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a b s t r a c t

In this paper an extension of Weibull theory by the introduction of a statistical length scale is presented.
The classical Weibull strength theory is self-similar; a feature that can be illustrated by the fact that the
strength dependence on structural size is a power law (a straight line on a double logarithmic graph).
Therefore, the theory predicts unlimited strength for extremely small structures. In the paper, it is shown
that such a behavior is a direct implication of the assumption that structural elements have independent
random strengths. By the introduction of statistical dependence in the form of spatial autocorrelation, the
size dependent strength becomes bounded at the small size extreme. The local random strength is phe-
nomenologically modeled as a random field with a certain autocorrelation function. In such a model, the
autocorrelation length plays the role of a statistical length scale. The focus is on small failure probabilities
and the related probabilistic distributions of the strength of composites. The theoretical part is followed
by applications in fiber bundle models, chains of fiber bundle models and the stochastic finite element
method in the context of quasibrittle failure.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In many applications of composites in engineering, an important
issue is the statistical strength of the composite. The local tensile
strength of fibrous composites can often be expressed as the strength
of a bundle of fibers bridging a crack. In such situations, the strength
can be studied using fiber bundle models with either local or global
load sharing. Typically observed strengths (of fibers) are orders of
magnitude below theoretical molecular bonding strengths, which
suggests that the observed strengths are primarily the result of flaw
types, internal flaws such as voids, inclusions and weak grain bound-
aries, and external or surface flaws such as notches or cracks, which
cause stress concentrations. The reliability of materials depends on
these flaws. In this paper we follow the concept of studying the
behavior of fibrous materials with the ambition to extend it to other,
possibly non-fibrous materials using the argument that various
combinations of series and parallel couplings of microbonds with
similar behavior to fibrous materials can be found elsewhere. The
reliability problems of fibrous materials, such as those studied by
Daniels [1] and Coleman [2], have enjoyed many revivals over the
last four decades and stimulated considerable interest in the devel-
opment of new models and asymptotic results [3–8].

Engineering structures made of all kinds of materials must be
designed for an extremely low failure probability, such as
Pf = 10�6–10�7 per lifetime (e.g. [27,31,32]). This is necessary to
make structural failures very rare compared to other hazards
ll rights reserved.
which people face and that are generally accepted. In the range
of such extremely low probabilities, the difference between the
exponentially decaying Gaussian (normal) distribution and the
Weibull distribution, which has a tail decaying as a power law, is
enormous, despite both of them having a similar shape in the cen-
tral region of the distribution that can be estimated from physical
or computer experiments. A direct determination of the tail of the
probability density function (pdf) of a failure load F from experi-
mental histograms is virtually impossible for such low probabili-
ties of failure. The same holds also for computational approaches
to complex structures based on direct Monte Carlo simulation.

Even though the current stochastic finite element method
(SFEM) has become highly developed [28–30], its extension to ex-
treme value statistics remains a challenge. To compute the tolera-
ble loads of such extremely low Pf, effective SFEMs for extreme
value statistics have been developed; they include ‘importance
sampling’ [28,33,34], ‘subset simulation’ [35,36], ‘line sampling’
[37], von Neumann’s ‘splitting’, ‘Russian roulette’ [37], etc. How-
ever, despite the development of these powerful methods, their
practical application faces a serious obstacle: the results depend
strongly on the far-out tail of the probability density function
(pdf) of the input, though the pdf is typically verified (and can be
verified) only for the core, and when this pdf is simply extended
into the tail, the extension is often incorrect [38]. If this problem
is ignored, any advanced sampling strategy or any other type of
SFEM for extreme value statistics is reduced to a mere mathemat-
ical exercise of no practical relevance [13].

Therefore, one must rely on a theory Which can be verified indi-
rectly. Its formulation is a fundamental problem of failure
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mechanics, in which only two limiting failure types are now ade-
quately understood [39]. The first is perfectly ductile (plastic) fail-
ure, where the failure load is essentially a weighted sum of the
strength contributions from all the representative volume elements
(RVEs) of the material lying on the failure surface, and (because of
the central limit theorem of probability) the pdf of the failure load
is necessarily Gaussian (except in far-left tails). The second limiting
failure type is perfectly brittle failure, which is decided by the fail-
ure of one RVE and thus follows the weakest-link model, leading to
Weibull [13] probability distribution.

