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The article proposes an improvement over the widely used sequentially linear solution pro-
cedure often utilized for fracture simulations. In the classical secant version of this method,
a partial solution of a step is scaled to reach a stress limit in exactly one element and the
mechanical properties of the critical element are reduced. Non-proportional loading is gen-
erally unfeasible due to avalanches of ruptures caused by stress redistribution. Because
only one loading vector can be scaled at a time, all others have to remain constant during
the step. However, the constant load vectors do not allow proper determination of the crit-
ical element. A modified procedure based on redistribution of released stresses is devel-
oped here. It preserves the linearity of each step. After rupture of the critical element, a
sequentially linear redistribution process of stress release takes place until a static equilib-
rium state is reached. During the redistribution, other elements may break.

The proposed enhanced sequential procedure is also compared with another recently
published ‘‘event-by-event” linear method for non-proportional loading. It is shown here,
with the help of simple examples, that the proposed redistribution method yields correct
results for non-proportional loading, unlike the other methods under comparison.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Both lattice and continuum material representations are often used for the modeling of processes of crack propagation.
Since the lattice approach is used here to demonstrate the proposed procedure, let us first mention some of the most impor-
tant work done in this field.

The lattice representation was originally used for fracture in solids by physicists [1,2]. Several researchers have improved
their models to render them suitable for simulating experimental data. Regarding concrete, a lot of progress was made by the
Delft group in the Netherlands. They proposed the projection of a material meso-structure on top of a lattice and the assign-
ment of lattice elements with different properties according to their position in the meso-structure [3]. Their early influential
work is comprehensively summarized by Schlangen [4], including a successful comparison with many experiments. Van Vli-
et’s dissertation [5] also presents an extensive comparison of a lattice model with experiments. The current trends include
three-dimensional lattices with more realistically-shaped particles [6]. Other articles related to lattice modeling that the
present authors consider to be very important are the development of a rigid-body-spring network by Bolander and Saito
[7] and the work of van Mier et al. [8] studying the influence of various grain contents and properties.

Most of the lattice models use brittle elements (or piece-wise brittle elements such as can be found in [9]) in connection
with the classical version of the sequentially linear solution procedure (referred to as the secant procedure from here on).

Continuum models can adopt the concept of a secant solution or any ‘‘event-by-event” strategy as well (see [10]). The
procedure enables the solving of physically nonlinear tasks by a sequence of linear steps. Relations between stresses and
. All rights reserved.
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Nomenclature

kXk Euclidean norm of vector X
a, b, c, h characters used to distinguish between the different examples given
DX reference (incremental) value of variable X
d prescribed displacement
k multiplier that scales reference elastic solutions
r stresses in an element
A cross-sectional area of element
A, B, L loading vectors
A, B, C, D branches of the developed algorithm
S disequilibrium forces – external forces that acted on the removed element
d nodal displacement
E elastic modulus
f(�) failure surface: f(�) = 1 indicates failure
ft tensile strength
K stiffness matrix of structure
k pointer to critical element
l length of element
nu number of loading vectors
ne number of elements in the structure
R reactions
u superscript denoting current loading vector
s avalanche size
t variable showing how much of the current loading vector has been imposed
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strains have to be defined as a collection of elasto-brittle teeth, called a ‘‘saw-tooth” law. A method for constructing such a
law can be found in [11]. The simplest example of such a law is elasto-brittle behavior.

Pure elasto-brittle ruptures are often assumed especially in lattice modeling; the softening observed at a structural scale
is then understood as a structural effect it being a consequence of material heterogeneity (the effect of the incorporated
material meso-structure) [4].

The application of standard iterative procedures to problems with jumps in constitutive law can be difficult because the
energy, released in one incremental step, cannot be controlled by a step length. Recently, a special procedure [12] to opti-
mally control the step size without any a priori knowledge regarding the failure pattern of the structure has been published.
It is based on a monotonically increasing variable of the solid: the energy release, which always exhibits a positive rate when
failure evolves in quasi-brittle (softening) materials. In this respect, the ‘‘event-by-event” methods (such as the ones pub-
lished in the aforementioned papers [10,11]) also have the potential to trace the failure process in a controlled fashion.
The convenience of the sequentially linear strategy for this class of problems is proved by many published texts (for instance
in previously mentioned text [9]).

Fundamentally, the basis of the ‘‘event-by-event” method lies in the scaling of the solution of an elastic linear problem to
reach a certain bound of linearity defined by the rupture of the most loaded element. The external load imposed on a dis-
cretized elastic domain induces stresses in a finite number of integration points/discrete elements. A critical element, k,
breaks if its stress exceeds the failure criterion f(rk) = 1. In each step, the solid is subjected to a reference load, DL, and
the corresponding reference stresses Dr are evaluated. It is assumed that, in every step, the scaling coefficient k and element
k can be uniquely determined by the following condition:
f ðkDrkÞ ¼ 1 ^ 8h – k : f ðkDrhÞ < 1; ð1Þ
i.e. the critical element k reaches its fracture criteria when load kDL is imposed while all the other elements are below their
strengths. The mechanical properties of the critical element k are consequently modified by jump damage. The next step
starts again from the beginning (zero stresses and strains) but the stiffness of the structure is modified. The procedure is
applicable to a variety of problems, even those involving snap back, and there are no complications with convergence.

