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Identification of the effective bundle
length in a multifilament yarn from
the size effect response

Rostislav Chudoba1, Miroslav Vořechovský2 and Rostislav Rypl1

Abstract

The article proposes a method for characterizing the in situ interaction between filaments in a multifilament yarn. The

stress transfer between neighboring filaments causes the reactivation of a broken filament at some distance from the

break. The utilized statistical bundle models predict a change in the slope of the mean size effect curve once the

specimen length becomes longer than the stress transfer length. This fact can be exploited in order to determine the

stress transfer length indirectly using the yarn tensile test with appropriately chosen test lengths. The identification

procedure is demonstrated using two test series of tensile tests with AR-glass and carbon yarns.

Keywords

chain-of-bundles model, stress transfer length, fiber-bundle-model, statistical size effect, testing of high-modulus multi-

filament yarns

Introduction

Textile fabrics are being increasingly applied as rein-
forcement in concrete structures in civil engineering
projects. In this application domain, alkali-resistant
(AR) glass fibers and carbon fibers as well as aramid
fibers and high-modulus polyethylene fibers are used as
reinforcement. A common feature of these composite
materials is the rather irregular structure of the bond
between the yarn and the matrix. Due to the small fila-
ment diameter and the dense packing of filaments in the
cross section the yarns do not get fully penetrated by
the matrix. As a result, the bond between the filaments
and the matrix develops only in the outer region of the
yarn cross-section. This leads to a complex damage
process in a loaded crack bridge. The effect of irregu-
larity of the outer bond on crack bridge performance
has been studied by the authors using the statistical
fiber bundle model in Chudoba et al.1 and
Vořechovský and Chudoba.2

Due to the incomplete penetration of the matrix into
the yarn, there is still a large fraction of filaments with-
out any contact with the matrix. The filament–filament
frictional stress, further referred to as the inner bond, is
much lower than the bond shear stress transmitted by
the outer bond between the filaments and the matrix.

However, as documented in Hegger et al.,3 the effect of
the inner bond on the macroscopic performance of a
reinforced tensile specimen cannot be neglected. While
the outer bond affects the behavior locally at the length
scale of a crack distance, the inner bond influences the
failure process at the length scale of a structural ele-
ment with a sufficiently large stress transfer (or anchor-
age) length. This can be documented by the significant
contribution of the inner bond to the stress level in the
post-cracking regime of a tensile specimen reinforced
with AR-glass yarns.4

As a consequence, the interaction and damage effects
for both the outer and the inner bond require a detailed
mechanical characterization. While it is possible to
study and characterize outer bond experimentally
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using the pull-out test of filaments and yarns from the
matrix,5 it is impossible to directly measure the in situ
filament–filament interaction.

The key idea of the present approach is to exploit the
fact that in situ filament interaction affects size effect
behavior when the specimen length is larger than the
stress transfer length, i.e., the length at which a broken
filament recovers its stress. Such a yarn structure gets
fragmented into a chain-of-bundles and behaves as a
pseudo-composite. The change in the slope of the size
effect curve during the transition from a single bundle
to a chain-of-bundles observable in yarn tensile tests
can be utilized for an indirect identification of interac-
tion characteristics of filaments within yarn.

The article is organized as follows: First, a brief review
of the related work on fiber bundle modeling and yarn
characterization is provided. Then, the size effect
response of a yarn during a tensile test is introduced
and the structure of the mean size effect curve (MSEC)
is described. The asymptotes of the MSEC are then
briefly reviewed for a bundle without and with interac-
tion. The procedure of identifying an effective bundle
length is formulated and exemplified for real data with
two types of yarns. After that, the limiting cases of the
described identification procedure are discussed.

Related work

The indirect qualitative experimental observation of in
situ filament interaction is made possible by imposing
different levels of twist in the yarn tensile test. The
authors experimentally studied the effect of increased
in situ filament interaction on high-modulus multifila-
ment yarns (carbon and AR-glass).6 Multivariate
experimental analysis was used to study the compound
effect of the loading rate, test length, fineness, and twist.

