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a b s t r a c t

The objective of this paper is to propose an effective procedure for sampling from a multivariate
population within the framework of Monte Carlo simulations. The typical application of the proposed
approach involves a computer-based model, featuring random variables, in which it is impossible to find
a way (closed form or numerical) to carry out the necessary transformation of the variables, and where
simulation is expensive in terms of computing resources and time. Other applications of the proposed
method can be seen in random field simulations, optimum learning sets for neural networks and response
surfaces, and in the design of experiments.
The paper presents a technique for efficientMonte Carlo type simulation of samples of randomvectors

with prescribedmarginals and a correlation structure. It is shown that if the technique is applied for small-
sample simulation with a variance reduction technique called Latin Hypercube Sampling, the outcome
is a set of samples that match user-defined marginals and covariances. Such a sample is expected to
lead to stable estimates of the statistics of the analyzed function, with low variability. The method is
very flexible in terms of the allowable combination of marginal distributions and correlation structures.
The efficiency of the technique is documented using simple numerical examples. The advantages of the
presented method are its simplicity and clarity; the method has proven itself to be simple to use, fast,
robust and efficient, especially for very small sample sizes.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The aim of statistical and reliability analyses of any computa-
tional problem which can be numerically simulated is mainly the
estimation of statistical parameters of response variables and/or
theoretical failure probability. PureMonte Carlo simulation cannot
be applied to time-consuming problems, as it requires a large num-
ber of simulations (repetitive calculation of responses). A small
number of simulations can be used to gain an acceptable level of
accuracy for the statistical characteristics of the response using
the stratified sampling technique Latin Hypercube Sampling (LHS)
first developed by Conover [1] and later elaborated mainly in [2–
4]. Stratified sampling is revised here, and this is followed by the
main problem of treating/imposing statistical correlations among
input basic random variables.
It is known that the output response variables of some systems,

represented by their response functions, are sensitive to changes
in correlations among the input variables. Therefore, it is essential
to precisely capture the input correlations in the simulated values.
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Thus, Monte Carlo type simulation approaches require sampling of
correlated data from Gaussian and frequently also non-Gaussian
distributions.
Other than the multivariate normal distribution, few random-

vectormodels are tractable and general, thoughmanymultivariate
distributions are well documented [5]. The available techniques
for simulation of (generally non-Gaussian) correlated vectors are
listed in Section 2.2.
In the present paper, the task of correlation control in sampling

is treated as a combinatorial optimization problem. Examples of
such a class of problems and approaches can be found in graph
theory and integer programming, such as the traveling salesman
problem, the network design problem, the problem of optimal
chip placement in computer processors, the knapsack problem
or the decision tree design problem [6]. This class of problems
has received a great deal of attention in the literature due to the
large number of practical problems that it includes. In the 1980s
Kirkpatrics et al. [7] and Černý [8,9] argued that all combinatorial
problems possess a common structure, namely, they are all
multivariate discrete systems with many degrees of freedom.
An analogy is made between the behavior of large physical
systems and that of combinatorial problems, with the result that
one could apply results from classical statistical mechanics to
combinatorial optimization. In this paper, an analogy between
the statistical mechanics of large multivariate physical systems
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Notations

Nsim number of simulations;
Nvar number of variables (marginals);
Ntrials number of trials at a constant temperature;
A actual correlation matrix (estimated from sample)

with entries Ai,j;
T target correlation matrix (user-defined) with en-

tries Ti,j;
W weight correlation matrix (user-defined) with en-

triesWi,j;
E error correlation matrix (computed);
Ê weighted error correlation matrix;
Eparent, [Eoff, Ebest] cost function (error) of the parent [off-

spring, currently best] configuration (state);
Cparent, [Coff, Cbest] parent [offspring, current best] configura-

tion (state);
r realization of rank matrix corresponding to x;
1E error difference before and after random change in

configuration;
t0, tmin maximum and minimum temperatures in Simu-

lated Annealing;
I unit matrix;
X vector of random variables;
x realization of the vector X (Nsim × Nvar matrix);
U [Z] vector of uncorrelated [correlated] standardized