The purpose of this paper is to improve the secant solution scheme. As will be shown later, the application of the secant
procedure fails in cases of non-proportional loading. It is proposed that the problem be solved by the immediate redistribu-
tion of stresses released from ruptured elements into their neighborhood. The proposed method (denoted here as the redis-
tribution method) preserves the ‘‘event-by-event” linear concept; no iterations are utilized. A complicated non-proportional
load-path has to be idealized by a collection of piece-wise proportional loading vectors L1,L2, . . .,Lnu as illustrated in Fig. 1 b.

The paper begins by describing a situation where the secant sequentially linear solution procedure cannot be applied. It is
demonstrated in Sections 2 and 3 that this concept fails when applied to non-proportional loading. In Section 4, we show
how the concept of linear steps can be modified for non-proportional loading. Note that this modification can also be used



step ie crof

displacement

nonproportional
load-path

piece roportional
load-path

L1

L2

L5

L4L3 t4
t4

a b

Fig. 1. (a) Example of a response of a uniaxial tensile test obtained by the secant sequentially linear model. The hatched area shows one avalanche of size 45
events. Keeping the displacement nondecreasing, the system would evolve through static disequilibrium states in the direction marked by the arrow. (b)
Idealization of a complicated non-proportional load-path by a collection of piece-wise proportional loading vectors L1; L2; . . . ; Lnu .
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for proportional loading. An advantage of the improved redistribution method over the secant approach is clearly shown with
the help of two examples (one involving a simple lattice with just nine elements and the other involving a complex lattice
model) in Section 5. Another improvement of the secant approach recently published in [13] (from here on called DeJong’s
method) is compared with the proposed redistribution method in Section 6. In the same section, we exemplify some weak
points of DeJong’s strategy by using simple examples. A detailed numerical solution of an extremely simple structure involv-
ing three springs is performed in Appendix A.

2. Avalanches of events

Physical experiments as well as numerical simulations are often conducted under displacement control because it enables
the damage propagation to be kept stable. Even though there is no difference between the displacement and force control in
the secant sequentially linear scheme, one should distinguish between those two cases during a smoothing algorithm. A ser-
ies of imposed displacements or forces does not ascend all the time. Local descending parts can be understood as small insta-
bilities and disregarded – smoothed out [14]. The smoothing can be done for the displacement axis (or force axis) in the case
of displacement control (or force control respectively). These snap-backs can also be imagined as avalanches of ruptures, dri-
ven by redistribution of the elastic energy released from broken elements into their neighborhoods.

A theoretical description of such avalanches is published in the literature, for instance [15] for the case of bundles of many
parallel fibers. Fiber bundle models represent a useful idealization providing a qualitative description of the avalanche phe-
nomenology and their statistics. In fiber bundle models, an avalanche is usually defined as follows: when a structural ele-
ment breaks, the increased load (force) L on the remaining elements may cause further ruptures, and thus induces a
burst avalanche of a certain size s (this size is a number of elements that fail, too) is induced. The external load L performs
a biased random walk and the avalanche size distribution is equivalent to the first return time distribution of the walk. Thus,
avalanche size is defined as the number of springs (bonds) that break simultaneously for a constant load.

With this definition of an avalanche, Hemmer and Hansen [16] have shown that, for global load sharing in fiber bundles
with random fiber thresholds, the integrated number of burst events of size s per fiber, N(s)/N, asymptotically follows a power
law function of the form N(s)/N / s�5/2 in the limit N ?1. The exponent�5/2 is universal in the sense that it does not depend
on the statistical distribution of the individual fiber strengths. For local load sharing rules the distribution falls off with
increasing burst size much faster than for global load sharing, and does not follow a power law. In lattice model simulations
one can define the avalanche size s similarly: by counting the number of broken bonds that fail without any further increase in
the applied load. The situation then becomes more complicated and there is no analytical solution available. Large-scale sim-
ulations with random fuse models in 2D and 3D show that the exponents depend on the lattice topology while random spring
models have exponents close to �5/2 (see e.g. [17,18]). A detailed review on this topic can be found in [19].

One can also define the avalanche size as the number of consecutive ruptures needed to increase displacement. Fig. 1
shows an example of such an avalanche, beginning at step i, in response to a uniaxial tensile test simulation controlled
by displacement increments. We have performed numerical analyses with lattice models where the uniaxial element
strength is not continuously random, but give by its correspondence to aggregate, matrix and the interfacial transitional
zone. Our numerical results suggest that the avalanche size has an exponential distribution as well. This phenomenon is
known as an effect of self-organized criticality [20], i.e. an avalanche of any size can be expected, and there is no typical ava-
lanche size. Assuming the exponential avalanche size distribution for our case, avalanches can occur at any time and with an
arbitrary size as well.