A model with an analytical solution of the statistical
properties of twisted bundles was described in
Phoenix7; it examined the effect of random slack in
yarns and cables in combination with the random
breaking strains of the individual fibers. The model
provides an explicit expression for the strength distri-
bution of a bundle with a low number of fibers and, as
an expansion of the classical Daniels’ model, asymp-
totic results for a large number of fibers nf !1.

A numerical approach using the Monte Carlo simu-
lation of random filament strength was used in Realff
et al.8 to compute the strain–stress relationship of
twisted blended yarns. The stress transfer length occur-
ring in such a yarn structure was computed as a func-
tion of yarn strain, twist level (lateral pressure), the
position of a filament within the bundle cross-section,
and filament type. An advanced model for the statisti-
cal strength of twisted fiber bundles has been presented
recently in Porwal et al.9

Another method of studying and observing the effect
of filament interaction in a multifilament yarn is possi-
ble in terms of the size effect curve (the dependence of
average yarn/bundle strength on length). The basic
explanation for the dependence of strength on the fila-
ment length is the weakest-link concept. The strength
variations of filaments are deemed to be caused by ran-
domly distributed flaws and defects. This effect has
been studied by many authors, see for example
Gurvich et al.10 and Pan et al.11 On an average, the
strength of a filament decreases with increasing
length. This size effect can be captured by combining
the classical Weibull distribution and associated
extreme value theory with the chain-of-bundles
model. Once the filament strength dependence on
length is modeled, the effect of stress redistribution
within a yarn of noninteracting filaments can be cap-
tured by the available fiber bundle models. The fiber
bundles can then be linked in a series to reflect the fact
that yarn with interacting filaments behaves like a
chain-of-bundles. The propagation of the single-fila-
ment statistics through this series–parallel structure
has been addressed in Harlow and Phoenix,12 Harlow
et al.,13 Vořechovský,14 and Watson and Smith.15 We
remark that in these models, a constant length of a
bundle is assumed. The justification for this assumption
is discussed in the sequel in the ‘remarks’ section.

The overall strength of a yarn with filament frag-
mentation has been related to the strength of a single
bundle.16 The length of such a bundle, referred to as
critical length, corresponds to the stress transfer length.
The variability of the stress transfer length along the
yarn has been discussed in the later experimental inves-
tigation, in which the model was applied.17

The critical bundle length in both papers16,17 was
calculated by a formula which assumes that both the
frictional coefficient and the local lateral pressure are
known. It should be mentioned that in the cited papers
no consideration has been given to size effect due to the
scatter of the bundle strength for yarns longer than the
interaction/critical length. As shall be discussed in the
sequel, this assumption is justified only for yarns with a
large number of filaments and a large number of bun-
dles. The transition in the size effect curve from the
parallel structure to the series–parallel structure has
been recently used as an explanation for the low size
effect observed for polyester yarns.18

Effect of filament interaction on

the size effect of the yarn

Throughout the study, the only source of randomness
considered is the variability in local filament strength.
Filaments have an elastic response until sudden (brittle)
failure occurs when they reach their strength. The local
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random strength (or breaking strain) X at a certain
point along the filament length is considered to follow
the Weibull distribution:

FX xð Þ ¼ P X � xð Þ ¼ 1� exp �
x

s

� �mh i
ð1Þ

where s is the scale parameter and m the shape param-
eter depending only on the coefficient of variation
(COV). The spatial distribution of random strength
along a filament has a length scale l� at which the
strength variability diminishes.2 As a consequence, for
short specimens l� l�, the strength realization can be
considered constant along the filament and, therefore,
the random filament strength is length-independent. On
the other hand, for l� l�, the local strength varies over
the filament length. Therefore, the overall filament
strength is defined by the minimum local strength
along the filament length corresponding to the weakest
link model and is well described by the Weibull extreme
value distribution.2