This paper, which is an extension of a conference paper [14],
starts with the classical Weibull theory (Section 2) employed to ex-
plain the length effect on the strength of a single fiber. This concept
is extended in Section 2.1 by the incorporation of a length scale. In
Section 3, the impact on the strength of the classical fiber bundle is
illustrated. Section 4 proceeds to the chain-of-bundles that is sup-
posed to model the strength of a composite structure.

2. Classical Weibull strength theory

Consider a body (structure) under uniform stress containing
randomly distributed flaws, see Fig. 1 left. The size of the body is
characterized by its length l (e.g. the length of a fiber). The struc-
ture fails once the stress at the weakest point (cross section)
reaches its local strength. Assume that the local strength is random
and characterized by the Weibull distribution (two parametric).
Using the weakest-link model together with the Weibull-type
function for the concentration of defects, the probability of failure
Pf at a given level of stress r is expressed as the so-called Weibull
integral [9]:

Pf ðrÞ ¼ 1� exp �
Z

l

r
s0

� �m dl
l0

� �
ð1Þ

where the Malacuya brackets stand for positive part h�i ¼maxð�;0Þ.
The argument in the Malacuya brackets with its power m represents
a particular choice of concentration function. It represents a contri-
bution to the failure probability of the whole structure. For a given
Weibull modulus (shape parameter) m, we have a reference length
l0 with a corresponding scale parameter s0 of the Weibull strength.
The uniform stress level is independent of the position over the
length and therefore we can rewrite Eq. (1) as �ln(1 � Pf) = (r/
s0)ml/l0. Now, the stress level for a chosen probability of failure Pf

can be expressed as a function of the structural size (length l):

rðlÞ ¼ s0ðl0=lÞ1=m½� lnð1� Pf Þ�1=m ¼ s0fWðlÞ½� lnð1� Pf Þ�1=m ð2Þ

This function is a power law and therefore its graph in a double
logarithmic plot for an arbitrary level of probability Pf (quantile) is
a straight line with a decreasing slope of �1/m. For example, the
mean strength of the structure depends on its length as
�rðlÞ ¼ s0Cð1þ 1=mÞðl0=lÞ1=m ¼ sðlÞCð1þ 1=mÞ, where C is the Gam-
ma function. The effect of length in this equation and also in Eq. (2)
has been inserted into the scale parameter, which then reads
(a) (b)

Fig. 1. Unidirectional fibrous tensioned structures with breaks at peak load: (a) one fib
random field and its minima; (b) Daniels’s bundle of (discretized) fibers; (c) Chain-of-b
s(l) = s0(l0/l)1/m = s0fW(l). From here on, we call fW(l) the Weibull
length dependent function. The strength distribution of such a
structure is Weibull for an arbitrary length:

FðxÞ ¼ 1� exp � x
sðlÞ

� �m� �
ð3Þ

and its shape (parameter m) is independent of the structure size,
and the corresponding coefficient of variation (COV) of fiber
strength distribution is a constant depending solely on the Weibull
modulus m:

COV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1þ 2=mÞ=C2ð1þ 1=mÞ � 1

q
ð4Þ

Note that from a Taylor expansion of F(x), we find the lower tail
behavior to be FðxÞ ¼ ½x=sðlÞ�m þ O½xmsðlÞ�, where O½z�=z! 0 as
z ? 0. This fact will become important in the tail analysis of the
strength of fiber bundles. Moreover, numerical evaluation of F(x)
necessitates the above approximation of exp (x) by the Taylor
expansion for very small arguments x.

There is a strong relation between the theory of extreme values
and the weakest-link model. Of particular and necessary interest
here are the minima of strength realizations over the fiber (chain)
length, see Fig. 1 left. It is well known from the theory of extreme
values of independent and identically distributed random variables
(IID) that there are three and only three possible asymptotic (non-
degenerate) limit distributions for minima [10] satisfying the con-
dition Fn(x) = 1 � [1 � F(x)]n. In order to avoid degeneration we
look for the linear transformations with the constants an and bn

(depending on n) for which the limit distributions L(x) = lim n?1L-
(x) = lim n?1Ln(anx + bn) = lim n?1{1 � [1 � Ln(anx + bn)]n}. Since
the Weibull elemental distribution is being considered here, the
extremes belong to the domain of attraction of Weibull distribu-
tion, and the sequences of constants an and bn satisfying the above
recursive relation are known (see e.g. [11]).