Handling these avalanches in numerical procedures seems to be the crucial point. Each time some elasto-brittle element
reaches its instantaneous strength, a certain amount of released energy has to be redistributed immediately. This redistri-
bution is generally a dynamic phenomenon which passes through static disequilibrium states. The static method is obviously
not able to describe the redistribution properly. Yet, we are trying to develop a quasistatic technique to handle these ava-
lanches in order to simulate the proportional and mainly non-proportional loading of lattices.



Fig. 2. Example of non-proportional loading solved by the secant and redistribution sequentially linear strategies.
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3. Non-proportional loading

The sequentially linear solution is often applied in spite of the dynamic nature of the redistribution process for elasto-
brittle constitutive laws. In most of these simulations, the load is considered to be proportional, i.e. the reference loading
vector DL is the same at any moment in the simulation (for instance the modeling of eccentric tension in [5]). However,
one can find publications where the authors use the sequentially linear procedure for non-proportional loading; e.g. article
[21] presents an irregular lattice of brittle beams subjected to load-paths 4a, 4b, and 4c of Nooru-Mohamed tests [22]. It will
now be shown, how the secant procedure might give inappropriate results in such a case.

Since there is no common formulation of the secant strategy for non-proportional loading, we assume a straightforward
application/extension of the existing concept. Fig. 2 schematically shows non-proportional loading that consists of a tensile
and subsequent shear load (prescribed upward displacement followed by a movement to the right). In other words, there are
two loading vectors, L1(") followed by L2(?). Solving this task by the secant sequentially linear concept, one reaches the end
of tension (proportional part) in step p. The subsequent steps start again from the beginning, follow the tensile branch, and
scale the shear vector. The avalanche starting at step q might cause an element to be unable to sustain even the first tensile
loading vector and thus break before the end of the prescribed tension – step q + 1. A criticism of this secant technique arises
from the invalid stress field in step q + 1. The jump back to the previous loading vector can cause the failure of an inappro-
priate element, because the whole instantaneous load is not imposed.

As described above in Section 2, the occurrence of a sufficiently strong avalanche that pushes the solution back to the
previous loading vector is unpredictable. Thus, one should expect it at any stage of the simulation of any kind of non-pro-
portional loading.
4. Method of gradual static stress redistribution

An enhancement of the secant sequentially linear method for non-proportional loading is proposed here. Each time a bar
(bond) is broken, it is necessary to re-equilibrate the lattice system. Once a bar is broken, it is replaced by corresponding
forces. These forces are then gradually redistributed. Once the system reaches an equilibrated state (even after an avalanche
of breakages) the loading proceeds to the subsequent load increase.

Each step consists in linear scaling of the reference load, but it does not start from the beginning as in the secant method.
The scaling factor is applied only to incremental values of variables, i.e. the concept established by Eq. (1) is transformed into
the following incremental formulation:
f ðrþ kDrÞ ¼ 1 ^ 8h – k : f ðrþ kDrÞ < 1; ð2Þ
where r stands for the previously reached stress in the structure and Dr is the stress increment caused by the newly applied
load increment. The series of imposed loads (either displacements or forces) is forced to be non-decreasing, so that a proper
stress field is evaluated.

The rest of this section describes one step of the algorithm. It is assumed that the load consists of a series of vectors Lu,
u = 1,2,. . .,nu, no matter if these are forces or displacements. For instance, the first vector L1 moves one point of the structure
in upwards direction to a displacement of 1 mm, and the subsequent vector L2 applies a force of 10 kN at another point in the
horizontal direction. The results from the previous steps are stored in vectors of nodal displacements d, reactions R and ele-
ment stresses r. The stiffness matrix is denoted K. Let us assume that the structure has already passed loading vectors
L1,L2, . . . ,Lu�1. Therefore, the current loading vector is Lu and the reference load increment constructed from it is denoted
DLu. We use the reference load DLu instead of Lu to deliver a more transparent description. Usually, one uses the reference
load of unit size – the reference loading vector is obtained by dividing the full one by its size: DLu = Lu/kLuk. Let us define a
variable tu 2 h0;1i which says how far the structure proceeded in the loading by the current loading vector Lu. It is a fraction
of the total prescribed load, see Fig. 1b. When tu = 0, the computation with that load starts. When tu = 1, the process reached
the end of the prescribed load Lu. Each time when the procedure applies a load increment, variable tu is increased by the size
of the imposed load increment divided by the size of the current loading vector: Dtu = kkDLuk/kLuk.

The proposed redistribution algorithm is divided into four branches: A, B, C and D. Every step starts at branch A; the read-
er can follow the items on the attached flowchart (Fig. 3).