Gaussian variables;
ρrms weighted root mean square error (correlation);
ρmax weighted maximum absolute error (correlation);
πi(j) random permutation of rank number j for ith

variable;
ξi,j upper bound for jth realization xi,j in LHS;
Φ [Λ] eigenvectors [eigenvalues] of T Z ;

and combinatorial optimization is presented and used to develop
a strategy for the optimal ordering of samples to control the
correlation structure. The problem of optimal sample ordering is
solved by the so-called SimulatedAnnealingmethod using aMonte
Carlo procedure similar to the one developed by Metropolis et al.
[10]. The present paper is an extended version of conference papers
published by the authors in 2002 [11–14]. A paper describing a
nearly identical technique appeared in the literature two years
later [15].
The paper is organized as follows. After a review of small-

sample simulation techniques in Section 2 we proceed to
univariate sampling (Section 2.1) and a formulation of the problem
of correlation control (Section 2.2). Next, we turn our attention to
general combinatorial optimization and the Simulated Annealing
technique in Section 3. The application of themethod to correlation
control is thoroughly described in Section 3.2 and numerical
examples follow.

2. Review of small-sample Monte Carlo LHS

Let us consider the deterministic function Y = g(X) (e.g. a
computational model), where Y ∈ R, X ∈ RNvar is a random vector
ofNvarmarginals (input randomvariables describing uncertainties)
and g(·) can be expensive to evaluate. The information on the
random vector is limited to marginal probability distributions and
the target correlation matrix T :

T =


X1 X2 ... XNvar

X1 1 T1,2 · · · T1,Nvar

X2
... 1 · · ·

...
...

...
...

. . .
...

XNvar sym. · · · · · · 1

. (1)

The task is to perform statistical, sensitivity and possibly
reliability analyses of Y . Suppose the analytical solution of the
transformation of input variables to Y is not possible. The most
prevalent technique for solving the task is Monte Carlo simulation
(MCS). MCS is popular for its simplicity and transparency and
is also often used in the benchmarking of other (advanced)
simulation techniques. The procedure is to draw Nsim realizations
of X and compute the same number of output realizations of Y
using the model g(·). Because g(·) can be expensive to compute
it pays to use a more advanced sampling scheme. A good choice is
one of the ‘‘variance reduction techniques’’ called Latin Hypercube
Sampling (LHS).
LHS was first suggested by W.J. Conover, whose work was

motivated by the time-consuming nature of simulations connected
with the safety of nuclear power plants. Conover’s original
unpublished report [1] is reproduced as Appendix A of [16]
together with a description of the evolution of Latin Hypercube
Sampling as an unpublished text by R.L. Iman (1980). LHS was
formally published for the first time in conjunction of Conover’s
colleagues in 1979 [2].
LHS is a special type ofMonte Carlo numerical simulationwhich

uses the stratification of the theoretical probability distribution
functions of input randomvariables. For statistical analysis (aiming
at the estimation of low statistical moments of response) it
requires a relatively small number of simulations (from tens
to hundreds)—repetitive evaluations of the response function
g(.). LHS strategy has been used by many authors in different
fields of engineering and with both simple and very complicated
computational models. Its role in reliability engineering is
described in [17]. LHS is suitable for statistical and sensitivity
calculations. There is also the possibility of using it for probabilistic
assessment within the framework of curve fitting. LHS has
also been successfully combined with the Importance Sampling
technique [18] to minimize the variance of estimates of failure
probability by sampling importance density around the design
point. Optimal coverage of a space with many variables with a
minimum number of samples is also an issue in the design of
experiments, and LHS, alongwith related sampling techniques, has
its place in that field. In the next two subsections, we will discuss
(i) univariate sample selection in LHS and (ii) the correlation
estimation of samples.
Although the text in following chapters will deal with LHS, the

methods described in this work can readily be generalized to any
Monte Carlo sampling type method.

2.1. Univariate sampling

Latin Hypercube Sampling is a form of simultaneous stratifica-
tion for all Nvar variables of the unit cube [0; 1]Nvar . There are sev-
eral alternative forms of LHS. In the centered version (called lattice
sampling by Patterson [19]) the jth realization of ith random vari-
able Xi (i = 1, . . . ,Nvar) is denoted xi,j and generated as:

xi,j = F−1i

(
πi(j)− 0.5
Nsim

)
, (2)

whereπi(1), . . . , πi(Nsim) is a random permutation of 1, . . . ,Nsim;
F−1i is the inverse of the cumulative distribution function of this
random variable and Nsim is the number of simulations, i.e. the
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Table 1
Sampling scheme for Nsim evaluations of g(X).