The important property readily seen from the above equations
is that the scale parameter of the Weibull distribution can be ad-
justed for any length l1 to deliver the same Pf as for the original ref-
erence length l0: s1/s0 = fW(l1) = (l0/l1)1/m. This demonstrates the
inherent feature of the Weibull distribution in the context of the
weakest-link model already revealed in Eq. (2): it is arbitrarily scal-
able with respect to the reference length l0; there is no length scale
inside. Realizing that the reference length of one segment l1 is arbi-
trarily scalable, we may perform this randomization with an arbi-
trary segment length, including the very small l1 ? 0, with the
scaling parameter s1 ?1, and still obtain the same size effect.
The extreme value theory gives us an analytical solution, which
was recently proposed for the simplification of computations of
large structures with the stochastic finite element method [12,13].

However, the writer believes that the independence assumption
of neighboring strengths is not correct for a real spatial distribution
of strength in a material and must be abandoned at a certain length
scale. Also, the strength must remain bounded for short segments.
The origin of the strength bound is not discussed here, but surely,
(c)

er (microbond) discretized into segments of length l0 with a sketch of a strength
undles with an illustration of the fragmentation process.
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it is not possible to measure arbitrarily high strength with very
short specimens. This discrepancy calls for solution.

2.1. Statistical length scale in Weibull strength theory

In order to impose an upper bound on the strength of small
structures in the Weibull theory, the independence assumption
of any pair of local substructures must be abandoned [15,7]. A
plausible and physically acceptable assumption is that neighboring
segments of a structure are statistically dependent, while two re-
mote segments are independent. This can be easily modeled by
an autocorrelated random field. In other words, it is assumed here
that the local strengths are dependent via an autocorrelation func-
tion. The autocorrelation can merely be a function of the Euclidean
norm of two points; moreover, it can be isotropic, i.e. the autocor-
relation can be independent of direction. An example of such a
function can be the squared exponential function (power p = 2):
R(Dd) = exp [�(|Dd|/lq)p]. In the model, the strength random field
is homogeneous and isotropic, meaning simply that the local dis-
tribution is identical in all points of the structure. To remain con-
sistent with the previous text, the strength is assumed to be
Weibull distributed from here on. In addition, the relation between
the pair of reference shape and scale parameter of the distribution
and the autocorrelation length must be formulated explicitly. The
reason is that the simple scaling relation s1/s0 = fW(l1) = (l0/l1)1/m

does not hold anymore. Why? Because a statistical length scale in
the form of the autocorrelation length lq has been incorporated.
As a consequence, the strength dependence upon the size (length)
is not a power law anymore. The autocorrelation has the effect of
imposing an upper bound on strength for infinitely small (short)
structures. When the structural size converges to zero, the weak-
est-link mechanism disappears and the strength is identical to
the elemental distribution (the highest attainable strength of the
model at the currently modeled scale such as micro, meso, macro).
By adding more material (increasing length), the weakest-link ef-
fect gradually overtakes and causes the decrease of structural
strength (both the mean strength and also its standard deviation
are reduced). At the limit, one can show that the large size asymp-
totic behavior is the classical Weibull size effect. In other words, for
very large structures the effect of relatively small autocorrelation
length becomes insignificant and the model can again be treated
as the weakest-link model of independent identically distributed
random strength elements. The crossover length is the autocorrela-
tion length. To conclude, the fiber strength has the same form as in
Eq. (2), but with a different length dependent function. In particu-
Fig. 2. Left top: mean size effect curves for an increasing number of fibers n in a bundle
overlap for n > 160. Left bottom: effective Weibull modulus m, Eq. (4). Right: 3D represen
the case of random strength described by random processes.
lar, a smooth interpolation function proposed recently in [16,15,7]
has correct asymptotes: the left asymptote at the small size limit is
horizontal and the right asymptote is the classical Weibull function
fW(l) from Eq. (2):

fV ðlÞ ¼
lq

lþ lq

	 
1=m

ð5Þ

At large sizes, self-similar behavior is recovered (the double log-
arithmic plot is a straight decreasing line with a slope of �1/m). At
small sizes, the weakest-link mechanism is suppressed by the fact
that all substructures share an identical strength due to their per-
fect positive dependence. Note that this relation is supported by
numerical simulations of extremes (minima) of random fields
and is an alternative to currently available analytical results [17].
Note also that the shape (m or COV) of the distribution remains
independent of size l in Eq. (2). An illustration of the mean fiber
size effect exploiting Eq. (5) is provided in Fig. 2 left, with compar-
ison to the classical Weibull dependence.
3. Strength of fiber bundles

