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ABSTRACT: A new efficient technique to impose the statistical correlation when using the Monte Carlo type
method for the statistical analysis of computational problems is proposed. The technique is based on the sto-
chastic optimization method called Simulated Annealing. The comparison with other techniques presently
used and intensive numerical testing showed the superiority and robustness of the method. No significant ob-
stacles have been found when also working with large problems (large number of random variables). The ad-
vantages and limitations of the approach will be discussed. Remarks on the positive definiteness of target cor-
relation matrix are made. Numerical examples show the efficiency of the method. 

 
 

1 INTRODUCTION 

The aim of the statistical and reliability analyses of 
any computational problem which can be numeri-
cally simulated is mainly the estimation of the statis-
tical parameters of the response variable and/or the 
theoretical failure probability. The pure Monte Carlo 
simulation cannot be applied for time-consuming 
problems, as it requires a large number of simula-
tions (repetitive calculation of response). A small 
number of simulations can be used for the accept-
able accuracy of statistical characteristics of re-
sponse using the stratified sampling technique Latin 
Hypercube Sampling (LHS), e.g. McKey et al. 
(1979), Iman & Conover (1980, 1982) or Novák et 
al. (1998, 2000). Briefly, it is a special type of the 
Monte Carlo numerical simulation which uses the 
stratification of the theoretical probability distribu-
tion functions of the input random variables. It re-
quires relatively a small number of simulations 
(from tens to hundreds) - repetitive calculations of 
the response resulting from the analyzed computa-
tional model. The LHS strategy has been used by 
many authors in different fields of engineering and 
with both a simple and a very complicated computa-
tional model, e.g. Novák et al. (1998). The classical 
reliability theory introduced the basic concept using 
formally the response variable Z = g(X), where g 
(computational model) represents the functional re-
lationship between the elements of vector X. The 
elements of vector X are generally uncertainties 

(random variables). These quantities can also be 
naturally statistically correlated. The paper is fo-
cused on the problem of the efficient imposition of 
the statistical correlation within the framework of 
the Monte Carlo type simulation (preferably LHS), 
Vořechovský & Novák (2002). The techniques pres-
ently available are discussed first. 

 
2 SAMPLING AND STATISTICAL 

CORRELATION 

There are two stages to the Latin Hypercube Sam-
pling. First, samples for each (marginal) variable are 
chosen strategically to represent the variable’s prob-
ability density function PDF. The NSim samples 
(where NSim is the number of the planned simula-
tions) for each random variable Xi are often chosen 
from the cumulative distribution function (CDF) by 
the inverse transformation of CDF. 
 
Table 1 Sampling scheme for NSim deterministic calculations of 
g(X) 
 
Simulation Var. 1 Var. 2 Var. 3 … Var. Nv       _______________________________________________  
 1 x1, 1 x1, 2 x1, 3 … x1, Nv 
 2 x2, 1 x2, 2 x2, 3 … x2, Nv 
 … …  … … … … 
    NSim xNSim, 1    xNSim, 2 xNSim, 3 … xNSim,Nv 
 

Then the samples for the variables are ordered to 
match the target correlation among themselves. Fur-
ther we presume using the LHS methodology for the 



sampling. Table 1 represents the sampling scheme, 
where the simulations represented by rows and col-
umns are related to the random variables (NV is the 
number of the input variables). 

As mentioned previously, the first stage of LHS 
is to generate representing samples for each random 
variable. The domain of each variable is divided into 
equiprobable disjunct intervals of the probability 
NSim. One sample is chosen from each interval. The 
current practice is to choose samples directly by in-
verse transformation of CDF, in the middle of the 
k-th strata: 
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where ,i kx  is k-th sample of i-th variable Xi, and 
1

iF −  is the inverse CDF for the variable Xi. The ob-
jection against the approach deals mainly with the 
tails of PDF, which mostly influences the variance, 
skewness and kurtosis of the sample set. However 
this elementary approach was overcome by sampling 
the mean values related to the intervals (e.g. Hunt-
ington & Lyrintzis, 1998), see Fig. 1: 
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where fi is PDF of the variable Xi, and the integra-
tion limits are: 
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Fig. 1 Illustration of sampling from marginals. 

 
Than the samples represent the marginal PDF bet-

ter. The estimated mean value is achieved accurately 
(analytical determination, definition) and the vari-
ance of the sample set is much closer to the target 
one. For some probability density functions (inclu-
sive e.g. Gaussian, Exponential, Laplace, Rayleigh, 
Logistic, Pareto, etc.) the integral (2) can be solved 

analytically. For others, the extra effort of doing the 
numerical integration is definitely worthwhile. Sam-
ples determined by both the approaches are nearly 
identical excluding the tail samples. Therefore the 
second approach is recommended especially around 
the tails of the distributions. 

