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ABSTRACT: The paper begins by discussing some fundamental features of the statistics of extremes important
for the computational modeling of the statistical size effect, whose asymptotic behavior is not correctly repro-
duced by the existing stochastic finite element methods. A simple strategy for capturing of statistical size effect
using stochastic finite element methods in the sense of extreme value statistics is suggested. Such probabilis-
tic treatment of complex fracture mechanics problems using the combination of feasible type of Monte Carlo
simulation and nonlinear fracture mechanics computational modeling are presented using numerical example
of crack initiation problem - size effect due to bending span of four-point bending tests.

1 INTRODUCTION

Large concrete structures usually fracture under a
lower nominal stress than geometrically similar small
structures (the nominal stress being defined as the
load divided by the characteristic cross section area).
This phenomenon, called the size effect, has in gen-
eral two physical sources – deterministic and statis-
tical. The deterministic source consists of the stress
redistribution and the associated energy release de-
scribed by nonlinear fracture mechanics (in finite
element setting, the crack band model or cohesive
crack model). The deterministic size effect represents
a transition from ductile failure with no size effect,
asymptotically approached for very small structures,
to brittle failure with the strongest possible size ef-
fect, asymptotically approached for very large struc-
tures (Bažant & Planas 1998).

The classical explanation of size effect used to be
purely statistical – simply the fact that the minimum
random local strength of the material encountered in
a structure decreases with an increasing volume of
the structure. This idea was qualitatively proposed
already in the middle of the 17th century by Mar-
iotte. Although what became known as the Weibull
distribution was in mathematics discovered already
in 1928 by Fisher & Tippett (1928) (in connection

with Tippett’s studies of the length effect on the
strength of long fibers), the need for this extreme
value distribution in describing fatigue fracture of
metals and the size effect in structural engineering
was first developed, independently of Fisher & Tip-
pett’s cardinal contribution, by Weibull (1939). His
pioneering work was subsequently refined by many
other researchers, mainly mathematicians; e.g. Ep-
stein (1948) and Saibel (1969).

The classical (but erroneous) view that any ob-
served size effect should be described by extreme
value statistics prevailed in structural engineering un-
til about 1990. However, beginning with the studies
at Northwestern University initiated in the mid 1970s,
it gradually emerged that there exists a purely deter-
ministic size effect, caused by energy release associ-
ated with stress redistribution prior to failure, and that
this energetic size effect usually dominates in the so-
called quasibrittle structures (i.e., structures in which
fracture propagation is preceded by a relatively large
fracture process zone which, in contrast to brittle-
ductile fracture of metals, exhibits almost no plastic
deformations but undergoes progressive softening due
to microcracking). Beginning with the 1990s, many
studies focused on the deterministic size effect; see
the reviews in Bažant (1986), Bažant & Chen (1997),
Bažant & Planas (1998), Bažant (1999a). The recent
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development of nonlocal Weibull theory by Bažant &
Novák (2000ab) in connection with statistical stud-
ies of the modulus of rupture (or flexural strength)
of plain concrete beams showed the that, for large
quasibrittle structures failing at crack initiation, the
deterministic energetic size effect needs to be com-
bined with the Weibull probabilistic size effect. In
this connection, some fundamental questions arose
regarding the applicability of various statistical ap-
proaches to the statistical size effect. As shown by
Bažant & Novák (2000a) and Bažant (2002), the ex-
isting stochastic finite element method (SFEM) does
not have the correct large size asymptotic behavior
and fails to capture the statistical size effect on nomi-
nal strength.

The decisive parameter in SFEM is the correla-
tion length which governs spatial correlation over the
structure. The correlation length modifies the size
effect curve in the region where this parameter is
smaller than the element size. There is a clear re-
lationship – the larger the correlation length, the
stronger is the spatial correlation of strength along
the structure and, consequently, the weaker is the de-
crease (due to local strength randomness) of the nom-
inal strength with increasing structure size. Computa-
tional problems, however, develop in trying to simu-
late the extreme value asymptotic size effect using the
random field approach. Approximately, the require-
ment is that the ratio of the correlation length to the
element size should not drop bellow one. This poses a
major obstacle to using SFEM for describing the size
effect, especially for large structure sizes.