With these assumptions for a single filament, a qual-
itative profile of the MSEC of a multifilament yarn can
be expected, as shown in Figure 1. Two different mech-
anisms of load transfer in a yarn can be distinguished
depending on the yarn length. The two regions are sep-
arated by yarn length l?b at which the fiber fragmentation
can occur. Here, we implicitly assume that the autocor-
relation length of the random strength process along the
filament is less than l?b where the mechanism changes.
The two main regimes can be characterized as follows:

. For the range of lengths l5 l?b, the yarn is acting as a
bundle or a set of parallel, independent filaments
with identical Weibull strength distribution. Its size
effect behavior is described by Daniels19, whose
work was later corrected by Smith.20 In such a

bundle, a filament is assumed to break only once
throughout its length and the associated released
force is considered to be redistributed evenly
among the surviving fibers. Two limiting behaviors
can be distinguished for a bundle with independent
filaments based on the dependence of the strengths
of individual filaments on their length.

– For very short lengths l5 l�, any realization of
the random strength process along the filament
can be considered a constant function. In other
words, the realization of the local filament
strength simplifies to a single random variable
independent of the position along the filament.
The consequence is that the left asymptote of
the mean filament strength is a horizontal line
at the level of the mean value of the local
random filament strength. Therefore, the
MSEC of the bundle also has a horizontal left
asymptote. As the bundle length approaches
the autocorrelation length l�, the MSEC starts
to decline from the left horizontal asymptote
and turns slowly downwards in the direction
of the middle asymptote dictated by the classi-
cal Weibull size effect. We remark that the only
considered source of randomness is the local
filament strength. The effect of random stiffness
due to the varying cross-sections, lengths, and
slack of filaments that leads to strength reduc-
tion for l! 0 is not considered here and has
been described by the authors in Chudoba
et al.1 and Vořechovský and Chudoba.2

– bundles of a length greater than l� but still less
than l?b behave as bundles with independent
fibers whose strength is described by the classi-
cal extreme value theory of independent
strength along their length. The slope �1=m
of the middle asymptote is dictated solely by

Figure 1. Mean size-effect curve in logarithmic scale with three distinguished asymptotes.
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the COV (or the shape parameter m) of the
local filament random strength.2

. With increasing length, the filament–filament friction
can recover the stress released upon filament break-
age and allows for the fragmentation of a single fil-
ament along its length. The length l?b marks the
transition from bundle behavior to the behavior of
a chain-of-bundles. The slope of the MSEC for l4 l?b
becomes reduced and, in the limit, asymptotically
approaches the slope �1=ðnfmÞ.

13 The particular
shape of this transition depends on the number of
filaments in the bundle.12,21

The transition zone from the bundle range to the
chain-of-bundles range is of special interest. The
change in the slope of the size effect curve reveals the
length l?b at which the fragmentation starts. The idea of
this article is to exploit this fact in order to identify the
effective bundle length l?b within the tested yarn. The
identification procedure tries to find an intersection
between the two branches of the MSEC. The mathe-
matical formulation of the two branches is summarized
in the following two sections.

Bundle consisting of parallel
independent filaments

The mean strength of a single Weibullian filament
within a bundle is prescribed as

��f ¼ s0 �
l0
l

� ��1=m
�� 1þ

1

m

� �
ð2Þ

with s0, m denoting the scale and shape parameters of
the Weibull distribution, respectively, and �ð�Þ as the
Gamma function.22 The scale parameter s0 is associated
with the reference length l0. As pointed out in
Vořechovský and Chudoba,2 the above power-law scal-
ing predicts unlimited mean strength for l! 0 and is
therefore unrealistic. To impose an upper bound on the
strength, a statistical length scale in the form of the
autocorrelation length of a random strength process
along the filament has been introduced in
Vořechovský and Chudoba.2 The MSEC can be refor-
mulated as being dependent on length function f�ðl Þ as

