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ABSTRACT: An increasing attention is paid to probabilistic treatment of both commercial and academic re-
search finite element codes. Computational demands are often high, especially in case of nonlinear problems.
Simulation of random fields is the fundamental task in stochastic finite element method (SFEM). There are many
techniques available nowadays, but for computationally intensive problems (typically nonlinear FEM calcula-
tions) we are constrained by small number of Monte Carlo type simulations we can afford. The paper proposes
a method which combines the spectral decomposition of covariance matrix and improved Latin Hypercube
Sampling (LHS). Paper tackles some extremely important aspects of random fields simulation for SFEM with
small number of simulations at satisfactory accuracy: improvements to both basic statistical moments and au-
tocorrelation structure of simulated random field. All these aspects are important for computational efficiency,

robustness and accuracy in SFEM.

1 INTRODUCTION

Stochastic finite element method (SFEM) had facili-
tated the use of random fields in computational me-
chanics. Many material and other parameters are un-
certain in nature and/or exhibit random spatial vari-
ability. Efficient simulation of random fields for prob-
lems of stochastic continuum mechanics is in the fo-
cus of both researchers and engineers. Achievements
in stochastic finite element approaches increased the
need for accurate representation and simulation of
random fields to model spatially distributed uncertain
parameters.

The spatial variability of mechanical and geometri-
cal properties of a system and intensity of load can be
conveniently represented by means of random fields.
Various methods have been developed for the rep-
resentation and simulation of random fields utilized
within the framework of SFEM e.g. (Vanmarcke et al.
1986, Yamazaki et al. 1988, Schuéller et al. 1990, Liu
et al. 1995) and many others.

The computational effort in reliability problem
is proportional to the number of random variables,
therefore it is desirable to use small number of ran-
dom variables to represent a random field. Simulation
of the random field by a few random variables is es-
pecially suitable for problems where theoretical fail-

ure probability should be calculated. It enables an ef-
ficient use of advanced simulation techniques based
on importance sampling (Brenner 1991). To achieve
this goal, the transformation of the original random
variables into a set of uncorrelated random variables
can be performed through an eigenvalue orthogonal-
ization procedure (Schuéller et al. 1990, Liu et al.
1995). It is demonstrated that a few of these uncorre-
lated variables with largest eigenvalues are sufficient
for the accurate representation of the random field
(Zhang and Ellingwood 1995).

Monte Carlo type generation of random fields is
based on combination of orthogonal transformation of
covariance matrix (spectral decomposition) and LHS.
This combination has been recently proposed e.g.
Novak et al. (2000) or Olsson and Sandberg (2002).

2 ORTHOGONAL TRANSFORMATION OF CO-
VARIANCE MATRIX

Suppose that a spatial variability of random parame-
ter is described by the Gaussian random field a(x),
x = (z,y,2) is the vector coordinate which deter-
mines the position on the structure. Numerical analy-
sis requires a discrete representation of random field.
A continuous field a(x) is described by discrete val-
ues a(x;) = a(x;,y;, 2;), where i = 1,..., N denotes
the discretization point.
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The autocorrelation function of the spatial homo-
geneous random field is supposed to be a function of
the distances between two points |Az|, |Ay| and |Az|.
The following commonly used exponential form of an
autocorrelation function is considered (written in one
dimension, for random process):

rean e[ (B2)7] 0

in which d, is positive parameter called correlation
length and o is the standard deviation of the random
field. With increasing d, a stronger statistical corre-
lation of a parameter in space is imposed and oppo-
site. Note, that an isotropic autocorrelation function
has all correlation lengths identical, d, = d,, = d.. The
power pow is usually two which leads to well known
bell-shaped (or squared exponential) autocorrelation
function.