Once samples are generated, the correlation struc-
ture according to the target correlation matrix must 
be taken into account. There are generally two prob-
lems related to the statistical correlation: First, dur-
ing sampling an undesired correlation can be intro-
duced between the random variables (columns in 
Table 1). For example, instead of the correlation co-
efficient zero for the uncorrelated random variables, 
i.e. an undesired correlation, e.g. 0.6 can be gener-
ated. It can happen especially in the case of a very 
small number of simulations (tens), where the num-
ber of interval combination is rather limited. The 
second task is to introduce the prescribed statistical 
correlation between the random variables defined by 
the correlation matrix. The columns in Table 1 
should be rearranged in such a way that they may 
fulfill the following two requirements: to diminish 
the undesired random correlation and to introduce 
the prescribed correlation. The efficiency of the LHS 
technique was showed for the first time by McKay 
and Conover W.J (1979), but only for the uncorre-
lated random variables. The first technique for the 
generation of the correlated random variables has 
been proposed by Iman & Conover (1982). The au-
thors also showed the alternative of diminishing the 
undesired random correlation. The technique is 
based on the iterative updating of the sampling ma-
trix; the Cholesky decomposition of the correlation 
matrix has to be applied. As a measure of the statis-
tical correlation, the Spearman correlation coeffi-
cient is used:  
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where R is the (NSim
.NV) matrix containing a per-

mutation of the rank numbers in each column and 
coefficients ijT  represents the Spearman’s correlation 
coefficient between the variables i and j, 

1;1ijT ∈ − . The correlation matrix T is symmetric, 
positive definite (unless some columns have identi-
cal ordering). Therefore the Cholesky decomposition 
may be performed: 

TT Q Q= ⋅  (5) 

and the new ordering matrix can be generated as 
follows: 

1
BR R Q−= ⋅  (6) 

Then the rank numbers in each column of the or-
dering matrix R are then arranged to have the same 
ordering as the numbers in each column of RB. The 



technique can be applied iteratively and can result in 
a very low correlation coefficient if generating un-
correlated random variables. But Huntington & Ly-
rintzis (1998) have found that the approach tends to 
converge to an ordering which still gives significant 
correlation errors between some variables. 

The scheme has more difficulties when simulat-
ing correlated variables. The correlation procedure 
can be performed only once, there is no way to iter-
ate it and to improve the result. 

The described scheme is linked to the Spearman 
correlation measure which is very robust in the cases 
of the nonGaussian (and different) marginal densi-
ties. It uses the ranks only instead of the sample val-
ues but the limitation is that the number of simula-
tions have to be higher than the number of random 
variables to achieve the positive definite correlation 
matrix. It can be understood as a serious drawback 
in the cases of the utilization of the LHS technique 
for the cases of a very high number of the variables 
and a limited number of simulations executable, e.g. 
in the random field simulation for the stochastic fi-
nite element calculations. 

 
 

 
 
Fig. 2 Example of negative statistical dependence between 
samples representing a random vector. 

 
These obstacles stimulated the work of Hunting-

ton & Lyrintzis (1998), they proposed the so called 
single-switch-optimized ordering scheme. The ap-
proach is based on the iterative switching of the pair 
of samples of Table 1 which gives the greatest re-
duction in error. The authors showed that their tech-
nique performs clearly well enough but it may still 
converge to a non-optimum ordering. A different 

method is needed for the simulation of both the un-
correlated and the correlated random variables. Such 
a method should be efficient enough: reliable, robust 
and fast. 

All approaches discussed above and further pre-
sume the imposition of the target correlation struc-
ture only by matrix manipulations. The task can be 
understood as the simulation from the multivariate 
distribution model consistent with the prescribed 
marginals and covariances. Most existing models for 
random vectors, however, are restricted to the 
bivariate case and/or can only describe the small 
correlation between variables. Two models based on 
the earlier works of Nataf and Morgenstern are rec-
ommended by Liu and Kiureghian (1986).  

Due to some limitations of both the models, this 
paper tries to find a solution of the problem by 
changing ranks of the samples instead of their val-
ues, while the marginal probability density functions 
remain intact. 

The representation of 2D marginals for two corre-
lation coefficients is illustrated in Figures 2 and 3, 
the sample values for each variable are used as coor-
dinates for the samples representing the joint PDF.  

 

 
 
Fig. 3 Example of statistically independent samples. 

 
Note that the accurate best result is obtained if all 

possible combinations of the ranks for each column 
(variable) itself in Table 1 are treated. It would be 
necessary to try an extremely large number of the 
rank combinations (NSim!)Nv-1. It is clear that this 
rough approach is hardly applicable in spite of the 
fast development of computer hardware. 

