling’s formula we may write

no,Spear ≈ 12
NNsim−2

sim

exp (Nsim)
, (59)

which highlights the rapid increase of no with Nsim. The agreement
with numerically obtained values of the peak densities fo and
relative frequencies po of optimal solutions can be assessed in
Fig. 5c. Eq. (58) was used to compute the total number of optimal
solutions for variousNsim that are highlighted in the right hand side
of Fig. 5b. Eq. (58) quantifies the above statement that the number
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Fig. 7. Spearman optimal solutions for Nvar random variables. Left: numbers of optimal solutions. Right: probabilities of optimal solutions. Dashed lines represent Eq. (64).
of optimal solutions (or simply zero correlations) grows very fast
with Nsim. Not only that, the number of near optimal solutions also
grows very fast. This can be seen fromFig. 5b,where thehistograms
of Spearman correlations become very narrow with high Nsim.

5.1.2. Three and more random variables
In the preceding section we have found that the number of

optimal solutions grows fast with the sample size for a pair
of random variables represented by two vectors of values. An
important question is how many optimal solutions can be found
when the number of random variables increases.

The number of all different mutual orderings for a pair of ran-
dom variables is Nsim!, because we keep the vector ı⃗ representing
the first random variable ordered (identity permutation) and per-
mute the second vector, say p⃗.When the number of randomvectors
is Nvar, the number of all different possible mutual orderings is

(Nsim!)Nvar−1. (60)

The number given by Eq. (60) represents all equiprobable possible
correlation matrices (related to all possible mutual orderings of
samples) in the case when sample ordering is left random (as
proposed e.g. in [19]).

Every permutation of a vector of Nsim values can be numbered
by a code c ∈ ⟨0;Nsim!) that maps e.g. lexicographically ordered
permutations. When c = 0 the permutation is ordered (identity
permutation). The set of all no ≡ no,2 optimal solutions for a pair
of vectors {⃗ı, p⃗} is therefore associatedwith a set of no pairs of codes
{ci, cp}, where ci ≡ 0 always and cp are permutation numbers for
variable p. Note that every cp > ci. We denote the set of all no codes
cp by Πo.

We are now interested in finding all no,3 different optimal
solutions for three random variables, i.e., all triples of permutation
codes {ci, cp, cq} so that the correlations between all three pairs
of {⃗ı, p⃗, q⃗} equal zero. The first vector ı⃗ remains ordered (ci = 0)
and therefore uncorrelatedness between ı⃗ and p⃗ is achieved by
selecting the second codes, cp, from Πo. Similarly though, the third
codes, cq, are selected fromΠo. For each permutation code cp ∈ Πo
we seek optimal codes cq ∈ Πo so that the Spearman correlation
between p⃗ and q⃗ is zero. We also request that cp > cq in order to
avoid counting twomutual permutations that are obtainedmerely
by interchanges of vectors p⃗ and q⃗. There can be, at most, n2

o
permutations of p⃗ and q⃗ and this number decreases to no(no +1)/2
by removing the interchanges of p⃗ and q⃗. We can also exclude
situations when cp = cq (identical ordering) and also no situations
of reverse orderings (which we know are present in Πo). In any
case, the estimate of the upper bound on no,3 remains proportional
to n2

o/2, which indicates that the number of optimal triples might
be greater than the number of optimal pairs.
A similar procedure can be adopted when numerically seeking
the number of optimal solutions for four random variables no,4.
Every triple of permutation codes {ci, cp, cq} from the preceding
paragraph can be tested against no codes cr ∈ Πo for the fourth
variable r⃗ — to obtain the uncorrelated pairs {p⃗, r⃗} and {q⃗, r⃗}. Again,
we request that every cr > cq, which is strictly greater than cp.
Clearly, for a high enough sample size, Nsim, the number of optimal
solutionsmust growwith the number of randomvariables,Nvar. On
the other hand, when Nsim is very small adding too many variables
must result in the loss of some optimal solutions otherwise
obtained for lower Nvar.

We used this procedure to numerically determine the numbers
of the optimal solutions for small Nsim and Nvar. The results are
summarized in Table 2 and plotted in Fig. 7 (left). The numbers
given in the table correspond to Nvar orthogonal vectors that are
sorted from the lexicographically smallest ı⃗ through p⃗, q⃗, r⃗, . . . to
the largest one. The total number of pairwise orthogonal vectors
with the first vector ı⃗ sorted would be obtained by also counting
their interchanges, i.e. multiplying the numbers by

(Nvar − 1)!. (61)

When Nsim = 6 or 10, the optimum solution for a pair of variables
is not unique (zero) and there are always two nonzero optima:
ρ+
max = +6/


N3

sim − Nsim

and ρ−

max = −6/

N3

sim − Nsim

(see Eq.

