
1 INTRODUCTION 

Large concrete structures usually fracture under a lower nominal stress than geometrically simi-
lar small structures (the nominal stress being defined as the load divided by the characteristic 
cross section area). This phenomenon, called the size effect, has in general two physical sources 
- deterministic and statistical. The deterministic source consists of the stress redistribution and 
the associated energy release described by nonlinear fracture mechanics (in finite element set-
ting, the crack band model or cohesive crack model). The deterministic size effect represents a 
transition from ductile failure with no size effect, asymptotically approached for very small 
structures, to brittle failure with the strongest possible size effect, asymptotically approached for 
very large structures [2]. 

The classical explanation of size effect used to be purely statistical - simply the fact that the 
minimum random local strength of the material encountered in a structure decreases with an in-
creasing volume of the structure. Although what became known as the Weibull distribution was 
in mathematics discovered already in 1928 by Fisher & Tippett [5] (in connection with Tippett's 
studies of the length effect on the strength of long fibers).The need for this extreme value distri-
bution in describing fatigue fracture of metals and the size effect in structural engineering was 
first developed, independently of Fisher & Tippett's cardinal contribution, by Weibull (1939) 
[16]. His pioneering work was subsequently refined by many other researchers, mainly mathe-
maticians; e.g. [4,14]. 

The stochastic finite element method (SFEM) should be able to capture both types of the size 
effect phenomenon if the deterministic FEM solver accounts for nonlinearities correctly. The 
decisive parameter in SFEM is the correlation length which governs spatial correlation over the 
structure. The correlation length modifies the size effect curve in the region where this parame-
ter is smaller than the element size. There is a clear relationship - the larger the correlation 
length, the stronger is the spatial correlation of strength along the structure and, consequently, 
the weaker is the decrease (due to local strength randomness) of the nominal strength with in-
creasing structure size. Computational problems, however, develop in trying to simulate the ex-
treme value asymptotic size effect using the random field approach. Approximately, the re-
quirement is that the ratio of the correlation length to the element size should not drop bellow 
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one. This poses a major obstacle to using SFEM for describing the size effect, especially for 
large structure sizes. 

Some advances in this problem were achieved by several authors, e.g. [7] who, however, con-
fined their studies to the size range of real structures. The ratio of the correlation length to the 
element size implies, unfortunately, a severe limitation. To actually compute the extreme value 
asymptote using the random field approach, the number of discretization points (e.g. nodes in a 
finite element mesh) would have to increase proportionally to the structure size, which is in 
practice impossible since an extremely large structure size would have to be considered to ap-
proach the asymptotic behavior closely. To make computations feasible, it is necessary to devise 
a way to increase the element size in proportion to the structure size, keeping the number of 
elements constant. 

Therefore, the aims of this paper are: (i) To introduce the problem by summarizing the vital 
features of the statistics of extremes established by mathematical statisticians in a form mean-
ingful to engineers, putting emphasis on the philosophy of derivation of the probability distribu-
tion of extreme values in a set of independent stochastic variables having an arbitrary elemental 
probability distribution, (ii) To draw the consequence for capturing the statistical size effect 
with the help of SFEM, (iii) To propose a method for computer simulation of the statistical size 
effect based directly on the basic concept of extreme value statistics in combination with nonlin-
ear fracture mechanics, and verify it by an example. 

 
2 WEAKEST LINK CONCEPT AND THEORY OF EXTREME VALUES 

The weakest link concept for the strength of a chain-like structure with N elements is equivalent 
to the distribution of the smallest values in samples of size N. If one element, the weakest ele-
ment, fails, the whole structure fails, i.e., the failure is governed solely by the element of the 
smallest strength. To clarify the problem, it will be useful to recall some basic formulae of the 
statistical theory of extremely small values. The strength distribution of an element of a chain-
like (or statically determinate) structure, i.e., the distribution of the failure probability of an ele-
ment as a function of the applied stress σ , may be characterized by continuous probability den-
sity function ( )1p σ  with the associated cumulative distribution function ( )1P σ  (in statistical lit-
erature called the elemental, underlying, basic or primary distribution). Then the cumulative 
distribution of the failure probability of a structure of N elements (or the distribution of the 
smallest strength value in samples of size N) is given by  
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and the failure probability density reads  