 



3 STOCHASTIC OPTIMIZATION SIMULATED 
ANNEALING  

The imposition of the prescribed correlation matrix 
into the sampling scheme can be understood as an 
optimization problem: The difference between the 
prescribed K and the generated S correlation matri-
ces should be as small as possible. A suitable meas-
ure of quality of the overall statistical properties can 
be introduced, e.g. the maximal difference of the 
correlation coefficients between matrices: 
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or a norm which takes into account the deviations 

of all correlation coefficients: 
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The norm E has to be minimized from the point 

of view of the definition of the optimization prob-
lem: the objective function is E and the design vari-
ables are related to the ordering in the sampling 
scheme (Table 1). It is well known that the determi-
nistic optimization techniques and the simple sto-
chastic optimization approaches can very often fail 
to find the global minimum. Such a technique fails 
in some local minimum and then there is no chance 
to escape from it and to find the global minimum. It 
can be intuitively predicted that in our problem we 
are definitely facing the problem with a multiple lo-
cal minima. Therefore we need to use the stochastic 
optimization method which works with some prob-
ability of escaping from the local minimum. The 
simplest form is the two-member evolution strategy 
which works in two steps: Mutation and selection.  

1. Step 1 (mutation): In generation a new ar-
rangement of the random permutations matrix X is 
obtained using random changes of the ranks, one 
change is applied for one random variable. The gen-
eration should be performed randomly. Then the ob-
jective function (norm E) can be calculated using the 
newly obtained correlation matrix - it is usually 
called “offspring”. The norm E calculated by using 
former arrangement is called “parent”. 

2. Step 2 (selection): The selection chooses the 
best norm between the “parent” and “offspring” to 
survive: For the new generation (permutation table 
arrangement) the best individual (table arrangement) 
has to give a value of the objective function (norm 
E) that is smaller than before. 

Such an approach has been tested intensively  us-
ing numbers of examples. It was observed that the 
method in most cases could not capture the global 

minimum. It failed in the local minimum and there 
was no chance to escape from it, as the only im-
provement of the norm E resulted in acceptance of 
“offspring”.  

The step “Selection” can be improved by Simu-
lated Annealing approach (SA), a technique which is 
very robust concerning the starting point (initial ar-
rangement of random permutations table). The SA is 
an optimization algorithm based on the randomiza-
tion techniques and the incorporates aspects of the 
iterative improvement algorithms. Basically it is 
based on the Boltzmann probability distribution:  
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where ∆E is the difference of norms E before and 

after the random change. This probability distribu-
tion expresses the concept of a system in thermal 
equilibrium at temperature T having its energy dis-
tributed probabilistically among all different energy 
states ∆E. The Boltzmann constant kb relates to the 
temperature and energy of the system. Even at low 
temperatures there is a chance (although very small) 
of a system being locally in a high energy state. 
Therefore, there is a corresponding possibility for 
the system to move from the local energy minimum 
in favor of finding a better minimum. In other 
words, there is some probability of escaping from 
the local minimum. There are two alternatives in 
step 2 (mutation).  

1. New arrangement - “offspring” results in the 
decrease of the norm E. Naturally “offspring” is ac-
cepted for a new generation.  

2. New arrangement - “offspring” does not de-
crease the norm E. Such “offspring” is accepted with 
some probability according to the probability distri-
bution (9). This probability changes as the tempera-
ture changes. Particularly, the offspring is accepted 
if a realization of random variable ReZ TE −= ∆− )(  
is positive, otherwise the offspring leading to nega-
tive Z is rejected. In the formula, R is uniformly dis-
tributed (rectangular) random variable over the in-
terval (0,1) )1,0(~ RR . The result is that there is a 
much higher probability of the global minimum be-
ing found in the comparison with the deterministic 
methods and the simple evolution strategies.  

The method represents the analogy with the an-
nealing of crystals. In the treated case kb can be con-
sidered to be one. In the classical application of the 
SA approach for optimization there is one problem: 
how to set the initial temperature? Usually it should 
be considered heuristically. However our problem is 
constrained: the acceptable elements of the correla-
tion matrix are always from interval 1 1;− . Based 
on this fact, the maximum of the norm (2) can be es-
timated using the prescribed and hypothetically 
“most remote” unit correlation coefficients, plus or 
minus. This approach represents a significant advan-



tage: The heuristic estimation of the initial tempera-
ture is neglected; the estimation can be performed 
without the guess of the user and the “trial and er-
ror” procedure. The initial temperature has to be de-
creased step by step, e.g. using reduction factor fT af-
ter the constant number of iteration (e.g. thousands): 

i+1 i TT  = T   f⋅   (10) 

The simple case is to use e.g. fT = 0.95, note that 
the more sophisticated cooling schedules are known 
in the Simulated Annealing theory, e.g. Otten & 
Ginneken (1989). 