(19)). The two permutations are associated with the codes c+
p and

c−
p . Therefore, we recognize the numbers n+

o and n−
o in these cases.

The number of optimal triples then depends on whether we use
c+
p or c−

p or both for the second variable p and also on whether we
accept the positive correlation error or the negative error or both;
see Table 3. For higher Nsim an exhaustive search is not feasible.
Therefore, in order to estimate the numbers of optimal orderings
and their probabilities another approach must be adopted.

In order to estimate the number of optimal solutions no,Nvar it
is useful to estimate the probability that one will hit an optimal
solution (unit correlation matrix) when permuting Nvar vectors:
po,Nvar . In the preceding section we have shown that in the case of
a pair of vectors (⃗ı, p⃗) the probability po ≡ po,2 is approximately a
power law; see Eq. (57). When dealing with Nvar random variables
represented by vectors ı⃗, p⃗, q⃗, r⃗, . . . there are Nc different entries
in the correlation matrix; see Eq. (2). The probability that each
such entry is zero equals po. In order to roughly estimate results
for Nvar random variables, we now assume that the correlation
matrix entries (random variables) are independent. They are
only pairwise independent but we can assume that they are
independent (see the discussion in Section 4.4 for the justification
for this assumption). Thus, the joint probability mass function of
all correlation coefficients (corresponding to all Nc pairs) is the
product of marginal probability mass functions. Therefore, the
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probability that all Nc entries equal zero can be approximated
as

po,Nvar / (po)Nc ≈


12

√
2π

N−5/2
sim


Nvar
2


. (62)

The probability of finding an optimal solution is also simply the
ratio between the number of optimal solutions and the number of
all possible solutions:

po,Nvar =
no,Nvar

(Nsim!)Nvar−1 . (63)

A combination of Eqs. (62) and (63) gives us an estimate of the
number of optimal solutions for arbitrary sample size Nsim and
dimension Nvar as a product

no,Nvar ≈ (Nsim!)Nvar−1
× po,Nvar

≈ (Nsim!)Nvar−1
×


12

√
2π

N−5/2
sim


Nvar
2


. (64)

For a fixed Nvar, the first factor grows faster with Nsim than the
second factor decreases and therefore no,Nvar grows with Nsim. The
growth is faster for greater Nvar. The above approximations for
no,Nvar and po,Nvar are plotted in Fig. 7 and compared with the exact
data from Table 2 (corrected by Eq. (61)). The figure shows that the
probabilities po,Nvar can be reasonably approximated bypower laws

(Eq. (62)), i.e. po,Nvar ∝ N
−

5
4 (Nvar

2
−Nvar)

sim ; see the dashed lines.
The agreement between the exactly computed values and

approximations is reasonably good; Eq. (64) provides a good
lower bound for the probabilities and for the numbers of optimal
solutions. The main result is the implication that with increasing
sample size Nsim the number of optimal solutions explodes; the
growth is even faster for greater problem dimension Nvar. Of
course, a combination of very small Nsim with large Nvar may result
in the nonexistence of any optimal solution; see the development
of the dashed lines in Fig. 7 (left).

The conditions for the existence of (at least one arrangement
of) mutually Spearman-uncorrelated vectors can obtained by
postulating that the number of optimal solutions is greater than
one: no,Nvar > 1 in Eq. (64). For larger values of both Nsim and Nvar
this can be simplified using Stirling’s approximation into

12
√
2π

exp


−2
Nsim

Nvar


× N

2Nsim+1
Nvar

−
5
2

sim > 1. (65)

This yields to a condition that Nsim ' 3
2Nvar for small Nvar. Analysis

of the leading terms yields the limiting condition for large Nvar:

Nsim >
5
4
Nvar. (66)

Unfortunately, as will be shown in part III, the algorithm
proposed in part I is unable to find any of these optimal solutions
in a reasonable time whenever Nvar > 4, although the same
holds for other algorithms studied there. However, the above-
described procedure for finding vectors of ranks leading to zero
intercorrelations suggests that the Nvar dimensional combinatorial
optimization problem may be more efficiently solved by a
sequence of Nvar − 1 significantly smaller problems. In particular,
one can progressively optimize problems with maximum Nsim!

different correlations between a pair by permuting variables p⃗
against ı⃗, then a triple of variables by permuting q⃗ against {⃗ı, p⃗},
then a quaternion of variables by permuting r⃗ against {⃗ı, p⃗, q⃗},
etc. Solving Nvar − 1 problems which have Nsim! possible results
each seems to be more efficient than solving one problem with
(Nsim!)Nvar−1 possible results.
Fig. 8. Optimal solutions for two random variables.