When the finite element method is used, the struc-
ture is divided into an appropriate number of finite el-
ements of small sizes. The size of each finite element
must be small enough from the material property
variability (correlation length), as well as from the
stress/strain gradient point of view. It must be small
enough so that the values of random field can be con-
sidered approximately constant within each element
(or vicinity of an integration point). Note that gener-
ally the discretization mesh of random field mesh and
finite element mesh may be different. Consider the
fluctuating components of the homogenous random
field, which is assumed to model the material prop-
erty variation around its expected value. Then the N
values, a; = a(x;), are random with zero mean and
autocorrelated. x; is the location of the centroid of
element ¢ or integration point (depending on the dis-
cretization of random field). Their correlation char-
acteristics can be specified in term of the covariance
matrix C,,, whose ij-component is given by:

cij = Covlaia;] = Rea(Ai ;) ()]

The random variables can be transformed to the un-
correlated normal form by solution of an eigenvalue
problem, e.g. (Schuéller et al. 1990, Liu et al. 1995):

Cxx = PADT 3)

where C'xx is the covariance matrix (obtained by
discretization from autocorrelation function; for unit
variance, 02 = 1 ). The matrix ® represents the or-
thogonal transformation matrix (eigenvectors).

The covariance matrix in the uncorrelated space Y’
is diagonal matrix A = Cyy, where the elements of
diagonal are the eigenvalues (\,...,\,) of covari-
ance matrix Cxx.

Usually, not all eigenvalues have to be calculated
and considered for the next step (simulation of ran-
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dom variables) as the fluctuations can be described
almost completely by a few random variables. This
can be done by arranging the eigenvalues in descend-
ing order, calculating the sum of the eigenvalues up
to the i-th eigenvalue and dividing it by trace of A.
This criterion for reduction is very natural as it is
based on control of variability captured by reduced set
of random variables. Eigenvalue matrix of covariance
matrix of Y contains variances of random variables.
They are equivalent to eigenvalues, only the largest
eigenvalues are dominating and should be used. The
question “how many?” can be answered by calculat-
ing the ratio of contribution of eigenvalues to the over-
all variability of field. Note that the selection is a com-
promise solution: Less variables is used less variabil-
ity is captured. The reduction results generally to sim-
ulation of random field which have variance smaller
than required. A certain underestimation of this statis-
tics will always occur.

The reduction of number of random variables in
fact depends on relationships between total dimen-
sions and discretization of the structure (model) and
given correlation lengths. If the random properties of
closely adjacent elements are correlated, the original
(full) set of random variables can be represented by a
smaller number of uncorrelated random variables. If
the correlation length is large (with respect to dimen-
sion of structure and discretization) the reduction is
progressive. In limiting case when correlation length
approaches infinity, the result is that random field can
be represented by one random variable only (random
field is equivalent to random variable). Opposite, if
correlation length approaches zero, no reduction is
possible and all random variables have to be involved
for proper representation of random field. Example of
description of the randomness by the most important
random variables is given in Fig. 1. And in addition
to, reduction could be a corollary of a truncation error
in solution of eigenvalues of Cxx. In cases when cor-
relation lengths are comparable to total dimensions of
heavily discretized model the solution of eigenvalues
of assembled covariance matrix results in a few dom-
inant eigenvalues and many small eigenvalues which
can be neglected.

These aspects are illustrated in Fig. 1 where the
sum of eigenvalues divided by trace (portion of nor-
malized variability expressed in percentage) is plotted
vs. number of random variables used for representa-
tion. We considered a structure of length 10 m (e.g.
beam) divided into 128 discretization points associ-
ated with finite elements (N = 128). For univariate
Gaussian random process with zero mean, unit vari-
ance and squared-exponential autocorrelation func-
tion, two values of correlation length are considered
in order to show the influence of this parameter, d =
0.1 mand d = 1 m. It can be seen that in order to cap-
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Figure 1: Reduction of number of random variables based on normalized variability.
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Figure 2: Random field realizations for correlation length a) d = 0.1 m; and b) d = 1 m. Estimated mean
processes and + standard deviations are plotted.

ture the variability of random field, smaller number
of random variables r is needed in case of larger cor-
relation length. For example, in order to simulate 95
% of variability we need only 10 largest eigenmodes
in case of d = 1 m; but for d = 0.1 m we need 89
of them. Random field realizations are illustratively
shown in Fig. 2 for Ng;,, = 16 simulations only.

Let the chosen number of important dominating
random variables by eigenvalue analysis be Ny. Now,
the eigenvector matrix ® denotes the reduced eigen-
vector matrix containing only the respective eigen-
vectors to the Ny most important eigenvalues. Then
the vector of uncorrelated Gaussian random variables
YT = [V,Ys,...,Yy,] can be simulated by a tra-
ditional way (Monte Carlo simulation). The random
variables of vector Y have mean zero and standard
deviation v/A,v/Ag,...,/Ax, . The transformation
back into correlated space yields the random vector
X by the relation:

X =®Y )

As already mentioned, the procedure enables sig-
nificant reduction of uncorrelated random variables
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for representation of random field especially for
higher values of correlation length. These random
variables can be simply generated by plain MCS, rep-
resentation of random field is formed via formula (4).