The above - described extension of Weibull theory can be read-
ily incorporated into the theory of the strength of bundles with
elastic-brittle fibers and with global load sharing [15,7]. The classi-
cal model formulated by Daniels [1] describes a situation where n
parallel fibers (or microbonds) with IID random strengths, equal
lengths and elastic moduli, are stretched between two clamps un-
der global load sharing. The maximum tensile force of the bundle
Q �n is measured in terms of load per fiber. Daniels [1] derived a
recursive formula for computing the cumulative density function
(CDF) Gn(x) of Q �n depending on the fiber CDF F(x) and number of
fibers n:

GnðxÞ ¼ PðQ �n 6 xÞ ¼
Xn

k¼1

ð�1Þkþ1 n
k

	 

½FðxÞ�kGn�k

nx
n� k

� �
;

where G1ðxÞ � FðxÞ; G0ðxÞ � 1 and
n

k

	 

¼ n!

ðn� kÞ!k!

ð6Þ

This formula is usable only for a small number of parallel fibers
(a few tens) as the computational demands and also the round-off
errors increase significantly with an increasing number of fibers.
Moreover, Daniels proved that, under broad assumptions on F(x),
the asymptotic distribution of the maximum bundle load Q �n is
Gaussian, i.e. with n ?1, it tends to
for fiber strength described by Weibull random process, m = 4.52. The curves nearly
tation of bundle efficiency depending on the number of fibers and bundle length for
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lim
n!1

GnðxÞ ¼ U
x� l�

c�
ffiffiffi
n
p	 


¼ U
x� l�

r�

	 

ð7Þ

where U(�) is the standard Gaussian cumulative density function,
see Fig. 3 top. The mean value l* depends on fiber F(x) and not on
the number of fibers n. The standard deviation r* of bundle strength
is proportional to the inverse of the square root of n, (see e.g. [7] for
details). Formulas for the mean value l* and standard deviation r*

in the case of Weibull strength distribution F(x) of fibers will be gi-
ven in Eq. (16).

It can be argued [15,7] that if the CDF of fibers is Weibullian, the
left tail of Gn(x) must be nothing but Weibullian, i.e. the Daniels’s
result about the normality of Gn(x) is valid only in a certain core
part of the distribution. Indeed, Harlow et al. [18] showed in
1983 using the set theory that the left tail of Gn(x) is Weibullian
with the shape parameter (Weibull modulus) being an n-multiple
of the shape factor m of one fiber. Recently, Bažant and Pang [8]
confirmed this result and they have shown that the result holds
also for ductile fibers.

The bundle strength distribution Gn(x) over the whole range of
strengths x is, in fact, a smooth transition between two tail Weibull
distributions W0(x) and W1(x). Practically however, most of the
distribution transition is occupied by the above Gaussian distribu-
tion derived by Daniels, see Eq. (7). The spread of the Gaussian core
is usually from loads corresponding to probabilities ranging from
enormously small to enormously large. The Weibull distribution
for small strengths (or high reliabilities) W0(x) reads:

lim
x!0

GnðxÞ ¼W0ðxÞ ¼ 1� exp � x
s�n

	 
nm� �
� x

s�n

	 
nm

ð8Þ

where the scale parameter comes out of the recursion in Eq. (6) in
which F(x) is set to (x/s)m:

s�n ¼
sðlÞ
d�n
 � 1

nm
; d�n ¼ ð�1Þnþ1 þ

Xn�1

k¼1

ð�1Þkþ1 n

k

	 

d�n�k

n
n� k

� �mðn�kÞ

ð9Þ

The fiber shape parameter s(l) is assumed to be known for a gi-
ven length l, see Section 2 and the remainder of this subsection.
The Weibull distribution for large strengths W1(x) reads:
Fig. 3. Top: bundle strength distribution with a growing number of fibers n obtained eith
Bottom: samples of the whole force–strain diagrams obtained by Monte Carlo simulati
induced solely by the statistical scatter of strength). Bundles are sketched and the mean v
lines show the asymptotic mean force–strain diagram (see [15,7] for details).
lim
x!1