Fig. 3. Flowchart of the developed redistribution algorithm.
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Branch A loads the structure by the prescribed load increment.
A1 Solve a linear analysis (DR,Dd) of the system loaded by DLu. Evaluate the reference stress Drh for all elements

h 2 1,2, . . .,ne.
A2 Find the critical element k and the positive multiplier k so that the failure criterion from Eq. (2) is satisfied.
A3 Check whether the proposed load increment kDLu overshoots the intended load Lu. It can happen, for instance, that

the vector Lu prescribes a total displacement of 1 mm but the application of the proposed kDLu to break another ele-
ment would move it further than 1 mm. The bound on k is maintained by variable tu, which cannot exceed one. Two
scenarios are possible now:

(i) If the limit of the reference loading vector is exceeded
k > ð1� tuÞ
kLuk
kDLuk

ð3Þ

or k < 0, no other rupture occurs during application of the remaining part (of size (1 � tu)kLuk) of vector Lu. Pro-
ceed to branch C.
(ii) Otherwise, the proposed load increment is accepted and a local rupture(s) is going to occur. Save the current
position in the loading:
tu ¼ tu þ k
kDLuk
kLuk

: ð4Þ

Proceed to branch B.
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Branch B redistributes the energy from broken springs. It neither increases the imposed load nor decreases it.
B1 Element k breaks. Reduce the stiffness and strength of element k according to its constitutive law and update stiffness

matrix K.
B2 Update the total displacements, reactions and stresses:
R ¼ Rþ kDR; ð5Þ
d ¼ dþ kDd; ð6Þ
r ¼ rþ kDr: ð7Þ
B3 The system is not in an equilibrium state because the stiffness of element k has been changed. Therefore, calculate the
disequilibrium forces
S ¼ R� Kd: ð8Þ
B4 Load the structure by disequilibrium forces S. This serves to relax the structure, redistributing stresses from the dam-
aged element k into its surviving neighborhood. The results of this linear analysis are again the reactions DR, defor-
mations Dd and elemental stresses Dr.

B5 Some other elements may break during this redistribution. The same concept is used to identify them. According to the
criterion from Eq. (2), the multiplier k and critical element k are found again.

B6 Now, the algorithm detects whether other ruptures occur:
(i) If k > 1 or k < 0, all the released stress can be redistributed without any other rupture. Go to branch D.

(ii) Otherwise, subsequent ruptures occur. The algorithm handles them in the same way as the previous ruptures:
simply go to the beginning of branch B. This is repeated until the end of the current avalanche, i.e. until equilib-
rium is reached – item B6(i).
Branch C is entered after the process has reached the end of the current loading vector Lu.
C1 Determine k so that the structure is loaded by the remaining part of Lu:
k ¼ ð1� tuÞ
kLuk
kDLuk

: ð9Þ
C2 Update the total displacements, reactions and stresses according to Eqs. (5)–(7).
C3 Now, the algorithm proceeds to the next loading vector: u = u + 1. Two situations are possible:

(i) There is no other loading vector (u > un) and the simulation is finished.
(ii) Otherwise, the new reference loading vector DLu has to be composed from the new load Lu. Moreover, since the

algorithm starts with a new load, the current parameter tu has to be set to zero. Start again with branch A (increase
the imposed load).
Branch D is entered when the redistribution is finished, i.e. the avalanche of ruptures is finished and the structure reaches
the equilibrium state.

D1 To release all the disequilibrium forces, set k = 1. We already know that this does not cause any rupture.
D2 Update the total displacements, reactions and stresses: Eqs. (5)–(7).
D3 Start again with branch A (increase the imposed load).
The algorithm is similar to the secant procedure in the way it finds the linear multiplier k that leads to the rupture of ex-
actly one element. The element is removed/damaged. However, the stress which was stored in the damaged part is released
gradually. In other words, one can imagine the influence of the damaged part as disequilibrium forces that are redistributed
by another sequentially linear loop(s).

The procedure can be understood as a limit state of a dynamic solution with damping approaching infinity. Such damping
completely eliminates the inertial forces.

Notice that scaling parameter k was always non-negative. A negative value of k inside branch A would mean that we are
applying load in the opposite direction. Similarly, a negative k inside branch B would mean that, instead of damaging the
critical element and redistributing the released forces, we are increasing its stiffness and unloading its neighborhood.

5. Comparison with the secant sequentially linear method

Let us present two examples which indicate the difference between results obtained with the secant approach and those
obtained with the proposed redistribution approach.

5.1. Example with a simple lattice structure

The first numerical example involves a simple truss structure with nine bars (springs). The studied truss structure (Fig. 4)
is loaded by prescribed displacements L1 and L2, firstly in the y(") and then in the x(?) direction. The aim is to find the failure
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pattern after performing the prescribed motions of the top rigid platen: 1 mm up and 2 mm to the right. The loading vectors
are defined in displacements: L1 = (dx,dy)T = (0,0.001)T, L2 = (0.002,0)T. The bottom rigid platen is fixed. All elements are elas-
to-brittle springs with cross-sectional areas of 1 m2; elements 1–4 (or 5–9) have elastic moduli of 10 GPa (or 1 GPa respec-
tively). The tensile strengths of elements 1, 2 and 3 are 2 MPa, 1 MPa and 1.25 MPa. The remaining elements have infinite
strengths.