5.2. Kendall-uncorrelatedness

5.2.1. Pair of random variables
In analogy with Section 5.1.1, we will now study the number

of optimal solutions leading to a Kendall correlation of zero or the
one given in Eq. (21). The number no grows even faster with Nsim
than in the case of the Spearman correlation coefficient — compare
the numbers in Table 2with the numbers corresponding to Kendall
correlation in Fig. 8.

Again, the estimate of no can be deduced from the fact that the
po/∆t converge to the peak of Gaussian pdf that approximates the
exact sampling distribution fE(t):

fo =
po

∆tKendall
=

no,Kendall

Nsim!

1
∆tKendall

≈ fG (0) =
1

σ Kendall
t

√
2π

=
3
2


Nsim (Nsim − 1)
2π


Nsim +

5
2

 . (67)

Therefore, the number of optimal solutions is approximately

no,Kend ≈
6Nsim!

2πNsim (Nsim − 1)

Nsim +

5
2

 ≈
6Nsim!

√
2π N3/2

sim

. (68)

The quality of the approximation can be assessed using Fig. 8,
where the exact numbers of solutions (written close to the solid
circles) are compared to the above equation (dashed line). The
figure presents exact numbers for Nsim up to 13. When Nsim =

14 the exact result is (2×)3 727 542 188 and for Nsim = 15
an exhaustive search gives (2×)50 626 553 988. The error
of approximation by Eq. (68) decreases with increasing Nsim. For
Nsim = 4 the error is 8.4% and for Nsim = 15 the error drops below
2% (the approximation overestimates the exact results). Another
way of approximating the number of optimal solutions is:

no,Kend ≈
6Γ (Nsim)
√
2πNsim

≈ 6
NNsim−1

sim

exp (Nsim)
. (69)

Comparison of Eqs. (58) and (68) reveals how many times the
number of Kendall optimal solutions is greater than the number
of Spearman optimal solutions; see Fig. 8:

no,Kend

no,Spear
≈

Nsim

2
. (70)

5.2.2. Three and more random variables
The extension of the estimate of a number of optimal solutions

into more dimensions can be performed the same way as in
Section 5.1.2.We first estimate the probability of hitting an optimal
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solution (unit correlation matrix) when permuting Nvar vectors as

po,Nvar =
no,Nvar

(Nsim!)Nvar−1 / (po)Nc ≈


6

√
2π

N−3/2
sim


Nvar
2


. (71)

This gives us an estimate of the number of optimal solutions
for arbitrary sample size Nsim and dimension Nvar as a product
(compare with Eq. (64)):

no,Nvar ≈ (Nsim!)Nvar−1
×


6

√
2π

N−3/2
sim


Nvar
2


. (72)

Again, for a fixed Nvar, the first factor grows faster with Nsim than
the second factor decreases and therefore no,Nvar grows with Nsim.
The growth is also faster for greater Nvar.

As in the case of Spearman correlation, the question arises as to
whether a combination of very small Nsim with large Nvar results
in the nonexistence of any optimal solution. The conditions for
the existence of (at least one arrangement of) mutually Kendall-
uncorrelated vectors can obtained by postulating that the number
of optimal solutions is greater than one: no,Nvar > 1 in Eq. (72).
For larger values of both Nsim and Nvar this can be simplified using
Stirling’s approximation into

6
√
2π

exp


−2
Nsim

Nvar


× N


2Nsim+1

Nvar
−

3
2


sim > 1. (73)

This yields to a condition that Nsim ' Nvar for small Nvar. The
exponent suggests the limiting condition for large Nvar: Nsim >
3
4Nvar. It is easy to show that to estimate a positive definite
correlation matrix (particularly the unit matrix), the sample size
Nsim must exceed the dimension Nvar. Therefore, we conclude that
the optimality can only be achieved when Nsim > Nvar.

5.3. Optimal solutions yielding Pearson-uncorrelatedness of LHS-
sampled Gaussian variables

5.3.1. Pair of random variables
We now construct all possible vectors orthogonal to a given

vector of the dimension Nsim = 0 (mod 4). Vectors of a dimension
equal to the sample size increased by one can be constructed by
adding the zero center points. Once again, the total number of
orthogonal vectors will be termed no. We construct orthogonal
vectors with arbitrary coordinates (real values or integers) and
therefore such constructions can also be used for Spearman-
uncorrelated vectors.