Var Sim:
1 2 . . . Nsim

X1 x1,1 x1,2 · · · x1,Nsim
X2 x2,1 x2,2 · · · · · ·

· · · · · · · · · · · · · · ·

XNvar xNvar,1 · · · · · · xNvar,Nsim

number of realizations for each randomvariable. If Fi is continuous,
then each of the Nsim equiprobable subintervals j = 1, . . . ,Nsim
for Xi is represented by one value xi,j. McKay et al. [2] showed
that such a sample selection reduces the sampling variance of the
statistics of g(X) when g(·) is monotone in each of the inputs. In
the unbiased version, from McKay et al. [2], the Latin Hypercube
Sample is generated by replacing the number 0.5 in Eq. (2) by
U ij , where U

i
j is a uniformly distributed random variable over the

interval [0, 1), independent of the permutations πi (this sampling
selection is called LHS-random fromhere on). The centered version
in Eq. (2) was originated by Patterson [19] in the setting up of
agricultural experiments, whereas the version by McKay et al. [2]
was motivated by computer experiments.
The midpoint rule (Eq. (2)) is very often used for various

problems in the literature (we denote the technique as LHS-
median). However, one can criticize such a reduction of the sample
selection to themidpoints within intervals (intervalmedians). This
objection deals mainly with samples of the tails of PDF, which
mostly influence the sample variance, skewness and kurtosis. This
elementary simple approach has already been overcome by the
sampling of interval mean values, e.g. [20,21]:

xi,j =

∫ ξi,j
ξi,j−1

x fi(x) dx∫ ξi,j
ξi,j−1

fi(x) dx
= Nsim

∫ ξi,j

ξi,j−1

x fi(x) dx (3)

where fi is the probability density function (PDF) of variable Xi and
the integration limits (right bounds for jth realizations) are ξi,j =
F−1i (j/Nsim), j = 1, . . . ,Nsim, see Fig. 1. By using this scheme (LHS-
mean), samples represent one-dimensional marginal PDF better
in terms of the distance of the point estimators from the exact
statistics. In particular, the mean value is achieved exactly (the
analytical expression preserves the mean) and estimated variance
is much closer to that of the target. For some PDFs (including
Gaussian, Exponential, Laplace, Rayleigh, Logistic, Pareto, and
others) the integral Eq. (3) can be solved analytically. In the
case that solution of the primitive is impossible or difficult, it is
necessary to use an additional effort: numerical solution of the
integral. However, such an increase in computational effort is
definitely worthwhile especially when Nsim is very small. Samples
selected by both Eqs. (2) and (3) are almost identical except for
the values in the tails of PDFs (this will be shown also using
numerical examples, Fig. 7). Therefore one can use the more
advanced scheme Eq. (3) only for the tails, considering the fact that
tail samples mostly influence the estimated variance of the sample
set. Generally, in all three cases, regularity of sampling (the range
of distribution function is stratified) ensures good sampling and
consequently good estimation of statistical parameters of response
using a small number of simulations.
Stratification with proportional allocation never increases

variance compared to crude Monte Carlo sampling, and can
reduce it. Indeed, Stein [22] has shown that LHS reduces the
variance compared to simple random sampling (crude Monte
Carlo). The amount of variance reduction increaseswith the degree
of additivity in the random quantities on which the function g(X)
depends.
The sampling scheme of any Monte Carlo type technique is

represented by Table 1, where simulation numbers are in columns
Fig. 1. Samples as the probabilistic means of intervals: LHS-mean scheme.

while rows are related to random variables (Nvar is the number
of input variables). Note that Table 1 can be obtained either
by sampling from a parametric distribution or from a set of raw
data, bounded or unbounded, continuous or discrete, empirical
histogram, etc. The only requirement is that the sample size Nsim is
identical for all sampled variables. From here on, we assume that
the values representing each variable from Table 1 have already
been selected, and that wewant to pay attention to the correlation
structure among the variables.

2.2. Statistical correlation of samples

There are generally twoproblems related to LHS concerning sta-
tistical correlation: First, during sampling an undesired correlation
can be introduced between random variables (rows in Table 1).
For example, instead of a correlation coefficient of zero for un-
correlated random variables, an undesired (spurious) correlation,
e.g. 0.4 can be randomly generated. It can be significant, especially
in the case of a very small number of simulations (tens), where the
number of interval combinations is rather limited. The second task
is to determine how to introduce prescribed statistical correlations
between pairs of random variables defined by the target correla-
tion matrix Cx ≡ T . The samples in each row of Table 1 should
be rearranged in such a way as to fulfill the following two require-
ments: to diminish spurious random correlation, and to introduce
the prescribed correlation given by T .
Two widely used possibilities exist for the point estimation

of correlation between two variables: the Pearson correlation
coefficient (PCC) and the Spearman rank order correlation
coefficient (SRCC). The PCC takes values between −1 and 1 and
provides a measure of the strength of the linear relationship
between two variables. For samples in the form of rows as
presented in Table 1, the sample PCC Aij between two variables,
say xi and xj, is defined by