GnðxÞ ¼W1ðxÞ ¼ 1� exp �n
x

sðlÞ

	 
m� �
ð10Þ

This is derived from the weakest-link model and the associated
extreme value distribution. At high loads, the bundle strength per
fiber is no better than its weakest fiber:

1�W1ðxÞ ¼ ½1� FðxÞ�n ¼ exp � x
sðlÞ

	 
m� �� �n

ð11Þ

From Eq. (11) the above Eq. (10) follows easily. The upper tail
W1(x) is, however, of low importance for structural reliability con-
siderations. An example of Gn(x) for n = 20 fibers is provided in
Fig. 4 together with a comparison of the three distributions and
strength distribution of bundle with a single fiber (m = 4). The solid
circle in Fig. 4 right is the intersection of the Weibull asymptotical
distributions.

For practical numerical computations and implementation into
software packages, a distribution composed of two branches might
suffice. Such a distribution has recently been suggested in [8]. The
intersection between the Gaussian core and the left Weibull tail
(see the solid box in Fig. 4) can be used as a point for the grafting
of the Weibull tail W1(x) onto a scaled Gaussian core in which the
scaling factor is calculated to achieve unit probability for infinite
strength x.

The effect of parallel coupling seems to be captured well. The
question remains as to what the effect of the length of such a bundle
on its strength is. It has been shown in [15,7] that, for the situation
studied, the effect of length and parallel coupling can be treated
separately, and they are independent and do not interact. Simply,
a change in the length of the fibers in the bundle results only in
the change in the scaling parameter s of the distribution F(x) of fi-
ber strength. This distribution then enters formulas for the bundle
strength distribution. If, for example, we consider Weibull fibers,
and, in analogy with Eq. (2), we use the association of the length
dependence with the scale parameter s(l) = s0f(l), the resulting
Weibull strength distribution can be plugged into Daniels’s formu-
las for bundle strength. After a few simple manipulations [15,7],
the resulting mean bundle strength reads l*(n, l) = l*(n)f(l), thus
manifesting the decomposed effects of length and parallel
coupling. The bundle strength, being a function of the amount of
er using Daniels’s exact recursion for small n or using direct Monte Carlo simulation.
ons of the bundle response for selected n in the bundle (note the quasibrittleness
alue of strength ± standard deviation is marked by a circle with errorbars. The white



Fig. 4. Cumulative distribution function of bundle strength. Comparison of a bundle with n = 20 fibers and a single fiber bundle. Left: linear plot. Right: Weibull probability
paper.
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material (fiber length and number of parallel fibers), is plotted in
Fig. 2. The figure compares the proposed incorporation of the sta-
tistical length scale lq using fV(l) with the classical Weibull theory
that uses fW(l). It is shown that with an increasing number of fibers
(or microbonds), the crossover length lq propagates in the size ef-
fect plots unchanged.

4. Strength of chains of fiber bundles

The above theory presented in the previous section applies only
to fibrous structures with non-interacting fibers (a fiber continuum
at the limit) or generally to tension in frictionless materials. In fiber
reinforced composites or other materials, a certain shear transfer of
load takes place to neighboring real or virtual fibers. Such a trans-
fer can have various origins and forms. For example, when fibrous
materials are loaded in tension, the effect of matrix (in early mod-
els of composites), yarns with slight twist or cables with periodic
friction clamps is to localize the failure of one fiber (microbond)
in such a way that the load is lost only near the break. The lost load
is carried by the surviving fibers or bond in the vicinity of the
break. This situation can be modeled by the so-called local load
sharing rules. In general, an accepted model for the failure mecha-
nism is the chain-of-bundles model [3]; the material is assumed to
behave like a chain of short bundles of common length lb. From
here on, we ignore the local load sharing rule and continue to mod-
el the stress redistribution in each bundle by the global load shar-
ing rule. The structure under study is sketched in Fig. 1c. Even
though such a model can not reproduce all of the effects of shear
load transfer, for the study of the most influential mechanisms of
size effect this statistical model suffices.