There are two major computational burdens associ-
ated with the method:

1. Solution of eigenvalue problem. This may be
seen as a serious drawback of the technique for
large SFEM system. But such initial computa-
tional effort is rewarded later at the step of Monte
Carlo simulation resulting in efficient and trans-
parent technique.

2. Simulation of uncorrelated random variables.
The impact of accuracy in simulation of random
variables is studied in the following.

The main advantage of this approach is that ad-
vanced simulation techniques based on the concept of
importance sampling can be used for reliability cal-
culations because these techniques can usually work
efficiently under the set of limited number of random
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variables. The possibility of determination of theoreti-
cal failure probability with a good numerical accuracy
is then guaranteed.

The vector of uncorrelated Gaussian random vari-
ables Y7 = [V1,...,Y;] can be simulated by a tra-
ditional way (Monte Carlo simulation). LHS can be
used for simulation of Y (Novak et al. 2000). This
paper clarifies impact of accuracy of correlation struc-
ture of samples as well as significance of accuracy
of sampling scheme itself. Next comment is there-
fore devoted to LHS methodology. Later, LHS is uti-
lized by authors for simulation of statistically uncor-
related random variables with Gaussian distribution
and compared to classical Monte Carlo simulation
(Vorechovsky and Novak 2003).

3 LATIN HYPERCUBE SAMPLING UTILIZA-
TION

Majority of papers on LHS is focused on the level
of random variables and LHS is rarely employed for
random fields simulation in SFEM. The aim of this
section is to repeat the possibility of improvement of
the method based on orthogonal transformation of co-
variance matrix for random field simulation and to
show some new improvements to the method. The ap-
proach is based on utilization of stratified sampling
technique LHS for simulation of dominating uncorre-
lated random variables. The result is that only a few
random variables and quite small number of simula-
tions is necessary for accurate representation of a ran-
dom field. This should be proved at least numerically.
The methodology for an assessment of error of simu-
lations is described in section 4, numerical examples
inclusive. A comparison with classical Monte Carlo
simulation (MCS) reveals the superior efficiency and
accuracy of the method. A parametric studies focused
on the quality of simulated random fields (target sta-
tistical parameters and simulated statistical character-
istics of random field) are presented later. An empha-
size is given to the region of very small numbers of
simulations (tens, hundreds) which is particularly im-
portant for SFEM analysis of complex computation-
ally intensive problems.

Small number of simulations can be used for ac-
ceptable accuracy using some stratified sampling, one
often used alternative is LHS technique. This tech-
nique belongs to the category of advanced simula-
tion methods (McKay et al. 1979, Iman and Conover
1980, Iman and Shortencarier 1984).

When any method for random field simulation is
used it is required that the statistical characteristics of
the field generated should be as close as possible to
the target statistical parameters. Generally, the mean
values, standard deviations, correlation and spectral
characteristics (we will use the common term “statis-
tics”) cannot be generated with absolute accuracy. Ba-
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sic information about random field is captured by its
second moment characteristics, i.e. the mean function
1 and the covariance function Cl,.

Here should be tackled some extremely important
aspects of random fields simulation for stochastic fi-
nite element analysis (SFEM): Spurious correlation
reduction, a restriction resulting from Cholesky de-
composition of covariance matrix, orthogonal trans-
formation of covariance matrix (called sometimes
spectral decomposition) and the utilization of Latin
hypercube sampling (LHS) for random fields simu-
lation. All these aspects are important for computa-
tional efficiency, robustness and accuracy in SFEM.
A superiority of LHS was already showed by many
researchers, e.g. (Novak et al. 2000, Bucher and Ebert
2000, Olsson and Sandberg 2002) and others. A prac-
tical consequence is using small number of simula-
tions of random field to achieve satisfactory accuracy.
In spite of these achievements some arising questions
remained not answered and remarks should be done.