Some advances in this problem were achieved by
several authors, e.g. Gutiérrez & de Borst (2001)
who, however, confined their studies to the size
range of real structures. The ratio of the correlation
length to the element size implies, unfortunately, a
severe limitation. To actually compute the extreme
value asymptote using the random field approach, the
number of discretization points (e.g. nodes in a finite
element mesh) would have to increase proportionally
to the structure size, which is in practice impossible
since an extremely large structure size would have to
be considered to approach the asymptotic behavior
closely. To make computations feasible, it is neces-
sary to devise a way to increase the element size in
proportion to the structure size, keeping the number
of elements constant. Therefore, the aims of this
paper are:
1. To introduce the problem by summarizing the vital
features of the statistics of extremes established by
mathematical statisticians in a form meaningful to
engineers, putting emphasis on the philosophy of
derivation of the probability distribution of extreme
values in a set of independent stochastic variables
having an arbitrary elemental probability distribution.

2. To draw the consequence for capturing the statisti-
cal size effect with the help of SFEM.
3. To propose a method for computer simulation of
the statistical size effect based directly on the basic
concept of extreme value statistics in combination
with nonlinear fracture mechanics, and verify it by an
example.

2 WEAKEST LINK CONCEPT AND THEORY
OF EXTREME VALUES

The weakest link concept for the strength of a chain-
like structure with N elements is equivalent to the dis-
tribution of the smallest values in samples of size N .
If one element, the weakest element, fails, the whole
structure fails, i.e., the failure is governed solely by
the element of the smallest strength. To clarify the
problem, it will be useful to recall some basic formu-
lae of the statistical theory of extremely small values.
The strength distribution of an element of a chain-
like (or statically determinate) structure, i.e., the dis-
tribution of the failure probability of an element as a
function of the applied stress σ, may be characterized
by continuous probability density function p1(σ) with
the associated cumulative distribution function P1(σ)
(in statistical literature called the elemental, underly-
ing, basic or primary distribution). Then the cumula-
tive distribution of the failure probability of a struc-
ture of N elements (or the distribution of the smallest
strength value in samples of size N ) is given by

PN(σ) =
∫ σ

−∞

p1(σ)dσ = 1− (1− P1(σ))
N (1)

and the failure probability density is

pN(σ) = np1(σ)(1− P1(σ))
(N−1) (2)

These basic equations provide an overall representa-
tion of the failure distribution pN(σ) (or PN(σ)) cor-
responding to a given elemental distribution p1(σ).
Different elemental distributions can give different
failure distributions PN(σ), however, it is remarkable
that the asymptotic forms PN(σ) can be only three.
Before discussing this fact, let us illustrate the influ-
ence of the type of elemental distribution on the fail-
ure distribution graphically.

Figure 1 shows the plots of the failure probability
density functions pN(σ) and the cumulative distribu-
tion functions PN(σ) calculated for N = 1,10,100
and 1000 according to (1)–(2) for the various ele-
mental distributions, in particular the (a) normal, (b)
Weibull and (c) rectangular distributions (the last one
is included merely for comparison purposes). All the
elemental distributions are chosen to have the same
mean value, 1, and the same standard deviation, 0.2.
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Figure 1: Failure probability density and cumulative distribution function for different elemental distributions: a) normal;
b) Weibull; c) rectangular.

Figure 2: Dependence of strength on N for elemental dis-
tributions.

A general trend may be noticed: Both the mean value
and the variance decrease with an increasing sample
size (i.e., number N of elements). Cases (a) and (b)
are very similar in these overall plots, having a bell-
shaped form. But, as discussed later, for large N , the
differences are becoming very significant especially
for very small probabilities normally required in de-
sign. When the elemental distribution is rectangular
(case c), the extreme value is seen to converge very

quickly to the threshold of the rectangular distribu-
tion. This distribution exhibits no size effect, which
makes it unacceptable (aside from physical reasons)
for strength modeling. But the elemental normal and
lognormal distributions give also a physically unac-
ceptable distribution of structural strength, since for
small enough probability they give a negative strength
value. Thus Figure 1 provides a qualitative insight
into the statistics of extremes.