The common length lb (sometimes called the effective length) is
assumed to remain constant during loading (even though this
assumption may not be realistic especially for twisted yarns during
transition from low loads with small transverse pressure to high
loads, because the effective length is sensitive to lateral pressure).
The basic questions answered here are: (i) what the limiting form
of the strength probability distribution is and (ii) what the effect of
modeling the local fiber random strength by an autocorrelated ran-
dom field is. These results may be extremely important in the
study of the reliability of materials and may serve as a basis for
effective homogenization techniques for the modeling of materials
which, for reliability purposes, must be based on higher order sta-
tistical moments of the random mechanical response.
The strength of the chain-of-bundles model is governed by the
weakest bundle. By assuming bundles to be independent (or at
least the distance of bundles must be more than about five times
greater than the autocorrelation length of the fiber random
strength field), one can formulate the strength distribution as:

Hk;n ¼ 1� ½1� GnðxÞ�k ð12Þ

For Weibull fibers the left tail is Weibullian with the same
shape factor (modulus) as the left tail of Gn(x), which is mn. Note
that the importance of the left tail (x ; 0) of the strength distribu-
tion, which can be approximated as GnðxÞ �W0ðxÞ � ½x=s�nðlÞ�

mn;

s�nðlÞ ¼ f ðlÞs�n, grows with k due to the weakest-link mechanisms.
The left tail of a single bundle strength is Weibullian and therefore
the distribution Hk,n consists of a Weibullian left tail. After a simple
algebra, one can approximate the distribution to be (for large k and
small n):

Hk;nðxÞ ffi 1� exp �k
x

s�nðlÞ

� �nm� �
ð13Þ

which is a Weibull distribution with the shape parameter mn (equal
to the shape parameter of a single bundle) and scale parameter
k�1=ðkmÞs�nðlÞ. For large k and large n the distribution of strength of
a single bundle is almost entirely Gaussian. The Weibull left tail
W0(x) is extremely short, see e.g. the solid box in Fig. 4 right at
the probability of 2 	 10�9. Therefore, most of the distribution of
strength of the chain-of-bundles tends to Gumbel distribution with
increasing k (Gumbel distribution is the limiting form of extremes
of Gaussian iids). Indeed, Smith (see Theorem 6.1 in [19], also
[20,21]) proposed the approximation of the CDF in the form:

Hk;nðxÞ ffi 1� exp � exp
x� bk;n

ak;n

	 
� �
ð14Þ

where the constants ak,n and bk,n can be easily calculated from the
two moments (mean and standard deviation l, r) of the Gaussian
strength of one bundle using standard formulas from the extreme
value theory [22]:

ak;n ¼
r�ffiffiffiffiffiffiffi
2w
p ; bk;n ¼ l� þ r� lnðwÞ þ lnð4pÞffiffiffiffiffiffiffi

8w
p �

ffiffiffiffiffiffiffi
2w
p� �

ð15Þ

where w = ln(k). The mean value of this Gumbel distribution reads
simply lk � bk,n � 0.577ak,n (0.577 � Euler–Mascheroni constant),
the median equals bk,n + ak,nln[ln(2)] and the standard deviation
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rk ¼ pak;n=
ffiffiffi
6
p

. The experience with small k (say 2–300) is that the
approximation slightly overestimates the mean value, for which the
writer proposes a polynomial approximation: lk ¼ l� þ r�ð�0:007
w3 þ 0:1025w2 � 0:8684wÞ. It is concluded here that, for a suffi-
ciently large number k of bundles in a series, Hk,n(x) is best formu-
lated as a transition from Weibull tail to Gumbel core, similarly to
the situation for a single bundle where Gn(x) is a transition from
Weibull tail to Gaussian core.

Let us proceed with the effect of the assumption of spatially cor-
related strengths of elements of fibers in the chain-of-bundles
structure. It is known from experiments on twisted yarns that a
small twist can increase the yarn’s strength. It is believed that
the reason is the so-called fragmentation effect: a fiber in twisted
yarn acts over several lengths lb and its breaking affects only the
bundle surrounding the break (ineffective length); the fiber is
capable of supporting almost the original load at only a short dis-
tance from the break. Therefore one fiber can break several times
over its length, which may lead to an overall increase in the
strength of the structure [6], see Fig. 1c for an illustration.