3.1 Classification of sampling schemes

There are three different method to diminish spuri-
ous correlation available nowadays: Method based on
Cholesky decomposition of covariance matrix, (Iman
and Conover 1982); Single-switch optimization
scheme, (Huntington and Lyrintzis 1998); Method
based on simulated annealing due to Vofechovsky and
Novak (2002) which will be used in the following.

Hypothetically, there are 6 combinations.

e crude Monte Carlo simulation denoted “MCS”;

e LHS under original scheme denoted “LHS-
median”, (McKay et al. 1979);

e LHS under improved scheme denoted “LHS-
mean”, (Huntington and Lyrintzis 1998), an al-
ternative described later on.

These schemes can be applied in two alternatives:

e No attention paid to spurious correlation (SC);
e Spurious correlation diminished (SCD)

There are 6 combinations, cases with SC and SCD,
which are sampled by MC, LHS-median and LHS-
mean. What is the best alternative? Naturally, the
quality of sampling schemes can be intuitively pre-
dicted even without numerical experiment, e.g. com-
bination (MCS) and (SC) should definitely belong
to worst case and combination of (LHS-mean) and
(SCD) should be the most efficient. Note, that in case
of random field simulation using the orthogonal trans-
formation of covariance matrix, the quality of sam-
pling is influenced by criterion for a reduction of num-
ber of random variables. A proper error assessment
based on numerical experiment is therefore the most
objective method for qualitative assessment of sam-
pling schemes listed above.
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The quality of generated random field is a primary
task and should be tested first. The approach for error
assessment can be elaborated in a similar way to as
the general error assessment procedure due to (Novak
et al. 1995, Novak et al. 2000).

3.2 Improvements to autocorrelation structure

Sampling scheme of LHS can be represented by ma-
trix Y, where samples are in Ng;,, rows and Ny
columns related to random variables (/Ny is number
of input variables). During classical LHS sampling a
spurious (random) correlation can be introduced be-
tween random variables (columns in Y'). It can hap-
pen especially in case of very small number of simula-
tions Ng;,, (tens), where the number of interval com-
bination is rather limited.

The imposition of prescribed statistical correlation
into sampling scheme can be understood as an op-
timization problem: The difference (expressed by a
matrix norm F) among prescribed K and generated
S correlation matrices should be as small as possible.
The methodology for reduction of spurious correla-
tion based on optimization technique Simulated An-
nealing (SA) is proposed and thoroughly described
by Vofechovsky and Novak (2002); technique has a
great consequence: There is no restriction concern-
ing number of simulations n. Number of simulations
can be extremely low as covariance matrix of Y~ does
not have to be positive definite. There is a penalty
for this advantage: Spurious correlation can be dimin-
ished only until certain limit.

What are the consequences of spurious correlation
to autocorrelation function variability of simulated
random fields? The study has been performed with
a random process from the example in section 2 with
autocorrelation length d = 1 m and for two numbers
of simulations — an error assessment based on samples
simulations from population is described later. From
all 128 random variables only 52 has been used af-
ter orthogonalization procedure to represent random
field (the smallest eigenvalue taken into account was
1- 1075, which represents a random variable with
negligible standard deviation). The results are shown
in Fig. 3, mean values and the scatterband repre-
sented by mean =+ standard deviation of autocorrela-
tion function is plotted. Figure 3a) shows the result
for Ng;, = 32, spurious correlation is not diminished
(LHS-mean-SC). It is obvious that capturing of target
autocorrelation function is weak and the scatterband
is large. The explanation is clear, using only Ng;,, =
32 leads to large both norms (E,,, and E,,¢.qi) used
as the objective function to be minimized in Simu-
lated annealing algorithm (Votechovsky and Novak
2002). Only a slight improvement can be seen if spuri-
ous correlation is diminished (LHS-mean-SCD), Fig.
3b). When Ng;,, increases to 64, capturing of autocor-
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relation function is better, Fig. 3c), d). Note that now
the alternative with diminished spurious correlation
by SA resulted in excellent function capturing with
very small variability, see figure 3d). This fact cor-
responds with both norms which are in case d) very
small. It can be seen that the spurious correlation at
the level of simulation of independent random vari-
ables influences negatively the autocorrelation func-
tion. These illustrative figures also clearly indicate
that norms used as objective functions in Simulated
Annealing algorithm (Votechovsky and Novak 2002)
can be interpreted as a qualitative prediction of result-
ing quality of autocorrelation structure.