Differences in structural strength for various ele-
mental distribution are particularly pronounced for
large N and small probabilities (i.e., in the tail). This
phenomenon is illustrated in Figure 2, in which the
basic equation (1) is used in the inverse: For a chosen
failure probability PN(σ), the strength σ is solved.
Naturally, even for the elemental distributions, the
main differences lie in their tails (case N = 1). But
as N increases, the differences in strength get larger
and larger, not only for the tails but also for the me-
dians. The dependence of strength on N is plotted
in Figure 2 for selected failure probabilities PN =
0.5,0.05,10−6. Three elemental distributions, normal,
Weibull and lognormal, with the same mean, 1, and
the same standard deviation, 0.1, are considered, and
enormous differences among them are found. For the
elemental normal distribution, the fact that the size
effect on the mean is stronger than on the tail is unre-
alistic. A more realistic, and much stronger, size ef-
fect is observed for the Weibull elemental distribu-
tion. For the elemental mean 1 and standard deviation
0.1, the statistical parameters for the Weibull (two-
parametric) distribution are:m = 12.15 (Weibull mod-
ulus) and σ0 = 1.043 (scale parameter). In the double
logarithmic plot of Figure 2, the Weibull size effect is,
for any specified failure probability, a straight line of
slope −1/m.
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To show the differences among structures that are
scaled in one-, two- and three-dimensions (1D, 2D,
3D), Figure 2 includes three horizontal scales. For the
validity of (1) and (2) in muti-dimenensional situa-
tions, it is required that the whole structure fails when
a single element fails. This is a property of a chain as
well as all statically determinate structural systems,
and is also a good approximation for fracture of un-
notched structures of positive geometry (e.g., unrein-
forced concrete beams in flexure). In that case, N rep-
resents the ratio of the structure volume to the char-
acteristic volume Vc of the micro-heterogeneous ma-
terial. Vc is here understood as the volume having
the size of the autocorrelation length of the random
field of the local material strength, in which case the
strength limits of various characteristic volumes can
be considered as statistically independent (uncorre-
lated) random variables, a basic hypothesis in the sta-
tistical theory of extremes (note that Vc is in general
different (and larger) than the representative volume
Vr of the material, which is the smallest volume for
which the continuum concepts of stress and strength
make sense, or a volume for which the mean strength
is unaffected by randomness of microstructure as this
volume is shifted through the material). With respect
to the situation in concrete structures, Vr may be con-
sidered to be approximately 0.01 m2 (for 2D) and
0.001 m3 (for 3D).

The foregoing illustrations bring to light a salient
point (which will be discussed in detail later)—
namely, the selection of the elemental probability
distribution is of fundamental importance for the
statistical size effect, and must therefore be realistic.

3 IMPLICATIONS FOR FINITE ELEMENT
METHOD

Since the failure probabilities acceptable for design
are of the order of 10−7, at least 1 billion material
tests of identical specimens would be needed to ver-
ify the elemental statistical distribution purely exper-
imentally. This is obviously impossible. However, a
verification is made possible by scaling up the struc-
ture to a very large size, a size that would comprise
10003 characteristic volumes. Thus a verification of
the strength distribution of such a structure is equiv-
alent to conducting 1 billion material tests, provided
that the structure is of a type for which the failure of
one element causes the whole structure to fail. The
strength distribution of such a structure is known,
based on a mathematical argument. Therefore, one
needs to consider the large size asymptotic behavior
and verify that it conforms to this distribution.

The asymptotic behavior rests on the so-called sta-
bility postulate of extreme value statistics, generally

accepted beginning with Fréchet (1927). In this pos-
tulate, the extreme value of a set of ν = Nn identi-
cal independent random variables x (the strengths) is
regarded as the extreme of the set of n extremes of
the subsets of N variables. When both n → ∞ and
N → ∞, it is perfectly reasonable to postulate that
the distribution of the extreme of set Nn must be sim-
ilar to the distribution of the extreme of each subset N
(i.e., related to it by a linear transformation). In other
words, the asymptotic form of the distribution must
be stable. From this property it can be shown that the
survival probability fN of a structural system with a
very large size N as a function of applied strength σ
must asymptotically satisfy the functional equation

[f(σ)]N = f(aNσ + bN) (3)

where aN and bN are functions of size N . In the
most important paper of extreme value statistics mo-
tivated by the strength of textile fibers, Fisher & Tip-
pett (1928) showed that this recursive functional re-
lation for function f(σ) can be satisfied by three and
only three distributions. One of them had already been
found by Fréchet (1927) and the other two have later
become known as the Gumbel and Weibull distribu-
tions (curiously, not the Fischer and Tippett distribu-
tions). The first two distributions have no threshold
and admit negative values of the argument, and so
are unsuitable for strength. Hence, the Weibull dis-
tribution is the only realistic distribution for structural
strength.