The remainder of this section studies the strength of such a chain-
of-bundles model with elastic-brittle fibers of varying total lengths lt
and with a varying number of bundles k inside it. Throughout the
study, the material parameters are kept constant; in particular, the
Weibull fibers have the shape parameter m, and the scale parameter
s = sq is associated with the reference length lq (the reference length
has the meaning of the autocorrelation length in the case of a random
strength field). The number of fibers must be specified as it influ-
ences the variability of bundle strength and thus also the slope of
the size effect curve (bundles are arranged in series). For the numer-
ical study we select a medium size of n = 160.

As mentioned before, the correlation length lq is kept con-
stant. Let us express the total specimen length as an nq-multiple
of the autocorrelation (reference) length: lt = nqlq. This total
specimen length can be divided into various numbers k of bun-
dles each having the length lb: lt = klb. Now, it suffices to study
the effect of nq and k on the strength of the final composite
(chain-of-bundles). The Gaussian core reaches extremely low
probabilities in the case of n = 160. Therefore, the mean strength
will be the mean of a minimum of k Gaussian distributed vari-
ables representing the strength of one bundle. To compute this
mean, one can use the aforementioned formulas from the para-
graph following right after Eq. (15). The Gaussian variables have
the mean value l* and standard deviation r* given in [1] and re-
fined in [19], see [7]. The formulas are rearranged here to be
explicitly dependent on the length function f(lb), for which there
are two alternatives (the Weibull form fW and the proposed for-
mula fV based on extremes of random processes):
Fig. 5. Mean composite or bundle strength (chain-of-bundles) for n = 160 fibers plotted
proposed Eq. (5). Left: cuts of surfaces for selected nq and a comparison with the mean st
Right: 3D representation.
l� ¼ f ðlbÞlq¼ f ðlbÞsq m�1=mcmþ0:996n�2=3mð�1=m�1=3Þexp � 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cmð1�cmÞ
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=
ffiffiffi
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rqðm;n;sÞ...for the reference length

; cm¼expð�1=mÞ

ð16Þ

Both studied fiber length dependent functions can be rewritten
in non-dimensional variables used as arguments of our final graphs
(factor out the correlation length lq):

fWðlb; m; lqÞ ¼
k

nq

	 
1=m

; f V ðlb; m; lqÞ ¼
lq

lq þ lb

	 
1=m

¼ k
kþ nq

	 
1=m

ð17Þ

The mean strength of a composite for small k can be approxi-
mated as lk = f(lb)[lq + rq(�0.007w3 + 0.1025w2 � 0.8684w)], w =
ln(k). For large k, one can use Eq. (15). In both cases, the effect of
length on the mean strength of a composite can be written as a
multiple of a solution for the reference length. The mean strength
of one bundle with 160 fibers is again ca 64% of the mean strength
of a reference fiber (m = 4.52); compare with Fig. 2.

Deviations of bundle and composite strength from the fiber
strength disappear with growing Weibull modulus m (as it ap-
proaches the deterministic situation). Pan [6] has used the frag-
mentation effects to explain the strength growth in twisted yarns
with a light twist. He used the Weibull strength dependency (see
Fig. 5) and argued that the mean strength of twisted yarn can ex-
ceed the fiber reference mean strength. The writer believes that
this is an incorrect conclusion. Series coupling of bundles and the
associated weakest-link mechanism must have a stronger effect
on strength than shortening the fiber length lb in each bundle
(shortening the length leads to a statistical strength increase).
These two effects cancel each other out for n = 1 fiber. Unfortu-
nately, Pan’s analysis also disregards the number of fibers in one
bundle, which has an impact on bundle strength variance. Note
that a large strength variability at the bundle level has a strong im-
pact on the size effect strength (chain of bundle strength), because
of the weakest-link mechanism. It can be seen from Fig. 5, left, that
the proposed solution for the composite mean strength becomes
slightly lower than the bundle strength with growing k. This de-
crease becomes pronounced with lower numbers of fibers n and
also with greater material strength variability (smaller m).