��f ¼ s0 � f� lð Þ � � 1þ
1

m

� �
: ð3Þ

The refined scaling function f�ðl Þ accounting for the
correlation length l� has been suggested as either

f� lð Þ ¼
l

l�
þ

l�
l� þ l

� ��1=m
ð4Þ

or

f� lð Þ ¼
l�

l� þ l

� �1=m

: ð5Þ

We note that this length-scaling remains qualita-
tively unchanged for any arbitrary number of parallel
filaments. Thus, in the sequel, the length dependency of
the scaling parameter within the range l�5 lb 5 l?b
(Figure 1) shall be represented by the scaling function

sb ¼ s0 � f� lbð Þ: ð6Þ

We also note that in the limit of l� l�, the scaling in
Equations (4) and (5), recovers the classical Weibull
length-dependence fW lð Þ ¼ l�=l

� �1=m
.

Such a decomposition of the length effect allows for
a simple scaling of the mean value

��1 ¼ ��0
f� l1ð Þ

f� l0ð Þ
ð7Þ

that shall be used later in the identification procedure.
The cumulative distribution function of a random

per fiber bundle strength x of a parallel coupling of
filaments with independent identically distributed
strength is given by the recursive formula for nf
number of filaments19

Gn xð Þ ¼
Xnf
i¼1

�1ð Þiþ1
nf
i

� �
F xð ÞiGn�1

nfx

nf � i

� �
, x � 0 ð8Þ

with G0ðxÞ � 1 and G1ðxÞ being equal to the cumulative
distribution function of the strength FðxÞ of a single
fiber. The resulting bundle strength approaches the
normal (or Gaussian) distribution as the number of
filaments grows large ðnf!1Þ. Based on Daniels’
analysis, the expected asymptotic mean bundle strength
��b with Weibull fibers is independent of nf and is
related to the filament properties as

��b ¼ sb �m
�1=m � cm with cm ¼ exp �

1

m

� �
ð9Þ

with sb obtained using Equation (6). The standard devi-
ation ��b is given as

��b ¼ sb �m
�1=m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cm � 1� cmð Þ

p
: ð10Þ

We note that the (length-dependent) standard devi-
ation of random yarn strength is scaled in the same way
as the mean value is scaled in Equation (7). As a con-
sequence, the COV of the bundle strength does not
depend on the bundle length.

2662 Journal of Composite Materials 45(25)
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The decrease in the normalized mean bundle
strength ��b with respect to the filament strength ��f
is obvious from the comparison of Equations (9) and
(2). Real bundles have a finite number of filaments nf
and the mean strength is thus only approaching the
Daniels’s asymptotic prediction. Smith found a way
to eliminate the gap between the real strength distribu-
tion and Daniels’s normal approximation by adjusting
��b to ��b,nf using the actual number of filaments in the
following way20

��b,nf ¼ ��b þ n�2=3f b � �: ð11Þ

In the case of Weibull filament distribution, the
parameter b is given as:

b ¼ sb �m
�1=m�1=3exp �1= 3mð Þ½ 	

and the coefficient � ¼ 0:996. This correction shifts the
mean value of the bundle strength. The standard devi-
ation corresponding to ��b given by Equation (10) is a
fair approximation and does not need any further
adjustment for a finite number of filaments nf.

Chain-of-bundles strength

Filaments in real yarns exhibit a certain amount of fric-
tional interaction that leads to multiple breaking of
individual filaments. The distance between two breaks
along a filament can only be larger than the stress
transfer length sometimes called the ineffective or
shielded length marking the distance around a break
within which the filament does not contribute to the
stress transfer of the bundle. Thus, from the statistical
point of view, the yarn can be decomposed into a
chain-of-bundles, each of a length corresponding to
the stress transfer length. In particular, the yarn can
be idealized as a one-dimensional chain of independent
bundles sharing the same distribution of random
strength GðxÞ.