Both the secant approach and the redistribution strategy initially proceed identically. The structure is loaded by the ref-
erence prescribed displacements DL1 = (0,1)T. No element reaches its strength until kDL1 reaches the load validity limit
k = kL1k/kDL1k, i.e. k = 0.001 and t1 = 1. Both procedures continue with the second reference loading vector DL2 = (1,0)T.
The overall imposed load then equals L1 + kDL2. The scaling parameter k that leads to the first rupture was found to be
0.00185, t2 = 0.925 (Fig. 4, state D) and the critical element has the number 1. From here on, the two approaches differ.

In the secant strategy, bar 1 is removed from the structure at this stage. The next step starts again from the beginning with
the reference loading vector DL2 = (1,0)T. Now, bar 2 breaks at k = 0.00083 (Fig. 4, state E). The last step of the secant proce-
dure evaluates the linear analysis for the whole load d = (0.002,0.001)T without any other rupture (Fig. 4, state F).

In contrast, the redistribution strategy does not remove bar 1 immediately. In order to maintain equilibrium, element 1 is
replaced by force FA

1 ¼ 2:0 kN (Fig. 4, state A). The force is then gradually decreased (the structure is loaded by the disequi-
librium forces of state A). Note that this redistribution corresponds to a gradual reduction in the stiffness of element 1. When
force F1 reaches the value of 0.6 kN (or the stiffness of that element decreases to approximately 0.9 GPa), element 3 breaks.
The next step then tries to diminish both the residual force of element 1 FB

1 ¼ 0:6 kN
� �

and the force transmitted by element
3 FB

3 ¼ 1:25 kN
� �

. Because it succeeds without any other rupture, the avalanche stops and the structure attains equilibrium.
Similarly as with the secant strategy, the reminder of the load can be imposed without any other rupture.

Note the difference: in the secant strategy, bar 2 was broken under pure tensile load (0,0.00083)T in spite of the fact that
the structure had previously reached the tensile–shear load combination (0.00185,0.001)T. This is unexpected, because ‘‘hard
loading” does not release the whole current external load due to some local ruptures.

The obvious difference between the two final states C and F leads to a question: which solution is better? The above-men-
tioned dynamic character of the problem does not allow this to be judged, but the redistribution procedure did not violate any
requirements (it always conformed with the instantaneous stress field).

5.2. Example with a large lattice structure

The example given above as well as the other examples that follow clearly demonstrate differences in the behavior of
different numerical methods in the case of simple structures with very low number of elements. One might doubt whether
the improvement gained from the proposed redistribution method has a significant effect in the case of complex lattices con-
sisting of many elements. To demonstrate that differences also occur in simulations with several thousands of elements, we
present comparisons of simulations with the structure sketched in Fig. 5a. This example is based on the prestressed structure
presented in [13]. The beam is initially prestressed by a tendon (the effect of the tendon is simplified into load A of magni-
tude 12 kN) and then gradually loaded in bending by force B. The domain is filled with rigid cells interconnected by springs,
this being what is known as a rigid-body-spring network [23]. The cell geometry is provided by a Voronoi tessellation. In fact,
the model is very similar to Bolander’s random lattice [7]. For simplicity, we ignore the contribution of shear forces and
bending moments at element facets to the failure criterion, i.e. any element breaks only when the normal stress exceeds
the limit chosen here as 1 MPa. Both the beam depth and the thickness equal 0.2 m; the span is set to 0.8 m. To suppress
the spurious local effect of point loading A, we permitted spring breaks only in the central part of the beam – see Fig. 5a.
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Fig. 5. Comparison of the secant and redistribution methods. (a) Prestressed structure considered for comparison. (b and c) Crack pattern in the early and
final stages of the solution provided by the secant method. (d) Final crack obtained by the proposed redistribution method.
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The initial load A leads to tension in the upper layer of the beam; however, the stress limit is not exceeded in any spring.
Then, force B starts to reduce tension in the upper half and gradually induces tension in the bottom layer. Finally, a fracture
initiates from the bottom surface. In the redistribution method, load B is not removed and the compression of the upper layer
remains. The fracture therefore continues to propagate further from the bottom, see Fig. 5d.

The secant method removes the whole of the applied load after every rupture and starts again with pure load A (if possible
followed by the second loading vector B). Thus, tension in the upper layer due to load A is recovered at the beginning of every
step. The crack propagating from the bottom due to load B weakens the beam’s cross section. Once the crack reaches a cer-
tain size (Fig. 5b) it causes the beam to become unable to sustain the whole initial prestressing load A and the beam starts to
fracture from the top (Fig. 5c) under pure load A alone. This result apparently does not correspond to the expected and exper-
imentally observed behavior of such a beam.

Note that for this illustrative example we have selected a structure which is inconvenient for the secant method. In many
other real loading situations, both methods would probably yield very similar crack patterns. This is also the case of match-
ing the experimental crack patterns of non-proportional Nooru-Mohamed tests using the secant method [21,4].
6. Comparison with DeJong’s sequentially linear method

The objection against the secant approach described in Section 3 and demonstrated by Section 5 is supposed to be avoided
by a recently published enhancement [13], here called DeJong’s method. However, according to the present authors, discrep-
ancies remain, though less obvious; we will show that DeJong’s procedure also does not handle ruptures correctly (i.e. we
claim that ruptures can occur under an invalid stress field).