Consequently, the only way to ensure the correct-
ness of SFEM for failure analysis is to make it match
the large size asymptotic behavior, in particular, the
Weibull power law size effect, typical of structures
failing at crack initiation. But how to overcome the
obstacle of a forbiddingly large number of random
variables associated with all the finite elements?

The basic idea proposed here is to exploit directly
the fundamental stability postulate from which Fisher
& Tippett derived the asymptotic forms of the ex-
treme value distributions. In regard to SFEM, this
postulate may be literally implemented as follows: In-
stead of subdividing a very large structure into the im-
practicably large number ν of finite elements having
the fixed size of the characteristic volume, we must
use a mesh with only n macroelements (finite ele-
ments) associated with n random strength variables,
keeping n fixed and increasing the macroelement size
with the structure size, while the subdivision N of
each macroelement is defined as the ratio of its vol-
ume to the characteristic volume of the material. Then
each of these n subsets of N variables is simulated
statistically, and for each subset the extreme is se-
lected to be the representative statistical property of
the finite element (macroelement). These n extremes
of the subsets of N variables are then used in FEM
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analysis of the whole structure. This procedure en-
sures that the extreme value statistics is correctly ap-
proached, with one crucial advantage—the number n
of finite elements (macroelements) remains reason-
able from the computational point of view. Although
N increases with the structure size, the determination
of the extreme from the subdivision of each macroele-
ment does not add to the computational burden since
it is carried out outside FEM analysis.

One basic hypothesis of the classical Weibull the-
ory of structural strength is the statistical indepen-
dence of the strengths of the individual character-
istic volumes l0

2 (in 2D) or l0
3 (in 3D), where l0

is the characteristic length. The strength of each of
these volumes can be described by Weibull distribu-
tion with Weibull modulus m and scale parameter σ0

(the threshold being taken as zero, as usual). Each of
the aforementioned macroelements, whose character-
istic size is L0 and characteristic volume L0

2 or L0
3,

may be imagined of being discretized into N charac-
teristic volumes l02 or l03, i.e.N = L0

2/l0
2 orL0

3/l0
3.

This consideration provides, according to (1) or (2),
the statistical properties of the macroelement. Since
we are interested only in very small tail probabilities,
we may substitute in these equations the tail approxi-
mation of the elemental (generic) Weibull distribution
with a certain modulus and scale parameter. The tail
approximation is the power function σm (times a con-
stant), and its substitution leads for the strength of the
macroelement again to Weibull distribution but with a
different modulus and scale parameter, and thus with
a different mean and variance, which are expressed as
follows:

µ = σ0(N)
−1/mΓ(1 + 1/m), (4)

σ2 = µ2

(

Γ(1 + 2/m)

Γ2(1 + 1/m)
− 1

)

(5)

4 NUMERICAL EXAMPLE: SIZE EFFECT OF
SPAN IN FOUR-POINT BEND BEAM TESTS

4.1 Experiment and attempt at deterministic simu-
lation

Abundant experimental evidence on the statistical
size effect on plain concrete beams has been accu-
mulated by now in the literature. Recently, Koide et
al. (1998, 2000) tested 279 plain concrete beams un-
der four-point bending, aimed at determining the in-
fluence of the beam length L on the flexural strength
of beams. These excellent data permit a compari-
son of the cumulative probability distribution function
(CPDF) of the maximum bending moment Mmax at
failure (Bažant & Novák 2000b, Novák et al. 2001).
Beams of three different bending spans, 200, 400 and
600 mm (series C of Koide et al.) are shown in Fig-
ure 3, along with the cracks obtained by determin-

istic finite element calculations, Figure 4 (with the
code ATENA, Červenka & Pukl 2002). The cross-
sections of all the beams were kept constant (0.1m
×0.1m). The experimental data show that Mmax de-
creases as the span increases. To explain this size ef-
fect of the span, shown in Figure 7, Koide et al. pro-
vided a Weibull theory based approach.