The strength distribution G xð Þ of each of these seri-
ally coupled bundles is described in the previous sec-
tion. Obviously, the yarn strength consisting of serially
coupled bundles with identically distributed and inde-
pendent (IID) strengths is governed by the weakest
bundle and thus is distributed as follows

Hnb,nf xð Þ ¼ 1� 1� Gn xð Þ½ 	
nb , x � 0: ð12Þ

The probabilistic distribution of the chain-of-bun-
dles strength can have different shapes depending on
the ratio between the number of filaments nf, number
of bundles nb, and load level.14,23 For small values of nf,
the lower (Weibull) tail of the bundle strength distribu-
tion approaches its mean value. On the other hand, for

a large number of filaments, nf, the Gaussian shape
of the distribution reaches far into the lower tail of
GnðxÞ.

As known from extreme value theory, the minimum
of IID Gaussian variables, here representing the
strength of a chain-of-bundles with dominating
Gaussian distribution, approaches the Gumbel statisti-
cal function24 as nb grows large

Hnb,nf xð Þ ¼ 1� exp �exp
x� bnb,nf
anb,nf

� �	 

,

x � 0 nb!1,

ð13Þ

where

anb,nf ¼
��bffiffiffiffiffiffi
2!
p ð14Þ

bnb,nf ¼ ��b,nf þ ��b
ln !ð Þ þ ln 4�ð Þffiffiffiffiffiffi

8!
p �

ffiffiffiffiffiffi
2!
p

	 

ð15Þ

and ! ¼ ln nbð Þ. The mean value of yarn strength is then
��y ¼ bnb,nf � � � anb,nf and the median equals
bnb,nf þ ln ln 2ð Þð Þ � anb,nf . Here, � 
 0:5772 denotes the
Euler–Mascheroni constant. The strength distribution
given in Equation (13) is very accurate for a number of
bundles greater than approximately 300. Therefore, for
lower numbers of bundles nb 2 ð1; 300Þ, the authors
suggest using the recently proposed14 cubic regression
of the mean values calculated numerically from
Equation (12)

��y ¼ ��b � ��b �0:007!
3 þ 0:1025!2 � 0:8684!

� �
,

ð16Þ

where ��b and ��b are the mean bundle strength and
standard deviation, respectively. This approximation
describes the transition from the mean value of the
Gaussian distribution of a single bundle to the mean
value of the Gumbel distribution of a chain-of-bundles.

As already mentioned, for the strength distribution
of bundles consisting of a low number of filaments nf,
the left Weibull tail reaches close to the mean value. As
a consequence, the Weibull shape of the distribution
becomes significant also for the distribution of the
chain-of-bundles strength. Yarns consisting of a very
large number of such bundles (of the order of 103 bun-
dles with eight parallel filaments) have a Weibull
strength distribution with a Weibull modulus obtained
solely by multiplying the number of filaments nf by the
Weibull modulus of a single filament m.12

For the considered types of multifilament yarns con-
sisting of several hundreds of filaments and a low
number of bundles per meter (approximately 5 for

Chudoba et al. 2663
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AR-Glass, 2400 tex), it is sufficient to use the approx-
imating Equation (16) or the median value obtained
from

�50y ¼ ��b,nf þ ��b�
�1 1� 0:51=nb
� �

: ð17Þ

Here, ��1 �ð Þ stands for the inverse standard
Gaussian cumulative distribution function (percent
point function) and nb ¼ ly=lb the number of bundles
of which the yarn consists.

Evaluation of the effective bundle length

Let us assume that two sets of strength data �test
�b

and
�test
�y

are available for two respective test lengths falling
into the different length ranges identified in Figure 1,
i.e., ltestb 5 l?b and ltesty 4 l?b. Apart from the known speci-
men lengths and the measured mean strengths, knowl-
edge of the Weibull modulus value m of the tested
material and the value of the autocorrelation length l�
is required. The estimation of the transitional length l?b
is then performed using the following procedure.