The presented results can be used to explain the dependence of
the strength of twisted yarns on the twist level. If the length of the
composite is 1–10 times greater than a correlation length, yarns
exhibit a slight increase in the mean strength for a medium twist
with logarithmic coordinates. Comparison of Weibull length dependency with the
rength of one bundle (the inset has linear coordinates with the same ranges of axes).
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level. For greater twists, the experimentally reported strength drop
can be explained by Phoenix’s [23] theory: fibers are assumed to
follow helical paths with the helix angle a, and the bundle strength
is then proportional to cos2 a. In other words, Phoenix’s model pre-
dicts the strength of yarn to achieve its maximum for zero twist
and decrease with an increasing amount of twist. Note that Phoe-
nix [23] assumed non-interacting fibers. In our model, the interac-
tion of fibers in real lateral pressure-sensitive yarns is introduced
through using the chain-of-bundles model instead of using just a
fiber bundle model. The combination of (i) Phoenix’s [23] theory
with (ii) the presented stabilization of the Weibull theory by the
statistical length scale in the chains of fiber bundle model captures
the experimentally observed [40] slight strength increase of yarns
with a light twist that is followed by a drastic strength decrease for
highly twisted yarns.
5. Discussion and relations to the strength of composites and
quasibrittle structures in general

In a large fiber composite, several clusters of fiber damage occur
during loading and the ‘‘weakest” cluster is responsible for the final
demise of the composite. The failure process is localized in nature
and it is believed that as the number of fibers in the composite (or
parallel microbonds in a general material) is increased, one can iden-
tify a region within a composite that is statistically representative of
the rest. A large system – a composite – can be formally considered as
composed of a collection of independent subsystems coupled in ser-
ies so that a failure in the weakest subsystem causes a failure across
the entire system. The composite is then as strong as the weakest of
these regions and this leads to the conception of a critical cluster. As a
result, large composites obey the weakest-link rules and the struc-
tural strength is associated with extreme value statistics.

The statistical description of the strength and mechanical prop-
erties of a cluster depend on the size of the critical region. Under
the assumptions presented in the previous sections, the strength
distribution has a Weibull left tail (important for the reliability of
the composite material in practical applications) and a Gaussian
to Gumbel core. The size of a critical cluster ls may then be, under
similar loading conditions, seen as a material property stemming
from the variability of material properties and the mechanics of
the failure of the critical cluster. The question is what the depen-
dencies and interactions between such clusters are. In the fracture
mechanics of concrete, it is now widely believed that the character-
istic length (a material constant) related to the size of the fracture
process zone (FPZ) has a connection with the maximum aggregate
size. For geometrically similar structures of different sizes, the FPZ
is approximately constant, and this implies the so-called energetic-
deterministic size effect [24]. Another explanation of the nominal
strength dependence on the size is the classical statistical size ef-
fect caused by strength variability and weakest-link mechanisms.
These two sources can be treated as independent and modeled to-
gether in a complex model [12,25]. However, based on the above
discussion, there may be a relation between the FPZ size, the
characteristic size based on the maximum aggregate size the size
of the critical cluster of cracks and finally the autocorrelation size
of the local random strength field introduced at the beginning of
the present paper.

The described concept of a random cluster strength field has
been utilized in stochastic finite element computations of concrete
structures in higher dimensions, where the effective properties at
the macro-scale were assumed to be spatially correlated over a cer-
tain constant length ls [26]. It can be shown that the deterministic
characteristic scaling length (incorporated into the model e.g. via
the crack band size) interacts with the statistical scaling length
(introduced in the form of autocorrelation length as explained
above). Namely, two examples of application can be mentioned
[12,25]; the former aims at numerically studying the interplay of
several sources of size effects of concrete dog-bone specimens of
different sizes (ratio 1:32) loaded in tension, and the results are
compared to the result of real experiments. The latter application
constitutes support for the formulation of a size effect formula
for strength for structures failing after crack initiation from a
smooth surface. The formula exploits the above - explained upper
bound on strength attained for small structural sizes. The paper in-
volves the Malpasset Dam as an example of a real structure. The
theoretical arguments supported by extensive numerical simula-
tions have lead to the formulation of a procedure based on the
new size effect formula. The formula has been proposed for the
prediction of the complex energetic-statistical size effect (based
just on deterministic nonlinear computation and a single analysis
of the Weibull integral) without performing advanced and time
consuming stochastic nonlinear simulations [12].
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[13] Bažant ZP, Pang SD, Vořechovský M, Novák D. Energetic-statistical size effect
simulated by SFEM with stratified sampling and crack band model. Int J Numer
Methods Eng 2007;71(11):1297–320. doi:10.1002/nme.198.
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