3.3 Improvements to sampling of random variables

The classical approach of LHS is to use centroids of
layers on distribution function to obtain realizations
vie = F71[(t+0.5/n)] a method denoted “LHS-
median”. Huntington and Lyrintzis (1998) showed
that this approach gives samples with a mean close to
desired one, but sample variances can be significantly
different. They proposed sampling scheme (also used
by Keramat and Kielbasa (1997), where the repre-
sentative value of each layer on distribution function
should be chosen as probabilistic mean of correspond-
ing disjunct interval “LHS-mean”:

Vit :n/ y- fily)dy ©)
where f; is PDF of variable Y;. Integration limits
define boundaries of equiprobable intervals:

Zig = Fiil <%> (©)

where F; is CDF of variable Y;. This sampling gives
arithmetic mean equal to the desired one (sampling
follows the definition of mean value) and variability
of sample set much closer than that of the current
technique.

4 ERROR ASSESSMENT OF RANDOM FIELDS
SIMULATION

4.1 The concept of assessment

The quality of simulated random field is a primary
task and should be tested first, before any application
with physical computational model. Some samples of
random fields for a parameter are simulated from the
population parameters. A certain statistics of the par-
ticular simulation may be very close to or quite far
away from the value of corresponding target param-
eter. When the seed of the pseudo-random number
generator is changed, other random fields are gener-
ated and other values of all sample statistics are natu-
rally obtained. Therefore, each of these statistics can
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Figure 3: Scatterband of autocorrelation function C,,(§) for Ng;,, = 32: a) LHS-mean-SC;

b) LHS-mean-SCD;

be considered as a random variable with some mean
value and variance. The simulation technique is con-
sidered as best one which gives an estimated mean
value of the statistics very close to the target mean
value and also closest to zero variance of the statis-
tics. In our case of zero mean value and unit variance
of random field (basic target statistical parameters) we
expect to get estimated mean around zero and vari-
ance around one.

The assessment can be done by performing more
runs of the same simulation process with a different
random setting of the seed of pseudo random num-
ber generator. Thus samples are artificially generated
from the population in this way. Procedure can be de-
scribed as follows (for one particular run):

e Ng;,, simulations of random field are performed
with initial random seed setting and prescribed
parameters;

e Statistics are evaluated from Ng;,, generated re-
alizations of the random field over all N dis-
cretization points (capturing also the ergodicity
as the basic property of random field) mean @y
and standard deviation o, are evaluated.

e Correlation and spectral characteristics are esti-
mated and compared to the target autocorrelation
function or power spectral density.

The procedure itemized above is repeated N,
times, each time with different initial random setting
of the seed. Naturally, statistics obtained in each run
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and Ng;,,, = 64: ¢) LHS-mean-SC; d) LHS-mean-SCD.

are different, e.g. different mean @, and standard devi-
ation o,,. As measures of the accuracy of simulation,
the mean values and standard deviation are calculated
from N,,, statistics obtained. Symbolically, we as-
sign the following symbols:

e Mean(a;), Mean(o,,) for mean values of mean
@ and standard deviation o,,.

e Std(a;), Std(o,,) for standard deviations of
mean @ and standard deviation o, .

If the simulation is successful, then Mean(a;) — 0,
Mean(o,,) — 1 and standard deviations Std(.) — 0
(hypothetical limits for Ng;,, — 00).

4.2 Numerical results

For the numerical study, let us consider the uni-
variate random process from section 2. The re-
gion of small number of simulations (Ng;, =
8,16,32,64,128,256,512) has been selected in para-
metric study — implicitly it was supposed that the su-
periority of LHS should appear for small number sim-
ulations (tens, hundreds). Number of runs N,.,,, = 30
was selected for estimation of statistics. So the ran-
dom fields had to be simulated N,,, X Ng;, times
for a statistics of interest.

The following alternatives have been selected for
the error assessment: MCS-SC, MCS-SCD, LHS-
median-SC, LHS-median-SCD, LHS-mean-SC and
LHS-mean-SCD. The results are plotted in Fig. 4.