Unfortunately, only the compression strength of the
concrete used is known, whereas the direct tensile
strength and fracture energy have not been tested. The
experimental data depicted in Figure 7 represent the
mean values for each size. The double logarithmic
plot of Mmax versus the span forms a straight line
with a slope D−n/m, where n is the spatial dimension
and m is the Weibull modulus. The problem is prop-
erly analyzed as one-dimensional, and then the overall
slope of the experimental data in the figure is matched
best using m= 8 (which is an unusually low value for
concrete, indicating a relatively high scatter).

Deterministic simulation with nonlinear fracture
mechanics software ATENA yields results consistent
with a flat size effect curve, i.e., absence of size ef-
fect. This is not surprising. According to fracture me-
chanics, there is almost no deterministic size effect in
flexure of unreinforced beams when the beam depth
is not varied because the energy release function is
almost independent of the beam span. This is useful
for our focus on the statistical size effect. It allows a
purely statistical analysis of the test data in Figure 7,
reflecting the fact that, the longer the beam, the higher
is the probability of encountering in it a material ele-
ment of a given low strength.

In finite element simulations, the beams were
loaded by force increments in order to avoid a non-
symmetric bending moment distribution when the
crack pattern (Fig. 4) becomes nonsymmetric, due to
material randomness. The load-deflection curves, in-
cluding the peak and postpeak, were calculated under
load control using the arc length method.

Figure 3: Koide’s beams of bending span 200, 400 and 600
mm, series C.

5



Figure 4: Deterministic cracks for sizes 20, 40 and 60.

4.2 Statistical size effect

The probabilistic version of nonlinear fracture me-
chanics software ATENA (Pukl et al. 2003) was uti-
lized to simulate the tests of Koide et al. by finite ele-
ments, in accordance with the theory of extreme val-
ues. This was made possible by integrating ATENA
with the probabilistic software FREET (Novák et al.
2002, 2003).

In this simulation, the finite element mesh is
defined by using only 6 stochastic macroelements
placed in the central region of test beams in which
fracture initiates randomly; see Figure 5. The chosen
macroelements have the form of strips. The strips suf-
fice for simulating the Weibull size effect. We imag-
ine N elements per macroelement of width L0, while
the finite element meshes for all the sizes are identical
(except for a horizontal stretch).

The characteristic length is considered to be ap-
proximately 3-times the maximum aggregate size,
i.e., about 50 mm. The Weibull modulus is taken as
m=8, and the scale parameter is 1.0. The statisti-
cal parameters of the strength of the macroelements,
imagined to consist of N = L0/l0 material elements
each, are calculated from (4). For the three sizes
(spans) considered here, L0 = 50,100,150 mm and
N = 1,2,3.

In the present approach, a stochastic computational
model with n=6 random tensile strength variables is
defined for each beam size (span); 16 random simu-
lations of these 6 statistically independent variables,
based on the method of Latin hypercube sampling,
are performed using FREET and ATENA softwares
(Novák et al. 2003, Vořechovský & Novák 2003, Pukl
et al. 2003). The statistical characteristics of the ulti-
mate force can then be evaluated. The mean values
of nominal strength obtained from a statistical set of
maximum forces are determined first. Figure 5 shows
the random cracking pattern at failure, obtained for
four realizations of three progressively improved al-
ternatives of solution.

To illustrate the random failures, the corresponding
random load-deflection curves are shown in Figure 6.
The three alternatives, for which the results are pre-
sented in Figure 7, are as follows:

Alternative I: The first alternative is a pure Weibull
type approach in which only the random scatter of

tensile strength is considered, the generic mean value
of tensile strength being fixed as 3.7 MPa. For the
three sizes (spans) considered here then, according to
formulas (4) and (5) the means of tensile strengths are
µ = 3.484,3.195 and 3.037 MPa, coefficient of varia-
tion COV = 0.148 (driven by the Weibull modulus m
only).

