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ABSTRACT 

To simplify stochastic finite element analysis of the strength of structures failing at crack initiation from a 
smooth surface, the present paper exploits a recently derived [8] generalized law for the combined energetic-
probabilistic size effect on the mean nominal strength of structure. The simplification is achieved by using a 
simple practical procedure recently proposed by the authors [1], which captures both the deterministic and 
statistical parts of size effect. The paper explains this new procedure and demonstrates its practical applica-
tion in finite element analysis. In this procedure, Monte-Carlo statistical simulations of nonlinear structural 
response, which can be very time-consuming, are avoided. It suffices to conduct only deterministic finite 
element analyses based on nonlinear fracture mechanics, for which the crack band model (or nonlocal model) 
can be used. The results of deterministic nonlinear finite element analyses for structures of several scaled 
sizes are then fitted with the deterministic part of the aforementioned size effect law for the mean structural 
strength. The analysis is simplified, as recently proposed [1], by subdividing the structure into so-called ‘ran-
dom blocks’, the strength of which is scaled directly according the stability postulate of extreme value statis-
tics. To capture the statistics, it suffices to superimpose on the fitted deterministic part of size effect law the 
Weibull size effect, which is important for very large structure sizes. The demonstrated procedure can be 
performed with any commercial finite element code, provided that the code can satisfactorily reproduce the 
deterministic size effect.  
 

1  INTRODUCTION AND SIZE EFFECT FORMULAE 
To incorporate assessments of the deterministic and statistical size effects into the design or and 
safety assessment of very large unreinforced concrete structures (such as arch dams, foundations 
and earth retaining structures), in which the statistical size effect plays a significant role, a simple 
and robust procedure is necessary. Such a procedure has recently been proposed [1], and in the 
present paper it is explained and demonstrated. This procedure allows making failure load predic-
tions without simulations of Monte Carlo type. It exploits the previously derived law for the ener-
getic-statistical size effect in the mean sense, and combines this law with deterministic solutions 
obtained with a finite element code based on nonlinear fracture mechanics, i.e., a code involving 
the crack band model or nonlocal damage model.  
     The work of Bažant, Vořechovský and Novák [1], on which this paper is based, utilized an 
improved size effect law derived in [8], in which the scaling is controlled by two characteristic 
lengths, one deterministic and one statistical. The objective of this new law is to capture the com-
bined energetic-probabilistic size effect on the nominal strength of structures failing at crack initia-
tion from smooth surface. The role of these two lengths in control the transition from the energetic 
size effect to the statistical size effect of Weibull type. Their role will here be explained and their 
relation to the recently developed deterministic-energetic formula and energetic-statistical formula 
will be clarified.  
     The deterministic energetic size effect formula for crack initiation from smooth surface [2,3,4], 
derived as the limit case of equivalent linear elastic fracture mechanics [2,3],  reads: 
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where σN is the nominal strength depending on the structure size, D . Parameters fr
∞, Db and r are 

positive constants representing the unknown empirical parameters to be determined. Parameter fr
∞ 

represents the value of the elastic-brittle nominal strength for structure size approaching infinity, 
which needs to be determined empirically. Exponent r (a constant) controls the curvature and the 
steepest slope of the size effect curve. This exponent offers a degree of freedom in data fitting 
while having no effect on the asymptotic expansion of size effect used in the derivation  [2,3]. 
Parameter Db has the meaning of the thickness of boundary layer of cracking. Variation of parame-
ter Db  moves the entire size effect curve as a rigid body to the left or right in log-log scale; Db 
represents a deterministic scaling parameter which is, in principle, related to the grain size (or 
maximum aggregate size) and drives the transition from elastic-brittle behavior (Db/D→0) to qua-
sibrittle behavior (Db/D>0). 
     In view of the fact that the nominal strength of vanishingly small structures (smaller than Db) 
must approach a finite plastic limit, parameter lp is introduced to control the convergence to this 
value. Formula (1) represents the full size range transition from perfectly plastic behavior (when 
D/Db →0; D lp) through quasibrittle behavior to elastic brittle behavior (D/Db →∞; D Db). 
Parameter lp governs the transition to a small-size asymptotic value corresponding to plastic limit 
analysis (which is captured in finite element simulations by the crack band model or nonlocal 
models with spatial averaging of damage). Note that lp ≠0 is required for Eq. (1) to have, for D→0, 
a finite limit. This limit is required by the cohesive crack model and was shown to be equal to a 
solution in which the crack is considered to be filled by a perfectly plastic ‘glue’. For large sizes 
D, the influence of lp decays fast with increasing D, and so the cases for lp ≠ 0  and lp = 0 are, for 
large D, indistinguishable. 
     The large-size asymptote of the deterministic-energetic size effect formula (1) is, in a plot of 
logσN versus logD, horizontal, i.e. σN(D)/fr