( ) ( ) ( )[ ] 1
11 1

N
Np Pnpσ σ σ

−
= −  (2) 

These basic equations provide an overall representation of the failure distribution ( )Np σ  
(or ( )NP σ ) corresponding to a given elemental distribution ( )1p σ . Different elemental distribu-
tions can give different failure distributions ( )NP σ , however, it is remarkable that the asymp-
totic forms ( )NP σ can be only three. 

 
3 IMPLICATIONS FOR THE FINITE ELEMENT METHOD 

The strength distribution of such a structure is known, based on a mathematical argument. There-
fore, one needs to consider the large size asymptotic behavior and verify that it conforms to this 
distribution. The asymptotic behavior rests on the so-called stability postulate of extreme value 
statistics, generally accepted beginning with Fréchet (1927) [6]. In this postulate, the extreme 
value of a set of ν = Nn identical independent random variables X (the strengths) is regarded as the 
extreme of the set of n extremes of the subsets of N variables. When both n →∞  and N → ∞ , it 
is perfectly reasonable to postulate that the distribution of the extreme of set Nn must be similar to 
the distribution of the extreme of each subset N (i.e., related to it by a linear transformation). In 
other words, the asymptotic form of the distribution must be stable. From this property it can be 



shown that the survival probability Nf  of a structural system with a very large size N as a func-
tion of applied strength σ  must asymptotically satisfy the functional equation 

( ) ( )N
N Nf f a bσ σ= +    (3) 

where Na and Nb  are functions of size N. In the most important paper of extreme value sta-
tistics motivated by the strength of textile fibers, Fisher & Tippett [5] showed that this recursive 
functional relation for function ( )f σ  can be satisfied by three and only three distributions. One 
of them had already been found by Fréchet [6] and the other two have later become known as 
the Gumbel and Weibull distributions (curiously, not the Fisher and Tippett distributions). The 
first two distributions have no threshold and admit negative values of the argument, and so are 
unsuitable for strength. Hence, the Weibull distribution is the only realistic distribution for 
structural strength. 

Consequently, the only way to ensure the correctness of SFEM for failure analysis is to make 
it match the large size asymptotic behavior, in particular, the Weibull power law size effect, 
typical of structures failing at crack initiation. But how to overcome the obstacle of a forbid-
dingly large number of random variables associated with all the finite elements? 

The basic idea proposed here is to exploit directly the fundamental stability postulate from 
which Fisher & Tippett [5] derived the asymptotic forms of the extreme value distributions. In 
regard to SFEM, this postulate may be literally implemented as follows: Instead of subdividing 
a very large structure into the impracticably large number ν of finite elements having the fixed 
size of the characteristic volume, we must use a mesh with only n macroelements (or finite ele-
ments) associated with n random strength variables, keeping n fixed and increasing the macro-
element size with the structure size, while the subdivision N of each macroelement is defined as 
the ratio of its volume to the characteristic volume of the material. Then each of these n subsets 
of N variables is simulated statistically, and for each subset the extreme is selected to be the rep-
resentative statistical property of the finite element (macroelement). These n extremes of the 
subsets of N variables are then used in FEM analysis of the whole structure. This procedure en-
sures that the extreme value statistics is correctly approached, with one crucial advantage - the 
number n of finite elements (macroelements) remains reasonable from the computational point 
of view. Although N increases with the structure size, the determination of the extreme from the 
subdivision of each macroelement does not add to the computational burden since it is carried 
out outside FEM analysis. 