The dot product in Eq. (6) needed for the computation of
correlation sums Nsim products of pairs of values. What we need in
order to surely achieve zero correlation (orthogonality of vectors)
is to constructm = Nsim/2 productswith positive signs (composed
of two positive or two negative values) which are each balanced
by one of the Nsim/2 identical products with negative signs. The
m positive values in each vector can be represented by symbols
{a, b, c, d, e . . .}. We will collect them into a set, u. Since Nsim =

0 (mod 4),m is even and thus divisible by two.
Let us now construct all possible vectors v by permuting the

values (coordinates) from u. The dot product u·v sumsm products.
For example, when Nsim = 8 the half length m = 4 and the
first vector might look like u = {a, b, c, d} while the permuted
vector may look like v = {b, c, d, a}. The original vector and the
vector orthogonal to it are constructed from the two half-length
vectors by conveniently assigning the two signs + and − so that
the four products {ab, bc, cd, da} will be canceled by similar pairs
composed from the other halves of the samples. Note that the
above permutation v of vector u is a cyclic permutation with a
cycle length i = m (symbol a from the first vector maps b in the
second one from which the first vector points to c , etc., and the
loop is closed after four references). Note that the permutation v
of u cannot have a fixed point (no symbol can be mapped to itself)
because their product cannot be canceled in any way. Moreover,
one can easily show that the permutation of the symbols must
consist solely of cycles with even lengths i in order to be used in the
construction of orthogonal vectors. A special case of such a cycle
with an even length i = 2 is called a transposition. The longest
possible cycle can be of length i = m and there are (m − 1)! such
permutations possible. Let us use term pi to denote the number
of cycles of length i. In order to construct a permutation from
even cycles i with the multiplicity pi, the vector length m must be
partitioned into even numbers i so that

m
i=2

i pi = m =
Nsim

2
. (74)

The number of different ways to partition m into even numbers i
is equal to the number of partitions of m/2 into positive integers
(a well known and solved problem). Let us call a given partition
a C composition. The number of ways to construct a given type C
composition is equal to

M (C) =
m!

m
2

(ipi pi!)
. (75)

Each composition must be fitted with the two signs in such a
way that the products in u · v will be canceled. The number of
convenient ways to distribute the signs to pi cycles of length i will
be called si from here on. When the cycle length i = 2, there are
only two ways to do it and therefore s2 = 2pi . This is anomalous
and it corresponds to the two pairs of type ±a × bwhen Nsim = 4
(see Table 1 in Section 3.3). In the rest of the cases there are si =

2i pi ways to distribute the signs between all pi cycles of an even
length i. Note that when there is no cycle of such length (pi) = 0,
the number si = 1. This is an important feature because the total
number of ways to distribute signs in a given type C composition
is

S (C) =

m
2

si. (76)

The total number of different constructions of orthogonal vectors
of type C composition equals
N (C) = M (C) × S (C) . (77)
Finally, in order to count all possible constructions of orthogonal
vectors no one has to sum N (C) for all different C compositions.
For example, when Nsim = 12 ⇔ m = 6, there are three types
of compositions, namely one large cycle of length {6}, two cycles
of lengths {4, 2} and three cycles of lengths {2, 2, 2} (these three
compositions correspond to a partitioning of the number three into
3 or 2, 1 or 1, 1, 1). Table 4 shows the computation.

It can be noticed that majority of the orthogonal vectors are
constructed using compositions with the longest possible cycle of
length i = m. The number of such solutions reads

N (m) = (m − 1)! × 2m. (78)
Even though the proportion N (m) /no decreases with increasing
m, one can use N (m) as a sure lower bound on the number no
giving roughly its order of magnitude (the fraction is about 89%
when Nsim = 8; 74% when Nsim = 12 (see Table 4); 61% when
Nsim = 16 and 54% when Nsim = 20). Therefore, we can write

no,Pears ' N(m) ≈
N

Nsim−1
2

sim

exp
 1
2Nsim

2√π. (79)

Fig. 8 compares the numbers of pairs of Pearson-uncorrelated
vectors (orthogonal vectors) with the numbers of Spearman-
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Table 4
Computation of the number of no,Pears = 10,680 orthogonal vectors when Nsim =

12 ⇔ m = 6.