Mean value: An ability to simulate mean value of
random field is excellent in all alternatives of LHS
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Figure 4: Statistics of mean and standard deviation (d = 1 m): a) mean of mean; b) standard deviation of
mean; c) mean of standard deviation; d) standard deviation of standard deviation

(figures a) and b)), even for very low number of sim-
ulations. This ability is rather poor in case of MCS,
mean value of mean fluctuates and standard deviation
of mean is high in comparison to LHS (around the or-
der 1078 for LHS alternatives, which is just a noise
due to numerical inaccuracy).

Standard deviation: The ability to simulate stan-
dard deviation of random field is documented in fig-
ures ¢) and d). Again, capturing of this statistics is
“random” in case of MCS, standard deviation of stan-
dard deviation is high in comparison to LHS. LHS-
median underestimates mean value of standard devi-
ation (figure c)) for low number of simulations. The
capability of improved sampling scheme LHS-mean
is much better and convergence to target statistic (unit
standard deviation) is faster. This is a general feature
of LHS tested at the level of random variables.

An important fact is documented: There is no sig-
nificant difference between alternatives SC and SCD
in case of MCS, LHS-median and LHS-mean sam-
pling schemes. Both LHS methodologies generally
prescribes mean value in section (discretization point)
of a field, but variability (standard deviation) in sec-
tion is better for LHS-mean sampling.

Diminishing spurious correlation has small influ-
ence on these basic statistics of random field (in our
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study statistics of random fields are “smeared” length-
wise, but an impact of spurious correlation could re-
main in sections of random field realizations). In most
cases differences are negligible and points coincide
in presented figures. As was shown above, a spurious
correlation influences negatively the autocorrelation
structure of random field. Note, that if we construct
statistics presented in Fig. 4 for different correlation
length of the field, similar trends will be obtained.

5 CONCLUSIONS

It has been shown that a spurious correlation in-
fluences significantly the scatter of autocorrelation
function of simulated random fields. A decrease of
scatter-band is influenced by the possibility to dimin-
ish the spurious correlation. The method for diminish-
ing spurious correlation based on stochastic optimiza-
tion method SA appeared to be robust and efficient for
random field simulation. This possibility is limited in
case of very small number of simulations (with re-
spect to number of random variables representing ran-
dom field). A clear indication of this limitation is the
fulfillment of norms used as objective functions in SA
to diminish spurious correlation.

The quality of simulated random fields should be
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assessed by usage of both basic statistics (mean value
and standard deviations) applied for simulated mean
and standard deviation. An error assessment has been
performed for six alternatives of sampling schemes.
The best performance, ie. the convergence to tar-
get values of statistics with low variability has been
achieved in case of LHS approach with improvement
(LHS-mean). Diminishing spurious correlation does
not influence the capturing of these statistics but does
influence significantly realization of autocorrelation
function of random field.

The superior efficiency of LHS and correlation con-
trol is confirmed. But attempt has been done to show
better the role of correlation control — diminishing
spurious correlation in random field simulation and
importance of sampling schemes for simulation of un-
correlated random variables.

The proposed small-sample simulation of random
fields is utilized for probabilistic nonlinear fracture
mechanics modeling of concrete structures (Novak
et al. 2005) and in the context of simulation of ran-
dom strength field of fibers for multifilament yarns
(Vofechovsky and Chudoba 2005).

6 ACKNOWLEDGEMENT

The authors thank for financial support provided un-
der the projects: Clutch, No. 1K-04-110 from Min-
istry of Education of the Czech Republic and VITE-
SPO, No. 1ET409870411 from Academy of Science
of the Czech Republic.

REFERENCES
Brenner, C. E. 1991. Stochastic finite element methods (Liter-
ature review). Technical Report Internal Working Report,
No. 35-91: Institute of Engineering Mechanics, Univer-
sity of Innsbruck, Austria.

Bucher, C. G. & Ebert, M. 2000. Load carrying behavior of
prestressed bolted steel flanges considering random geo-
metrical imperfections. 8" ASCE Specialty Conference
on Probabilistic Mechanics and Structural Reliability,
PMC 2000 (CDROM Proc.): Notre Dame, USA. ASCE.

Huntington, D. E. & Lyrintzis, C. S. 1998. Improvements
to and limitations of Latin Hypercube Sampling. Prob-
abilistic Engineering Mechanics Vol. 13 (No. 4):245-
253.

Iman, R. C. & Conover, W. J. 1980. Small sample sensitivity
analysis techniques for computer models with an appli-
cation to risk assessment. Communications in Statistics:
Theory and Methods Vol. A9 (No. 17): 1749-1842.