The process of imposition of the correlation struc-
ture should be monitored through the graph similar 
to the graph in Figure 4, where the decrease of the 
norm vs. the number of switches is plotted. Such a 
figure is typical of most solutions using the Simu-
lated Annealing. 

 

 
 
Fig. 4 The norm E (error) vs. number of random changes (rank 
switches). 
 
4 NUMERICAL EXAMPLES 

4.1 Correlated properties of concrete 
In order to illustrate the efficiency of the pro-

posed technique, let us consider an example of the 
correlation matrix which corresponds to the proper-
ties of  concrete. They are described by 7 random 
variables; the prescribed correlation matrix is pre-
sented in the lower triangle. The upper triangle 
shows the imposed statistical correlation using the 
Simulated Annealing (SA), for two different num-
bers of the LHS-simulations (8, 64). The final values 
of the norms are included on the right side: the first 
line corresponds to the norm (1), the second line 
(bold) means the overall norm (2).  

It can be seen that as the number of simulations 
increases the correlation matrix is closer to the target 
one.  

Another example of utilization is given in (Ba-
žant, Novák & Vořechovský, 2003 or Lehký & 
Novák, 2002), where the simulation of the uncorre-
lated random variables was needed to represent the 

material strength over a structure instead of the ran-
dom field approach. 
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4.2 Non-positive definite prescribed correlation 
matrix?  

In real applications of the simulation technique in 
engineering (e.g. LHS), the statistical correlation 
represents very often the weak part of the a priori as-
sumptions. Because of this pure knowledge, the pre-
scribed correlation matrix on input can be non-
positive definite. The user may have difficulties in 
updating the correlation coefficients in order to 
make the matrix positive definite. The example pre-
sented here demonstrates that if the non-positive 
definite matrix is on input, the Simulated Annealing 
can work with it and the resulting correlation matrix 
is always positive definite. It is as close as possible 
to the originally prescribed matrix but the dominant 
constraint (positive definiteness) is satisfied auto-
matically. Let us consider a very unrealistic simple 
case of the statistical correlation for three random 
variables A, B and C according to the matrix K (the 
columns and rows correspond to the ranks of the 
variables A, B, C):  
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The correlation matrix is obviously not positive 
definite. Strong positive statistical correlation is re-
quired between variables (A, B) and variables (A, C), 
but strong negative correlation between variables (B, 
C). It is clear that only the compromise solution can 
be done. The method resulted in such a compromise 
solution without any problem, S1 (number of simula-
tions NSim was high enough to avoid limitation in a 
number of the rank combinations). This feature of 
the method can be accepted and interpreted as an 
advantage of the method. In practice, there are the 
reliability problems with the non-positive definite-



ness (lack of knowledge). It represents limitation 
when using some other methods (the Cholesky de-
composition of the prescribed correlation matrix). 

In real applications there may be a greater confi-
dence in one correlation coefficient (good data) and 
a smaller confidence in another one (just estima-
tion). The solution of the mentioned problems is 
weighted calculations of both the norms (7) and (8). 
For example the norm (8) can be modified in the fol-
lowing way: 
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where wi,j is the linear weight of a certain correla-
tion coefficient. Several examples of choices and re-
sulting correlation matrices (with both the norms) 
follow. The resulting matrices S2 and S3 demonstrate 
the similarity of the resulting errors (equivalent 
weights), while S4 and S5 illustrate the significance 
of the proportions between the weights. The weights 
are in lower the triangle and the matrix K is targeted 
again. The weights of the accentuated members and 
the resulting values are underlined. 
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5 CONCLUSIONS 

The new efficient technique of imposing the statisti-
cal correlation when using the Monte Carlo type 
simulation (e.g. LHS) is suggested. The technique is 
robust, efficient and very fast. The method is im-
plemented in the FREET multipurpose software 
package based on LHS for the reliability analysis of 
computational problems, Novák et al, (2002, 2003), 
Pukl et al. (2003). The method has several advan-
tages in comparison with the former techniques: 

1. The technique uses only the random changes 
of the ranks in the sampling matrix. The number of 
the simulations does not increase CPU time in the 
practical cases but for the increasing number of the 
random variables more SA simulations are needed to 
achieve a good accuracy. The technique is robust, 
the Simulated Annealing can be terminated if the er-
ror (norm) is acceptable (users decision). 

2. The problem of imposing the statistical corre-
lation is constrained precisely; therefore the initial 
temperature for annealing can be estimated.  

3. The technique can work also with the non-
positive definitive matrices defined unconsciously 

by the user as the input data. The important coeffi-
cients may be emphasized using weights while oth-
ers may be suppressed. 
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