One basic hypothesis of the classical Weibull theory of structural strength is the statistical in-
dependence of the strengths of the individual characteristic volumes 2

0l  (in 2D) or 3
0l  (in 3D), 

where 0l  is the characteristic length. The strength of each of these volumes can be described by 
Weibull distribution with Weibull modulus m and scale parameter 0σ  (threshold being taken as 
zero, as usual for strength). Each of the aforementioned macroelements, whose characteristic 
size is 0L  and characteristic volume 2

0L  or 3
0L , may be imagined of being discretized into N 

characteristic volumes 2
0l  or 3

0l , i.e. 2 2/0 0N L l=  or 3 3/0 0N L l= . This consideration provides the 
statistical properties of the macroelement. Since we are interested only in very small tail prob-
abilities, we may substitute in these equations the tail approximation of the elemental (generic) 
Weibull distribution with a certain modulus and scale parameter. The tail approximation is the 
power function mσ  (times a constant), and its substitution leads for the strength of the macro-
element again to Weibull distribution but with a different modulus and scale parameter, and thus 
with a different mean and variance, which are expressed as follows (COV is kept constant): 
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4 NUMERICAL EXAMPLE: SPAN SIZE EFFECT IN FOUR-POINT BEND BEAM TESTS 
4.1 Experiment and attempt at deterministic simulation 
Abundant experimental evidence on the statistical size effect on plain concrete beams has been 
accumulated by now in the literature. Recently, Koide et al. [8,9] tested 279 plain concrete 
beams under four-point bending, aimed at determining the influence of the beam length L on the 
flexural strength of beams. These excellent data permit a comparison of the cumulative prob-
ability distribution function (CPDF) of the maximum bending moment Mmax at failure [1,12]. 
Beams of three different bending spans, 200, 400 and 600 mm (series C of Koide et al. [8,9]) are 
shown in Figure 1, along with the cracks obtained by deterministic finite element calculations 
(with the code ATENA [3]). The cross-sections of all the beams were kept constant (0.1m times 
0.1m). The experimental data show that Mmax decreases as the span increases. To explain this 
size effect of the span, shown in Fig. 3, Koide et al. provided a Weibull theory based approach.  
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Figure 1. a) Koide’s beams of bending span 200, 400 and 600 mm, series C. b) Crack patterns for deter-
ministic calculations for the three sizes. 

 
Unfortunately, only the compression strength of the concrete used is known, whereas the di-

rect tensile strength and fracture energy have not been tested. The experimental data depicted in 
Figure 3 represent the mean values for each size. The double-logarithmic plot of Mmax versus the 
span forms a straight line with a slope dim/ mD− , where dim is the spatial dimension, m is the 
Weibull modulus and D is the bending span. The problem is properly analyzed as one-
dimensional, and then the overall slope of the experimental data in the figure is matched best us-
ing m=8 (which is an unusually low value for concrete, indicating a relatively high scatter). 

Deterministic simulation with nonlinear fracture mechanics software ATENA yields results 
consistent with a flat size effect curve, i.e., absence of size effect. This is not surprising. Accord-
ing to fracture mechanics, there is almost no deterministic size effect in flexure of unreinforced 
beams when the beam depth is not varied because the energy release function is almost inde-
pendent of the beam span. This is useful for our focus on the statistical size effect. It allows a 
purely statistical analysis of the test data in Figure 3, reflecting the fact that, the longer the 
beam, the higher is the probability of encountering in it a material element of a given low 
strength. 

In finite element simulations, the beams were loaded by force increments in order to avoid a 
nonsymmetric bending moment distribution when the crack pattern (Fig. 2) becomes nonsym-
metric, due to material randomness. The load-deflection curves, including the peak and post-
peak, were calculated under load control using the arc length method. 

4.2 Statistical size effect 
The probabilistic version of nonlinear fracture mechanics software ATENA [3] was utilized to 
simulate the tests of Koide et al. by finite elements, in accordance with the theory of extreme 
values. This was made possible by integrating ATENA with the probabilistic software FREET 
[10,13,15].  