Compos. type {6} {4, 2} {2, 2, 2}
Cycle length i pi si pi si pi si

2 0 1 1 2 3 23

4 0 1 1 24 0 1
6 1 26 0 1 0 1

M(C), S(C) 5! 26 90 25 15 8

N(C) 7860 2880 120
no,Pears (sum) 10,680

uncorrelated vectors counted in Section 5.1. It is seen that Kendall
correlation allows for the biggest number, no. It is also clear
that in the Spearman case, the number no is greater compared
to the number of orthogonal vectors no,Pears at the same sample
size Nsim. Why? Orthogonality with real numbers is a stricter
requirement than Spearman or Kendall-uncorrelatedness obtained
with integer ranks. To highlight the difference between the
numbers of Spearman and Pearson correlations, we now square
no,Pears from Eq. (79) and divide it by Nsim:

n2
o,Pears

Nsim
≈ 4π

NNsim−2
sim

exp (Nsim)
≈ no,Spear. (80)

Comparison with Eq. (59) immediately shows that the number
of Spearman orthogonal solutions is approximately equal to the
square of Pearson solutions divided by Nsim.

5.3.2. Three and more random variables
The situation is more complicated when constructing three or

more mutually orthogonal vectors. For example, when Nsim =

12 (or 13), no third vector that is orthogonal to the previous
two can be constructed to any of the 10 680 pairs from Table 4.
Surprisingly, for a smaller sample size many solutions exist. In
particular, when Nsim = 8 (or 9), there are no,3 = 216 orthogonal
triples. The exhaustive search based on the construction of a pool of
orthogonal vectors to a given vector using themethod suggested in
the previous section and then selecting the third, fourth, etc. vector
from the pool quickly becomes too expensive, which renders it
useless.

In Sections 5.1.1 and 5.2.1, which are focused on Spearman and
Kendall correlations, we have exploited the knowledge of the dis-
tribution of a random correlation coefficient to estimate no,Nvar for
arbitraryNvar. The key fact used there is that Spearman and Kendall
correlations take on values (troughs) that are uniformly distributed
over the interval ⟨−1, 1⟩. The probability density could therefore
be readily transformed into a number of occurrences (multiplic-
ity) of particular correlations. Unfortunately, the attainable Pear-
son correlations are not distributed uniformly over the correlation
range and we cannot apply the same trick. We conclude by refer-
ring to the papers on orthogonal arraysmentioned at the beginning
of Section 5 where the constructions are solved for selected Nvar
and Nsim. These papers prove that mutually orthogonal vectors oc-
cur in higher dimensions, at least for those selected combinations
of Nsim and Nvar.

6. Conclusions

The paper presents theoretical (analytical) and some numerical
results regarding the bounds of correlation errors for estimated
correlation matrices. The results are focused on Spearman
and Kendall rank order correlations, as well as Pearson linear
correlation. The Spearman and Kendall correlation coefficients are
distribution free and therefore the results are of wide applicability.
All the results presented for Pearson’s correlation are stated
for Gaussian variables sampled via the LHS method (in two
alternatives described in Part I, namely LHS-mean and LHS-
median). Some of the results for Pearson’s correlation can be
applied to any symmetrical distribution sampled via the two
methods. The most important results are as follows.

• Analysis of the minimum error in sampling correlation for
Spearman, Pearson and Kendall correlation coefficients when
an arbitrary correlation coefficient is requested. The analysis
is based on the structure of the formula for correlation
estimation. Special attention has been paid to the lower bound
on correlation error when uncorrelatedness is targeted. These
exact errors are derived for all three correlation coefficients.

• Derivation of the possibility and number of optimal solutions,
i.e. mutual orderings of vectors representing random variables
whose pairwise correlations are zero or attain the lower bounds
from the preceding item.

• Statistical distribution of the correlation norms ρrms and ρmax
defined in Part I as they occur when sample ordering is
left random. These norms serve as the upper bound on the
efficiency of the combinatorial algorithm proposed in Part I. It is
a common practice to model uncorrelated or even independent
random variables using vectors whose ordering is shuffled
independently. In such cases the knowledge of the distributions
is also important.

These results are used in the companion paper Part III which
presents the performance of the correlation induction algorithm
presented in Part I.

Special attention must be paid to situations when the sample
size Nsim is smaller than the number of variables Nvar. In these
cases, the estimated correlation matrix is singular, yet the analyst
may request the best possiblematch between the target and actual
correlations. The cases when Nsim ≤ Nvar are thoroughly analyzed
in [52].
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