1. The mean strength �test
�b

estimated as the average
strength for the length ltestb is substituted into
Equations (9) and (11) in order to obtain the scaling
parameter sb of the Weibull distribution for the
tested length

sb¼�
test
�b
� m�1=m � cmþn�2=3f �m� 1=mþ1=3ð Þexp �

1

3m

� �
�

	 
�1
:

ð18Þ

2. With the scaling parameter sb at hand, the corre-
sponding standard deviation ��b is evaluated using
Equation (10). It is important to emphasize that we
use the theoretical scatter of the bundle strength to
identify the slope of the MSEC in the range of
lengths l 2 hl�; l

?
bi instead of the measured value of

scatter. Note that in a typical yarn, the number
of filaments nf is very large and thus the theoretical
scatter of the bundle strength is very small (asymp-
totically, it is inversely proportional to the square
root of nf). Usage of the theoretical scatter of the
bundle strength is justified by the fact that the exper-
imentally obtained standard deviation is increased
by sources of randomness other than the scatter of
local strength along the filaments. Obviously, this
was also the case in the performed tests, as the mea-
sured levels of scatter did not correspond to the
slopes of the MSEC for the two tested types of
yarns. This discrepancy was ascribed to the manual
production of the specimens and clamps.6 An ana-
lytical solution explaining the variability due to

additional sources of scatter at the yarn level will
be proposed by the authors in another paper. Let
us finally remark that even if a realistic measure-
ment of the scatter of the yarn strength due
to random filament strength were possible, much
larger sample size would be required for a statisti-
cally significant estimate of the second statistical
moment as compared to the estimate of the mean
yarn strength.

3. The obtained bundle characteristics are scaled to the
unknown length l?b using Equation (7) and exploiting
the fact that standard deviation scales identically
with the mean value

�?�b ¼ �
test
�b
�
f l?b
� �

f ltestb

� � and �?�b ¼ �
test
�b
�
f l?b
� �

f ltestb

� � :
4. The chaining effect involved in the experimental data

is now expressed using Equation (16) for the
unknown bundle length l?b as

�test
�y
¼ �?�b � �

?
�b
�0:007!3

? þ 0:1025!2
? � 0:8684!?

� �
ð19Þ

where !? represents the logarithm of the number of
bundles in series !? ¼ lnðltesty =l?bÞ. The nonlinear
Equation (19) is then solved for l?b using numerical
root-finding methods.

In order to demonstrate the identification procedure
on real data, two test series with different yarn types
(carbon and AR-glass) have been conducted. The input
data and the results of the evaluation are summarized
in Table 1. The resulting effective bundle length for
AR-glass yarns is one-third larger than that of the
carbon yarn, with a higher amount of frictional inter-
action detected within the carbon yarn. This trend is in
agreement with the observation of the postpeak behav-
ior in the tensile test. The level of stress transmitted by
friction in the postpeak regime is significantly higher for
carbon yarns than for AR-glass yarns.

Remarks

Due to the limitations of the experimental setup, the
described procedure can be considered valid only
within a certain range of test parameters, or more pre-
cisely, within a certain range of test lengths. The fol-
lowing limiting cases must be considered when
designing the test series with the goal of identifying
the effective stress transfer length.

. The identification procedure is valid only if
the x-coordinate of the intersection point of the
two size effect curves for a single bundle and a

2664 Journal of Composite Materials 45(25)
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chain-of-bundles, respectively, is within the two test
lengths ltestb and ltesty , i.e., if the sought length
l?b 2 hl

test
b ; ltesty i.

. If the autocorrelation length is of the same order as
the test length ðltestb 
 l�Þ, the estimation of l?b
becomes sensitive to slight changes in l�. In particu-
lar, for the identification summarized in Table 1, the
autocorrelation length l� ¼ 1:0mm� ltestb ¼ 50mm
was assumed leading to l?b ¼ 142:1mm for carbon
yarn. When assuming the autocorrelation length in

the same length range as the short test length, e.g.,
l� ¼ ltestb ¼ 50mm, the estimated bundle length is
l?b ¼ 226:0mm. The size effect curve obtained for
this parameter combination is shown in Figure 2 in
the user interface of the implemented software
module. A possible remedy would be to add further
test(s) to the range between ltestb and ltesty and to make
the autocorrelation length a part of the fitting
procedure.