In order to demonstrate the weak point of DeJong’s method, we present two numerical examples. Before doing so, an
imaginary task without any direct structure representation is used to reveal the difference between the two methods under
comparison. Then, the rupture of two truss structures is examined briefly by both procedures.

Article [13] (DeJong’s method) proposed the solution of non-proportional loading by modification of the scaling method.
In agreement with article [13], let us consider two load cases A = L1 and B = L2. Assume that the simulation has already pro-
ceeded into load case B (the whole load A has already been applied). By scaling the load vector B, DeJong’s method simply
tries to find a state in which all the elements except the critical one are below their failure criteria (strengths). Scaling factor
kh, which leads to rupture, is found for every element h. The set of elements is divided into two parts: those where an increas-
ing load B increases the elements’ stresses, and those where the same load decreases their stresses. The minimum factor kt

min

is found in the former part, whereas the maximum factor kc
max is selected from the latter part. When kc

max < kt
min, the required

state exists and the element with scaling factor kt
min breaks. In the opposite case ðkc

max > kt
minÞ, such a solution cannot exist

because there is always at least one element that violates the failure criteria (stress is above its strength). However, the algo-
rithm proceeds via the rupture of the element with the scaling factor kc

max.
DeJong’s method does not take into account the previously achieved amount of load vector B. In contrast, the proposed

method of gradual static stress redistribution does reflect all previously applied loads. A schematic comparison is provided
in Fig. 6. The imaginary structure consists of three bars 1–3. There are two alternative forms of the structure studied, a
and b, and the difference is in the response of bar 3. In both structures a and b, bar 3 breaks in the first step, and therefore
in the next step there will be only two bars. The only remaining difference between them will be the load level at which bar 3
breaks, i.e. the previously applied load. The vertical axis shows the stresses in the bars, whereas the horizontal axis repre-
sents the load (i.e. evolution of the load through scaling factor k). In the first step (Fig. 6a), the structure passes the loading
vector A. By scaling the load B in the second step, bar 3 reaches its strength and breaks. In the first structure, bar 3 breaks at
state a2, whereas in the second one, rupture occurs at state b2.

In the third step depicted in Fig. 6b, the factors kt
min and kc

max are found according to DeJong’s procedure. As apparent from
Fig. 6b, an increase in load B leads to an increase in the stress of bar 1 and simultaneously to a stress decrease in bar 2. Since
only these two bars remain, kt

min is dictated by bar 1 and kc
max by bar 2. Because kc

max < kt
min, the scaling factor kt

min is selected
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and bar 1 breaks. This happens in both distinguished cases a and b – irrespective of the rupture of bar 3 (the difference be-
tween the two structures a and b is ignored). Note that in Fig. 6b, the load levels that led to the rupture of beam 3 (i.e. pre-
viously reached load levels) are marked by symbols a3 and b3.

In contrast with the third step of DeJong’s procedure, the redistribution method loads the structure with disequilibrium
forces and pushes it by redistribution from state a2 [or b2] into state a3 [or b3 respectively] – Fig. 7a and b. During this redis-
tribution, different bars break in each of the two variants.

Again, we have a situation where the proposed redistribution method yields different results than the other method – here
DeJong’s procedure. The proposed solution respects the instantaneous load and therefore should be marked as the correct
one. DeJong’s method gave identical results in both structures, no matter how much of load B was imposed to break the first
element.

In order to explain the described difference comprehensively, we provide two simple examples demonstrating the differ-
ence between redistribution and DeJong’s method. This time, we also provide a mechanical model of the structure.

6.1. Two simple examples

Assume a simple structure consisting of five elasto-brittle trusses (bars) connected with two rigid platens through hinges
as sketched in Fig. 8. All the bars share the same length, l = 1 m, the distance between all pairs of neighboring beams is 1 m,
and the truss elements are numbered (no. 1 marks the top bar). Bars 1, 4, 5 have the finite tensile strength ft = 0.3 kPa; bars 2
and 3 have infinite strengths.
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Fig. 8. Simple structure considered in order to explain the difference between redistribution and DeJong’s method.
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The structure is loaded by a combination of two loads, A and B. Both of the loads act always in the current centroid of the
bar forces. Thus, the point of action immediately moves upon rupture of any bar.

Load A represents a tensile force resulting purely in horizontal separation of the platens (no rotation of the platens is al-
lowed meaning that the tensile force always acts in the current centroid of the bar forces). Load B represents a moment
imposing pure rotation of the platens around the current centroid of the bar forces.