The resulting size effect curve obtained by prob-
abilistic simulation is found to have a smaller slope
than the experimental data trend, in spite of the fact
that an unusually low Weibull modulus (m = 8) is
used. This can be explained easily. The Weibull the-
ory strictly applies only when the failure occurs at
crack initiation, before any (macroscopically) signif-
icant stress redistribution with energy release. How-
ever, the material, concrete, is relatively coarse, the
test beams not being large enough compared to the
aggregate size, and so a nonnegligible fracture pro-
cess zone must form before a macroscopic crack can
form and propagate, dissipating the required frac-
ture energy Gf per unit crack surface. Therefore, the
beam, analyzed by nonlinear fracture mechanics (the
crack band model, approximating the cohesive crack
model) does not fail when the first element fails (as
required by the weakest link model imitating the fail-
ure of a chain). Rather, it fails only after a group of
elements fails, and several groups of failing elements
can develop before the beam fails; see Figure 5. The
finite element simulations are able to capture this be-
havior thanks to the cohesive nature of softening in
a crack, reflecting the energy release requirement of
fracture mechanics.

Alternative II: The idea to overcome the problem
and match the size effect data is to take the random-
ness of fracture energy Gf into account. Using the
generic mean of fracture energy, Gf = 93 N/m, for
the three spans, according to formulas (4) and (5)
the means of fracture energy are Gf = 87.6,80.3 and
76.3 N/m, COV 0.148. The generic mean of tensile
strength is again µ = 3.7 MPa. But we cannot ignore
the statistical correlation of Gf to tensile strength.
For lack of available data, we simply assume a very
strong correlation, characterized by correlation coef-
ficient 0.9. Such a correlation tends to cause an earlier
onset of (macroscopic) crack propagation, compared
to Alternative I. The result is shown in Figure 7 as Al-
ternative II. The resulting slope of the simulated size
effect curve is now close to the slope of experimen-
tal data. However, the whole curve is shifted down,
i.e., all the beams are weaker than they should be. It
can be seen that the strong correlation between ten-
sile strength and fracture energy causes the macroele-
ments with a lower tensile strength to be more brittle.
The failure, therefore, localizes into these macroele-
ments (Fig. 5).

Alternative III: In seeking a remedy, we must re-
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Figure 5: Macroelements and examples of random crack initiation for the first size; left: random tensile strength only,
right: random and correlated tensile strength and fracture energy.
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alize that Koide et al. have not measured the tensile
strength nor the fracture energy, and our foregoing es-
timate may have been too low. So a heuristic approach
is the only option. While keeping Aternative II, we are
free to shift the size effect curve up by increasing the
generic mean value of tensile strength and the frac-
ture energy value. We increase them to 4.1 MPa and
102 N/m, respectively, and this adjustment is found
to furnish satisfactory results; see Figure 7. Although
the size effect of Alternative III in the double loga-
rithmic plot is not as straight as the trend of data, the
differences from the data are negligible. These small
differences may have been easily caused, for instance,
by insufficient size of the calculated data set, or by
weaker numerical stability near the peak load, mak-
ing a precise detection of the peak (under load con-
trol) less accurate. Finally, it may be emphasized that
the result of Alternative III is in excellent agreement
with the previous analysis of these data according to
the nonlocal Weibull theory (Bažant & Novák 2000b).
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5 CONCLUSION

The paper tackles a problematic feature of stochastic
finite element method: How to capture the statistical
size effect for structures of very large sizes. A simple
and effective strategy for capturing the statistical
size effect using stochastic finite element methods
is developed. The idea is to emulate the recursive
stability property from which the extreme value
distribution, the Weibull distribution, is derived.
Using the combination of a well feasible type of
Monte Carlo simulation and of computational model-
ing of nonlinear fracture mechanics, a probabilistic
treatment of complex fracture mechanics problems
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is rendered possible. The feasibility of the approach
is documented by simulating the size effect in plain
concrete beams under four-point bending, for which
extensive statistical test data have recently been
reported by Koide et al.
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Bažant, Z.P. 1986. Mechanics of distributed cracking.
Appl. Mech. Reviews ASME, 39, 675–705.
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