In this simulation, the finite element mesh is defined by using only 6 stochastic macroele-



ments placed in the central region of test beams in which fracture initiates randomly; see Fig. 2. 
The chosen macroelements have the form of strips. The strips suffice for simulating the Weibull 
size effect. We imagine N elements per macroelement of width 0L , while the finite element 
meshes for all the sizes are identical (except for a horizontal stretch). 

The characteristic length is considered to be approximately 3-times the maximum aggregate 
size, i.e., about 50 mm. The Weibull modulus is taken as m=8, and the scale parameter is 1.0. 
The statistical parameters of the strength of the macroelements, imagined to consist of 

0 0L lN =  independent elemental material elements each, are calculated from (3). For the three 
sizes (spans) considered here, 0L = 50, 100, 150 mm and N = 1, 2, 3.  

In the present approach, a stochastic computational model with 6 random tensile strength 
variables is defined for each beam size (span); 16 random simulations of these 6 statistically in-
dependent variables, based on the method of Latin hypercube sampling, are performed using 
FREET and ATENA software [10,11,13,15]. The statistical characteristics of the ultimate force 
can then be evaluated. The mean values of nominal strength obtained from a statistical set of 
maximum forces are determined first. Figure 3 shows the random cracking pattern at failure, ob-
tained for four realizations of three progressively improved alternatives of solution. 

To illustrate the random failures, the corresponding random load-deflection curves are shown 
in Figure 3. The three alternatives, for which the results are presented in Fig. 3, are as follows:  

4.3 Alternative I:  
The first alternative is a pure Weibull type approach in which only the random scatter of tensile 
strength is considered, the generic mean value of tensile strength being fixed as 3.7 MPa. For 
the three sizes (spans) considered here then, according to formulas (3) and (4) the means of ten-
sile strengths are µ = 3.484, 3.195 and 3.037 MPa, coefficient of variation COV = 0.148 (driven 
by the Weibull modulus m only). 

 The resulting size effect curve obtained by probabilistic simulation is found to have a smaller 
slope than the experimental data trend, in spite of the fact that an unusually low Weibull 
modulus (m=8) is used. This can be explained easily. The Weibull theory strictly applies only 
when the failure occurs at crack initiation, before any (macroscopically) significant stress redis-
tribution with energy release. However, the material, concrete, is relatively coarse, the test 
beams not being large enough compared to the aggregate size, and so a non-negligible fracture 
process zone must form before a macroscopic crack can form and propagate, dissipating the re-
quired fracture energy Gf per unit crack surface. Therefore, the beam, analyzed by nonlinear 
fracture mechanics (the crack band model, approximating the cohesive crack model) does not 
fail when the first element fails (as required by the weakest link model imitating the failure of a 
chain). Rather, it fails only after a group of elements fails, and several groups of failing ele-
ments can develop before the beam fails; see Figure 2. The finite element simulations are able to 
capture this behavior thanks to the cohesive nature of softening in a crack, reflecting the energy 
release requirement of fracture mechanics. 

4.4  Alternative II 
The idea to overcome the problem and match the size effect data is to take the randomness of 
fracture energy Gf into account (Weibull distribution). Using the generic mean of fracture en-
ergy, Gf = 93 N/m, for the three spans, according to formulas (3) and (4) the means of fracture 
energy are Gf = 87.6, 80.3 and 76.3 N/m, COV 0.148. The generic mean of tensile strength is 
again µ = 3.7 MPa. But we cannot ignore the statistical correlation of Gf to tensile strength. For 
lack of available data, we simply assume a very strong correlation, characterized by correlation 
coefficient 0.9. Such a correlation tends to cause an earlier onset of (macroscopic) crack propa-
gation, compared to Alternative I. The result is shown in Figure 3 as Alternative II. The result-
ing slope of the simulated size effect curve is now close to the slope of experimental data. How-
ever, the whole curve is shifted down, i.e., all the beams are weaker than they should be. It can 
be seen that the strong correlation between tensile strength and fracture energy causes the mac-
roelements with a lower tensile strength to be more brittle. The failure, therefore, localizes into 
these macroelements (Fig. 2). 