First, load A (force) of magnitude 1 kN is applied, then load B (moment) of magnitude 0.2 kN m.
Two different sets of elastic moduli and cross-sectional areas will be considered to demonstrate the difference between

the two solution methods under comparison.
For the first case (denoted c), the elastic moduli E and cross-sectional areas A are given in Table 1. The evolution of stres-

ses in the system can be traced from Fig. 9a. The application of load A does not result in any rupture. Next, by applying load B
in step 2 of a reference value 1 kN m, the scaling factors of bars with finite strengths are computed and presented in the same
table. Using DeJong’s approach, kc

max < kt
min and bar 5 breaks. The same rupture occurs when using the proposed redistribution

method because bar 5 has the smallest positive multiplier. In the third step, DeJong’s method gives two scaling factors (Ta-
ble 1), and again kc

max < kt
min, so bar no. 4 breaks. No other rupture occurs in the system until load B reaches its limit of

0.2 kN m. However, the method of gradual static stress redistribution introduces the redistribution of stresses from broken
bar 5. Fig. 9a clearly shows that, during the transition of the structure from state c2 to state c3 by redistribution, bar no. 1
breaks. States c2 and c3 again refer to the load level that broke the first bar (the subscript denotes the step number). Both
methods initially broke bar no. 5. However, the second broken bar was different. This is because the proposed redistribution
method reflects the whole loading history while DeJong’s method does not.

For the second case (denoted h), the elastic moduli E and areas A are given by Table 2. Similarly as in the previous case, the
stress evolution in the bars is shown in Fig. 9b. Applying the whole load A and scaling load B, multipliers for bars with finite
strengths are evaluated (Table 2). In the second step, kc

max < kt
min and both DeJong’s and the redistribution method remove bar
Table 1
Truss properties and scaling factors from example c.

Truss E (GPa) A (m2) ft (kPa) Step 2 Step 3

1 3 1 0.3 kc
max ¼ �0:115 kc

max ¼ 0:233
2 1 1 1 – –
3 1 1 1 – –
4 1 3 0.3 kt = 7.063 kt

min ¼ 1:633
5 3 1 0.3 kt

min ¼ 0:138 –
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Table 2
Truss properties and scaling factors from example h.

Truss E (GPa) A (m2) ft (kPa) Step 2 Step 3

1 1 0.5 0.3 kc
max ¼ �0:175 kc

max ¼ 0:061
2 1 1 1 – –
3 1 1 1 – –
4 1 0.5 0.3 kt = 0.425 kt

min ¼ �0:061
5 1 1 0.3 kt

min ¼ 0:198 –
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no. 5. In the third step, kc
max > kt

min and according to DeJong’s procedure, no solution of Eq. (2) exists, but bar no. 1 is removed.
In the redistribution method, force redistribution takes place and the internal loop of the redistribution process always has a
solution. Now, bar 4 breaks during the redistribution loop, see Fig. 9b. Again, we obtained different sets of broken bars at the
end of the loading processes of the two methods compared.

7. Conclusions

The applicability and possible enhancements of the sequentially linear solution method, based on the scaling of elastic
steps, have been discussed. Two existing methods, namely the secant approach and the method proposed by DeJong et al.
in [13], were examined and compared with the newly proposed redistribution procedure. It was found that the secant method
is not generally applicable for non-proportional loading paths, because unloading to the origin at every local rupture does not
correspond to the actual loading history. DeJong’s approach brings about only a partial improvement. We have shown that
under non-proportional loading, DeJong’s approach leads easily to a sequence of ruptures that does not correspond to instan-
taneously applied load.

The proposed method of gradual static stress redistribution takes into account all the previously applied load. No addi-
tional computational costs are added, all the steps inside the redistribution loops are linear, they lead to element removals
and no iterations are required. The procedure is applicable in both discrete and continuum MKP models (such as [10,11])

A direct comparison of the three examined techniques leads to the following conclusions:

� The secant strategy allows the solution process to skip back to the previous loading vectors (even to the very origin, see
the solid circle in Fig. 1b). In this respect, it does not correspond to the real hard-loading situation.
� DeJong’s procedure cannot skip to the previous loading vectors, but within the last loading vector Lu it can skip back as

well.
� The described redistribution procedure cannot skip back (unload and reload) at all. The entirety of the previously applied

load is always considered. In this way it reflects the real loading.

According to our experience, the proposed algorithm can be simply connected with the method of inelastic forces (MIF)
developed by Jirásek and Bažant [24,25]. Such a combination leads to significant acceleration of the linear elastic problems
solved in every step.

Unfortunately, the new redistribution method does not allow the observation of snap-backs; such a phenomenon is
skipped in the redistribution loop by finding the static equilibrium state at the same load level, see Fig. 1. Therefore, it
can be more convenient to use the secant procedure for proportional loading. It should be noted that the results obtained
by the secant and redistribution procedure may differ even in the case of proportional loading. This is caused by the different
concept of passing through the avalanches of ruptures, and there is no way to judge which of these static methods is better
for solving such a dynamic phenomenon.

The redistribution method has been successfully used for simulating Nooru-Mohamed’s experiments [22] and Petersen’s
experiments [26]. The published results can be found in [27,28].
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Appendix A. Detailed example of a numerical solution

In order to further illustrate the proposed enhancement, the failure of the structure plotted in Fig. 10 will now be solved
by the redistribution procedure. It consists of three ideally elasto-brittle springs/elements with the same areas equal to 1,
different Young’s moduli (E1 = 10, E2 = 2, E3 = 6) and different tensile strengths (ft,1 = 5, ft,2 = 2, ft,3 =1). The length of all
elements is 1. Three degrees of freedom, vertical displacements of nodes 1–3, are considered and stored in vector d. The
structure is loaded by a prescribed deformation d in node 3 up to displacement 2 (kL1k = 2). Failure occurs when the stress
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in any element reaches the tensile strength of that element. Letters A–G, which mark different states of the structure in
Fig. 10, are used in the following as a superscript which connects the matrices with the figure.