. The identification procedure does not account for
the case that the measured strength for ltestb is dis-
torted by the nonuniform loading of filaments due
to irregularities in the yarn clamping. These effects
lead to a reduction in strength for short specimens,
as described in Vořechovský and Chudoba.2 This
case can be handled by simply rejecting short
tests with a drop in mean strength. For the tested
AR-glass yarns, the strength reduction could be
observed experimentally for the test lengths
ltestb 5 40mm.

. The identification is carried out using the mean
values obtained from the experiments. The infor-
mation on scatter is included using the Weibull
modulus of the raw material identified indepen-
dently. The scatter is only evaluated for bundles of
length l � l?b with the goal to extrapolate the part of
MSEC governed by the chain-of-bundles model.

Table 1. Summary of yarn properties, experimental data, and

the evaluated bundle lengths for carbon and AR-glass yarns

Property Unit Symbol Carbon AR-glass

Fineness (tex) – 1600 2400

Number of filaments (–) nf 24,000 1600

Weibull modulus (–) m 5.00 4.52

Autocorrelation length (mm) l� 1.0 1.0

Test length I (mm) ltest
b 50.0 100.0

Measured strength I (MPa) �test
�b

1955.8 1038.0

Test length II (mm) ltest
y 500.0 500.0

Measured strength II (MPa) �test
�y

1586.9 882.8

Identified bundle length (mm) l?b 142.1 201.8

Figure 2. Example of identification with the implemented module.
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Another point to mention is that bundle length has
been identified as a deterministic value. It might be
argued that it exhibits some scatter along the yarn,
i.e., that the bundles in a yarn have different lengths.17

The justification for the assumption of constant bundle
length can be constructed by realizing that the actual
bundle length corresponds to the stress transfer length
which in turn depends on the spatially variable fila-
ment–filament friction. In particular, two directions of
spatial scatter of friction can be distinguished: along
and across the yarn.

. Along the yarn: As the level of filament friction is
relatively low, the stress transfer length needed to
recover the breaking stress is large, in the order of
centimeters. On the other hand, the length-scale of
spatial variation of the filament–filament friction due
to irregular packing of the yarn is in the order of
micrometers. Realizing that the stress transfer
length represents the sum of many local frictional
links along the filament, we can expect that the
local scatter of friction becomes homogenized at
the scale of the stress transfer length. Therefore,
the scatter of stress transfer length can be regarded
as very small.

More precisely, the fluctuating friction intensity
along a single filament can be idealized as nc
number of frictional cells with a constant level of
friction, each represented by an independent, identi-
cally distributed (IID) random variable given by the
mean �c and variance �2c 4 0. The COV in each cell
is covc ¼ �c=�c. As stated above, the number of fric-
tional cells nc along a filament within the mean stress
transfer length that have a significant difference in
friction level is very high. Therefore, the mean value
�f of the sum of these frictional contributions along
the yarn defining the stress transfer length converges
to nc � �c and, according to central limit theorem
(CLT), the variance is equal to �2f ¼ nc � �

2
c . As a

consequence, the COV covf ¼ �c=ð
ffiffiffiffiffi
nc
p
� �cÞ ¼

covc=
ffiffiffiffiffi
nc
p

rapidly diminishes at the length-scale of
the stress transfer length with large nc.

. Across the yarn: The scatter of friction due to vari-
able filament surface roughness or lateral pressure
within the yarn cross-section diminishes as the
number of filaments nf grows large.

Formally, the bundle length can be idealized as the
average of the filament stress transfer lengths within
the cross-section. All stress transfer lengths of individ-
ual filaments can be viewed as IID random variables
characterized by mean �f and variance �2f 4 0. The
CLT then states that as the sample size nf increases,
the distribution of the sample average approaches the
normal distribution with the mean �l ¼ �f and the
variance �2l ¼ �

2
f =nf irrespective of the shape of the

distribution of the random variable. The COV of the
stress transfer length is given by covl ¼ covc=

ffiffiffiffiffiffiffiffi
ncnf
p

.
Thus, in the case of applied yarns, the scatter of the
filament transfer length can be assumed to be very
small.