Iman, R. C. & Conover, W. J. 1982. A distribution free ap-
proach to inducing rank correlation among input vari-
ables. Communications in Statistics B11311-334.

Iman, R. L. & Shortencarier, M. J. 1984. A FORTRAN 77
program and user’s guide for the generation of Latin Hy-
percube and random samples for use with computer mod-
els. Technical Report NUREG/CR-3957 Report: U.S.
Nuclear Regulatory Commission, SAND83-2365.

Keramat, M. & Kielbasa, R. 1997. Efficient average quality
index of estimation of integrated circuits by Modified

2552

Latin Hypercube Sampling Monte Carlo (MLHSMC).
IEEE International Symposium on Circuits and Systems:
Hong Kong.

Liu, W. K., Belytschko, T., & Lua, Y. J. 1995. Probabilistic
Structural Mechanics Handbook: Theory and Industrial
Applications (4" ed.). Texas, USA: Spinger Verlag, New
York.

McKay, M. D., Conover, W. J., & Beckman, R. J. 1979. A
comparison of three methods for selecting values of input
variables in the analysis of output from a computer code.
Technometrics 21239-245.

Novak, D., Lawanwisut, W., & Bucher, C. 2000. Simula-
tion of random fields based on orthogonal transformation
of covariance matrix and Latin Hypercube Samplings.
M. G. L. Schuéller P. D. Spanos Der Kiureghian & Pes-
tana (Eds.): International Conference on Monte Carlo
Simulation MC 2000: Monaco, Monte Carlo: 129-136.
Swets & Zeitlinger, Lisse (2001).

Novak, D., Stoyanoff, S., & Herda, H. 1995. Error assessment
for wind histories generated by autoregressive method.
Structural safety Vol. 17 (No. 1): 121-125.

Novak, D., Vofechovsky, M., Pukl, R., Cervenka, V., Lehky,
D., & Rusina, R. 2005. Stochastic nonlinear fracture me-
chanics finite element analysis of concrete structures.
ICoSSaR "05 the 9" International Conference on Struc-
tural Safety and Reliability: Rome, Italy.

Olsson, J. & Sandberg, G. E. 2002. Latin Hypercube Sam-
pling for Stochastic Finite Element Analysis. Journal
of Engineering Mechanics, ASCE Vol. 128 (No. 1): 121—
125. Technical note.

Schuéller, G. I., Bucher, C. G., & Pradlwarter, H. J. 1990.
Computational methods in stochastic structural dynam-
ics. EURODYN90: Germany.

Vanmarcke, E. H., Shinozuka, M., Nakagiri, S., Schuéller,
G. L., & Grigoriu, M. 1986. Random fields and stochastic
finite elements. Structural Safety (No. 3): 143-166.

Votechovsky, M. & Chudoba, R. 2005. Statistical length scale
for micromechanical model of multifilament yarns and
size effect on strength. ICoSSaR 05 the 9" Interna-
tional Conference on Structural Safety and Reliability:
Rome, Italy.

Vorechovsky, M. & Novak, D. 2002. Correlated ran-
dom variables in probabilistic simulation. P. Schiefl,
N. Gebbeken, M. Keuser, & K. Zilch (Eds.): 41" Interna-
tional Ph.D. Symposium in Civil Engineering: Volume 2:
Munich, Germany, http://www.phd.bv.tum.de:
410-417. Millpress, Rotterdam.

Votechovsky, M. & Novak, D. 2003. Efficient random fields
simulation for stochastic FEM analyses. K. J. Bathe
(Ed.): 2" M.LT. Conference on Computational Fluid
and Solid Mechanics: Cambridge, USA: 2383-2386. El-
sevier Science Ltd., Oxford, UK.

Yamazaki, F., Shinozuka, M., & Dasgupta, G. 1988. Neu-
mann expansion for stochastic finite element analy-
sis. Journal of Engineering Mechanics Vol. 114 (No.
8):1335-1354.

Zhang, J. & Ellingwood, B. 1995. Error measure for reliabil-
ity studies using reduced variable set. Journal of Engi-
neering Mechanics Vol. 121 (No. 8):935-937.

© 2005 Millpress, Rotterdam, ISBN 90 5966 040 4