Initially, stresses r in all springs are zero as well as the displacements of nodes d and reactions R (state A):
rA ¼ dA ¼ RA ¼
0
0
0

0
B@

1
CA
The elastic stiffness matrix for the structure is assembled as
KA ¼
E1 þ E2 �E1 � E2 0
�E1 � E2 E1 þ E2 þ E3 �E3

0 �E3 E3

0
B@

1
CA ¼

12 �12 0
�12 18 �6

0 �6 6

0
B@

1
CA
In step 1, the reference prescribed deformation DL1 is composed, t1 is set to zero and the elastic reference step solution is
calculated.
DL1 ¼
0
�
1

0
B@

1
CA DdA ¼

0
1=3

1

0
B@

1
CA DRA ¼

�4
0
4

0
B@

1
CA DrA ¼

10=3
2=3

4

0
B@

1
CA
Obviously, when stress DrA is multiplied by k = 3/2, element number 1 reaches its tensile strength whereas all the others
are below their strengths. Then, instantaneous stresses, displacements, and reactions are evaluated (state B), the mechanical
properties of element 1 are decreased (E1 = 0) and the stiffness matrix of the structure is modified. Parameter t is increased
t1 = t1 + kkDL1k/kL1k = 3/4.
dB;C ¼ dA þ kDdA ¼
0

0:5
1:5

0
B@

1
CA RB;C ¼ RA þ kDRA ¼

�6
0
6

0
B@

1
CA

rB;C ¼ rA þ kDrA ¼
5
1
6

0
B@

1
CA KB ¼ KA – KC ¼

2 �2 0
�2 8 �6
0 �6 6

0
B@

1
CA
Disequilibrium forces SC then act as an additional loading vector (state C) and the elastic solution of the modified struc-
ture, supported in nodes 1 and 3, is calculated.
SC ¼ RC � KCdC ¼
�6
0
6

0
B@

1
CA�

�1
�5
6

0
B@

1
CA ¼

�5
5
0

0
B@

1
CA

DdC ¼
0

5=8
0

0
B@

1
CA DRC ¼

15=4
0

�15=4

0
B@

1
CA DrC ¼

�
5=4
�15=4

0
B@

1
CA
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This elastic solution is again scaled by factor k and summed with the previous one to fulfill the failure criterion in exactly
one element)k is equal to 4/5 and the critical element is spring number 2 (state D). The Young’s modulus of element 2 is set
to zero.
dD;E ¼ dC þ kDdC ¼
0
1

1:5

0
B@

1
CA RD;E ¼ RC þ kDRC ¼

�3
0
3

0
B@

1
CA

rD;E ¼ rC þ kDrC ¼
�
2
3

0
B@

1
CA KD ¼ KC – KE ¼

0 0 0
0 6 �6
0 �6 6

0
B@

1
CA
Now, new disequilibrium forces are evaluated, the structure is again subjected to these forces (state E) and the elastic
reference solution is performed.
SE ¼ RE � KEdE ¼
�3
þ3
0

0
B@

1
CA

DdE ¼
0

1=2
0

0
B@

1
CA DRE ¼

3
0
�3

0
B@

1
CA DrE ¼

�
�
�3

0
B@

1
CA
Scaling of this elastic solution does not lead to any positive k, so k is set to be 1 and the final avalanche vectors are eval-
uated (state F).
dF ¼ dE þ kDdE ¼
0

1:5
1:5

0
B@

1
CA

RF ¼ RE þ kDRE ¼
0
0
0

0
B@

1
CA

rF ¼ rE þ kDrE ¼
�
�
0

0
B@

1
CA
Applying the remainder of the prescribed load L1 does not lead to any rupture, so it is skipped here.
Note that in this example, the secant strategy produces the same results. The secant algorithm starts in state A and finds

the maximal load in state B. The next step begins again from zero load (but without spring number 1) and the gradual load-
ing reaches the rupture of spring number 2 in state G. This spring is removed as well and the final state with deformation 2 of
the top node is reached.
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[25] Jirásek M, Bažant ZP. Particle model for fracture and statistical micro–macro correlation of material constants. In: Wittmann FH, editor. Fracture

mechanics of concrete structures, proceedings of FRAMCOS-2. AEDIFICATIO Publishers; 1995. p. 955–64.
[26] Petersen RB. Fracture mechanical analysis of reinforced concrete – experiments and fem modelling. Master’s thesis, Department of Civil Engineering,

Technical University of Denmark, Anker Engelundsvej 1, 2800 Kgs. Lyngby, Denmark; 2008.
[27] Eliáš J. Discrete simulation of fracture processes of disordered materials. PhD thesis, Brno University of Technology, Faculty of Civil Engineering, Brno,

Czech Republic; 2009.
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