∞=1 (see Fig. 1a). But this is not in agreement with the 
results for the modulus of rupture obtained with the nonlocal Weibull theory [5], in which the 
large-size asymptote in the logarithmic plot has the slope –n/m corresponding to the power law of 
the classical Weibull statistical theory [6] (n is the number of spatial dimensions of scaling,  
n=1,2,3). Therefore, the statistical and energetic theories need to be superposed. Their superposi-
tion is important for large structures, for example, for analyzing the size effect in vertical bending 
fracture of arch dams, or bending fracture in foundation plinths and retaining walls. 
     For particular case of glass fibers, the statistical part of size effect and the existence of statisti-
cal length scale have been investigated in detail by Vořechovský and Chudoba [7]. Their work 
shows, briefly, that the large-size (right) asymptote of the statistical part of size effect in structures 
with stationary random strength field has the classical Weibull form (a straight line of slope –n/m 
in the plot of logσN versus logD), while the small-size (left) asymptote is horizontal. The strength 
value for the horizontal asymptote for D/Db →0 is the mean strength of the random field and, in 
Weibull sense, it is the mean strength measured for the case when the reference length is equal to 
the autocorrelation length ls. So, by introducing the random strength field, one introduces the 
length scale characterized by ls.  By enriching formula (1) with this statistical result, one gets the 
final law, derived in [8] by asymptotic reasoning from some relatively plausible hypotheses about 
nonlocality:  
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This general law, also presented in [1], exhibits the following salient features:  
• By virtue of finite length lp, this law correctly approaches the small-size (left) deterministic 

asymptote, corresponding to plastic behavior for vanishingly small sizes.  
• Because always rn/m 1, the large-size asymptote is the Weibull power law, which repre-

sents the purely statistical size effect and corresponds to a straight line of slope –n/m in the 
double-logarithmic plot of size versus nominal strength. 

• The formula involves scaling with two characteristic lengths: deterministic (Db) and statistical 
(L0). It represents the mean size effect as a sum of deterministic and statistical parts, each of 
which has its own length scale. Parameter Db controls the transition from quasibrittle to elas-
tic-brittle behavior, and L0 governs the transition zone between the constant plastic strength 
and local Weibull strength, via random strength field. The autocorrelation length ls is related 
to statistical length L0, as explained by Vořechovský and Chudoba [7], and by Bažant, Voře-
chovský and Novák [1].  

Including the length in the denominators of Eq. (1) prevents both the statistical and deterministic 
parts of size effect from growing to infinity for D/Db →0. This remedies the problem that the pre-
vious energetic-statistical formula [4,5] cannot be applied for arbitrarily small sizes because it 
intersects the deterministic law at D=Db and thus gives for very small D a higher mean nominal 
strength than the deterministic case. 
     Note that, for m→∞, Eq. (2) degenerates to deterministic Eq. (1). The same occurs for L0→∞. 
The interplay of the two characterististic lengths is controlled by the ratio L0/Db, as demonstrated 
in [1]. The question arises as to what is the value of ratio L0/Db? Since both characteristic lengths 
probably are in concrete controlled mainly by the grain size, we expect L0≈Db and assume L0=Db 
for practical applications. 
 