Based on these considerations, the variance of stress
transfer length should become insignificant and, there-
fore, the assumption of the constant bundle length l?b
along the yarn seems to be justified in the context of the
experimental identification.

It should be noted that the redistribution pattern
included in the applied chain-of-bundles model is
based on the global load sharing rule. As the chaining
of bundles for lengths l4 l?b is due to frictional stress
along the filaments, it should also cause a more local
redistribution of stresses upon a filament break. This
issue is not included in the applied chain-of-
bundles approximation of the MSEC.

Conclusions

This article presents a possible method of utilizing the
available statistical fiber bundle models and chain-of-
bundles model for the systematic identification of effec-
tive bundle length within tested yarns. Within this
length, a filament is assumed to break only once.
The proposed identification procedure uses the
dependence of the yarn strength on the test length. In
particular, it exploits the MSECs predicted by the fiber
bundle model and by the chain-of-bundles model.
The intersection between the two branches of the
MSEC corresponds to the length of a single bundle
l?b which is assumed to be an inherent property of a
yarn.

The identified effective bundle length can be seen as a
comparative value for the level of redistribution within
the bundle. Two yarn types (carbon 1600 tex, and AR-
glass 2400 tex) have been chosen to demonstrate the
identification procedure.

In spite of its simplicity, the present approach dem-
onstrates the idea and at least for the two studied cases
delivers plausible values. In the long run, the approach
acts as motivation to undertake further work in two
directions: First, the industrial testing devices used
should be improved in order to provide automatic test-
ing of high-modulus multifilament yarns with varied
lengths. Second, more advanced modeling of the
MSEC transition between the bundle range and
chain-of-bundles range would enable further theoretical
conclusions to be drawn regarding the redistribution
mechanisms between the filaments within the yarn. In
particular, a random-field simulation accounting for
effects such as the positioning of filaments within the
bundle8 and the transition from the global to the local
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load sharing with possibly variable bundle length
would shed more light onto the MSEC transition
from the single bundle to the chain-of-bundles.
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6. Chudoba R, Vořechovský M, Eckers V and Gries T.
Effect of twist, fineness, loading rate and length on tensile

behavior of multifilament yarns (a multivariate study).
Text Res J 2007; 77(11): 880–891.

7. Phoenix SL. Statistical theory for the strength of twisted

fiber bundles with application to yarns and cables. Text
Res J 1979; 49(7): 407–423.

8. Realff M, Pan N, Seo M, Boyce M and Backer S. A

stochastic simulation of the failure process and ultimate
strength of blended continuous yarns. Text Res J 2000;
70(5): 415–430.

9. PorwalPK,Beyerlein IJ andPhoenixSL. Statistical strength

of twisted fiber bundles with load sharing controlled by fric-
tional length scales. J Mater Struct 2007; 2(4): 773–791.

10. Gurvich MR, Dibenedetto AT and Pegoretti A.

Evaluation of the statistical parameters of a Weibull dis-
tribution. J Mater Sci 1997; 32(14): 3711–3716.

11. Pan N, Chen HC, Thompson J, Inglesby MK, Khatua S,
Zhang XS, et al. The size effects on the mechanical
behaviour of fibres. J Mater Sci 1997; 32(10): 2677–

2685.
12. Harlow DG and Phoenix SL. The chain-of-bundles prob-

ability model for the strength of fibrous materials II: A
numerical study of convergence. J Compos Mater 1978;

12(3): 314–334.
13. Harlow DG, Smith RL and Taylor HM. Lower tail anal-

ysis of the distribution of the strength of load-sharing

systems. J Appl Prob 1983; 20(2): 358–367.
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25. Zhandarov S and Mäder E. Characterization of fiber/

matrix interface strength: applicability of different tests,

approaches and parameters. Compos Sci Technol 2005;
65(1): 149–160.

Chudoba et al. 2667

 at CAPES on December 13, 2011jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/