 



 
 
Figure 2. Macroelements (random variables) and examples of random crack initiation for the smallest 
beam size; left: random tensile strength only (Alternative I); right: random and highly correlated tensile 
strength with fracture energy. 
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Figure 3. Left: Comparison of Koide’s data and the deterministic and statistical simulations. Right: Ran-
dom load-deflection curves. 

4.5 Alternative III 
In seeking a remedy, we must realize that Koide et al. have not measured the tensile strength nor 
the fracture energy, and our foregoing estimate may have been too low. So a heuristic approach 
is the only option. While keeping Aternative II, we are free to shift the size effect curve up by 
increasing the generic mean value of tensile strength and the fracture energy value. We increase 
them to 4.1 MPa and 102 N/m, respectively, and this adjustment is found to furnish satisfactory 
results; see Figure 3. Although the size effect of Alternative III in the double logarithmic plot is 
not as straight as the trend of data, the differences from the data are negligible. These small dif-
ferences may have been easily caused, for instance, by insufficient size of the calculated data 
set, or by weaker numerical stability near the peak load, making a precise detection of the peak 
(under load control) less accurate.  



5 DISCUSSION 

The third alternative leading to a good mean size effect curve (MSEC) still does not mean that 
the statistical size effect is captured correctly. In order to ensure this one would have to check 
the whole distribution function for each size. If the real structure is brittle or if it fails right after 
the first crack initiation, the distribution function for each size must be Weibull and moreover, 
the COV (or m) must be the same, constant and equal to those used for the elemental strength 
distribution. Although Koide measured the strength for a relatively high number of specimens 
for each size (35-40) this still does not allow us to draw conclusions about the whole distribu-
tion, mainly the tail behavior. 

Although we approached more “brittle” behavior by high positive correlation between the 
strength and fracture energy, the load-deflection diagrams (Fig. 3) still shows considerable 
strength redistribution before the peak is reached. This may cause deviation from the simple 1-
dimensional Weibull statistical model illustrated on Fig. 4. 
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Figure 4. Simple 1-D Weibull model (chain). Left: Random variables – macroelements. Right: a statistical 
“chain” model driving the strength of a whole structure. 

 
In case of quasibrittle materials, such as concrete, the largest beams must fail after develop-

ment of relatively short cracks (in comparison with the beam depth D). But this is not the case 
for small beams. When the peak load is reached the crack length is not negligible and this calls 
for more sophisticated statistical model illustrated on the Figure 5. 
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Figure 5. More sophisticated statistical model for small sizes - the bundle of chains model. 

 
Since the deterministic size effect is highly suppressed by having the depth D constant, we 

may expect the MSEC curve inclined due to statistical size effect only (straight line in double-
logarithmic plot). However, the influence of different load-sharing rules in case of the model in 
Fig. 5 may cause deviation of statistics for all sizes from the pure Weibull type scaling. This is 
under investigation now. 

6 CONCLUSIONS 

The problematic feature of stochastic finite element method (SFEM): How to capture the statis-
tical size effect for structures of very large sizes is tackled. A simple and effective strategy for 
capturing the statistical size effect using SFEM is developed. The idea to emulate the recursive 
stability property from which the Weibull extreme value distribution works well for large 
enough structures where the deterministic part of size effect (causing the stress redistribution) is 
weak. Using Monte Carlo simulation and computational modeling of nonlinear fracture mechan-
ics, a probabilistic treatment of complex fracture mechanics problems is rendered possible. The 
approach is demonstrated by simulating the size effect in plain concrete beams under four-point 
bending, for which extensive statistical test data have recently been reported by Koide et al. 
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