2  SUPERPOSITION OF STATISTICAL SIZE EFFECT  ON FINITE ELEMENT RESULTS 
FOR DETERMINISTIC-ENERGETIC  SIZE EFFECT 

 
As already mentioned, deterministic modeling with nonlinear finite element programs can capture 
only deterministic size effect. A procedure of superposing the statistical part of size effect needs to 
be formulated. According to [1], this can be done as follows: 
 

1)  Suppose that the modeled structure has characteristic size (dimension) Dt. The natural first 
step is to create a finite element computational model for this real size. At this level, one de-
velops the meshing, boundary conditions, material subroutine, etc. Then one obtains a predic-
tion of nominal strength of  the structure, corresponding to the peak load on the computed 
load-deflection diagram, for size Dt. But this reflects only the deterministic-energetic features 
of fracture, and so the nominal strength of the real structure is usually overestimated at this 
(first) step, the overestimation being more severe for larger structures. The result of this first 
step is a point on the size effect plot, represented by the filled circle in Fig. 1a.  

 
2)  The second step is to scale down and up the geometry of the computational model, in order to 
obtain a small set of similar structures with several characteristic sizes Di, i=1,…, N. Based on 
numerical experience, N=4 is usually sufficient and more than 10 unnecessary. However, to cover 
adequately the transition region of size effect, properly chosen sizes Di must span a broad enough 
size range, from very small to very large. Then one calculates the nominal strength σi, for each 
size, i=1,…, N. Note that for two very large sizes, the nominal strengths should be almost identical 
because they must correspond to the horizontal asymptote of the energetic size effect (if not, the 
failure is not governed by crack initiation alone, and other inelastic phenomena play a non-



Figure 1: Illustration of the superposition steps. 
a) Steps 1-4 resulting in deterministic 
fit; b) step 5 – determination of pa-
rameter L0;  c) final formula and 
nominal strength prediction for the 
real structural size 

negligible role, which means that the pre-
sent procedure cannot be applied). The 
computational model must be mesh-
insensitive in order to obtain objective re-
sults for all the sizes. This means that the 
crack band model or nonlocal continuum 
damage model must be used. To ensure that 
the phenomenon of stress redistribution 
(causing the deterministic size effect) is 
correctly captured, well tested models are 
recommended for the strength prediction. 
Special attention should be paid to the selec-
tion of constitutive law and localization 
limiter. The result of this step is a set of 
points (circles) in the size effect plot, as 
shown in Fig. 1a. 
 
3)  The next step is to obtain the optimum 
fit of the numerical results with the determi-
nistic-energetic formula (1) using the calcu-
lated set of N  pairs {Di, σi } i=1,…, t, …, 
N. The results of this fitting are the values 
of four parameters: fr

∞, Db, r and lp. Parame-
ter lp need not be treated as an unknown in 
fitting, since it can be determined from the 
fitting based on the plastic analysis (this is 
explained in [1]). The same applies to pa-
rameter fr

∞ because it can be estimated from 
the deterministic nonlinear finite element 
results as the value to which the nominal 
strength converges at very large sizes. So, 
one can prescribe (for very large sizes) σN 
/fr

∞=1 as the asymptotic limit. The outcome 
of this step is illustrated by the curve fitted 
to the set of points in Fig. 1a.  
 
4)  There are three remaining parameters 
that need to be ascertained for the statistical-
energetic formula (2): n,m and L0. Parameter 
n is the number of spatial dimensions (n=1,2 
or 3). Parameter m represents the Weibull 
modulus of the material. A recent study of 
Bažant and Novák [4] showed that, for 
concrete and mortar, the correct value of 
Weibull modulus fitting the asymptotic 
behavior, is m≈24, rather than 12, the value 
widely accepted in the past. The ratio n/m  represents the slope of the mean size effect curve in the 
size effect plot for D/Db →∞. This means that, for extreme sizes, the nominal strength decreases, 
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for two-dimensional (2D) similarity (n=2), as the –1/12 power of the structure size. Note that, for 
different materials, the asymptotic values of Weibull modulus are different (e.g., for laminates, 
often much higher than 24). The results of these 4 steps are shown in Fig. 1a. 
     Parameter L0 is now the only remaining parameter to be determined. As it characterizes the 
statistical length scale, one might think that a statistical software should be incorporated into the 
finite element code. Not so, however. There is a much simpler alternative, based on a simple 
evaluation of the local Weibull integral.  
     The choice of statistical length scale ls is the primary task (a good choice may be ls≈Db). The 
value of Weibull modulus must be either determined from scatter of small material specimens or 
assumed from previous experience (m=24), and then one can evaluate by summation from Weibull 
integral the mean strength of the large size structure considered. This yields the square point in 
Fig. 1, with coordinates Dstat , σstat. Then one can pass a straight line (Weibull asymptote) of slope 
–n/m through that point. Graphically, the intersection of the statistical (Weibull) asymptote with 
the deterministic strength for infinite structure size (horizontal asymptote) fr

∞ gives the statistical 
scaling length on the D-axis, see Fig.  1b). The numerical solution to L0 can be written as:  
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It is because of this analytical expression that parameter L0 need not be computed by the fitting of 
numerical results. For calculating the mean large-size strength σstat (the square point) from the 
Weibull integral, one must make a choice of the reference volume V0 (as well as the Weibull 
modulus characterizing the scatter); this is discussed in detail, e.g., by Bažant and Planas [3]. The 
Weibull integral gives the failure probability:  
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where V is the volume (or area, length) of the structure depending on spatial dimension n; s0 is the 
Weibull scaling parameter; V0 is an elementary volume of the material for which the Weibull dis-
tribution has parameters m and s0; and function σ(x) represents the maximum principal stress at a 
point of coordinate vector x.  
     One can avoid the computation of this integral (and determination of the mean failure load from 
Pf) by employing numerical simulation of Monte Carlo type. In such a case, it is recommended to 
apply the stability postulate of extreme value statistics to scaled random blocks of elements, asso-
ciating a scaled Weibull pdf with each of these blocks depending on the block size. This effective 
new approach has been used in the present numerical example and is described in detail by Novák, 
Bažant and Vořechovský [9,1]. 
 
5)  After all the parameters of the statistical-energetic formula are determined, the nominal 
strength of structure can be calculated for any size. Using the real size of the structure, Dt, one can 
predict the corresponding nominal strength σN,t using Eq. (2). The predicted value will generally 
be different, and lower, than the initial deterministic prediction (Fig. 1c). The larger the structure, 
the larger the difference. The formula will provide the prediction for the mean nominal strength. 
Additionally, a scatter of strength needs to be determined, which can be done easily, just by using 
the fundamental assumption that Weibull distribution applies. This distribution is fully character-
ized by two parameters; the Weibull modulus m (or shape parameter), which is prescribed initially, 



and the scale parameter s, which can be calculated easily from the predicted mean nominal 
strength and the Weibull modulus. 

 
 3  SUMMARY AND CONCLUSIONS 

 
The paper explains a recently derived [8] analytical formula for the mean nominal strength of 
structures failing at crack initiation, and demonstrates a recently proposed method [1] to exploit 
this formula for a great simplification of stochastic finite element analysis of structural strength. 
This new method is simple enough to be used in design practice. It requires only the standard (de-
terministic) finite element analysis of failure loads of structures of several scaled sizes, and a sim-
ple stochastic linear elastic simulation of a structure scaled up to a very large size (which is 
equivalent to the evaluation of Weibull probability integral from a linear elastic stress field). The 
entire prediction can be done without complicated and time consuming nonlinear Monte Carlo 
simulation, which has normally been used to deal with the influence of uncertainties on structural 
strength. 
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