Aij =

Nsim∑
k=1

(
xi,k − xi

) (
xj,k − xj

)
√
Nsim∑
k=1

(
xi,k − xi

)2 Nsim∑
k=1

(
xj,k − xj

)2 ,

xi =
1
Nsim

Nsim∑
k=1

xi,k xj =
1
Nsim

Nsim∑
k=1

xj,k. (4)

The SRCC is defined similarly to the PCC butwith rank-transformed
data. Let us define a matrix r in which each row/column is filled
with rank numbers corresponding to a matrix x. Specifically, the
smallest value xi,j of a variable i is given a rank ri,j = 1; the next
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largest value is given a rank of 2; and so on up to the largest value,
which is given a rank equal to sample size Nsim. In the event of
ties, average ranks are assigned. Note that when LHS is applied
to continuous parametric distributions no ties can occur in the
generated data. The SRCC is then calculated in the same manner
as the PCC except in the use of rank-transformed data. Specifically,
xi,j must be replaced by rank number ri,j in Eq. (4). In the formula
xi simplifies to the average rank of (Nsim + 1)/2.
Note that there are more possible choices for the correlation

estimator in A, e.g. Kendall’s tau.

2.3. Available sampling techniques for correlated random vectors

There are special analytical results (e.g. for multivariate
Gaussian distribution) and algorithms available for simulating
samples of multivariate random variables, e.g. Parrish’s method
[23] for sampling from the multivariate Pearson family of
distributionswith known productmoments up to the fourth order.
There are also works available in the literature on the generation
of random vectors based on a sample of the target vector X (data-
based algorithms, see e.g. an algorithm in [24] that may also yield
a simple bootstrap).
The majority of available methods developed so far for the

simulation of correlated random vectors with arbitrary given
marginals and correlations within the context of Monte Carlo
sampling can be divided into two fundamental groups: (i) methods
that transform an underlying correlated Gaussian vector Z into
the target non-Gaussian vector X and, (ii) methods that perform
rank optimizations of samples generated without taking account
of intercorrelations. We proceed with a revision of the available
methods now.
Multivariate extensions of the Fleishman power method [25]

for simulation of a random variable X belong to the first
group. Generation of each random variable Xi from the target
vector X is based on the knowledge of the first four moments
(i.e. specifiedmeans, variances, skewnesses and kurtoses) and uses
the polynomial transformation of an underlying Gaussian random
variable Zi: Xi = a + bZi + cZ2i + dZ

3
i . Given the target statistical

moments, one has to solve a nonlinear system of equations for the
coefficients a, b, c, d. This expression of the target non-Gaussian
random variable has been extended to the simulation of random
vectors X with Pearson’s correlation coefficients by Vale and
Maurelli [26]. In their method, a Gaussian random vector Z with
an intermediate correlation matrix Cz is first generated via principal
component factorization of Cz (or any other factorization) and
then each target variable Xi is obtained by the aforementioned
Fleishman’s polynomial transformation. The method has a serious
drawback: the two processes interact, i.e. Cx 6= Cz, and there is
a need to find proper intermediate correlations Cz depending on
the coefficients a, b, c, d and the desired intercorrelations Cx. A
variation of this approach avoiding the factorization procedure has
been published in [27]. Another variation is the approach in [28]
where it is proposed that the Cholesky decomposition be combined
with the cubic transformation in heuristic iterative modifications
of the distribution of Z .
The most widespread representative of group (i) for simulation

from random vectors with specified marginals and correlations
is the NORTA (NORmal To Anything) model, often also called
the Nataf model [29]. In this model the underlying Gaussian
random vector Z with the intermediate correlation matrix Cz is
transformed into the desired vector X component by component
via the equality Fi (Xi) = Φ (Zi), i = 1, . . . ,Nvar, i.e.:

Xi = F−1i [Φ (Zi)]⇔ Zi = Φ
−1 [Fi (Xi)] (5)

where Φ is the standard normal cumulative distribution function
(CDF) and Fi is the ith marginal CDF. The approach was founded by
Mardia [30] who described the transformation of bivariate normal
random vectors. Li and Hammond [31] extended the concept to
random vectors of arbitrary finite dimension with continuous
non-Gaussian marginals. The continuity of variables Xi is helpful
because F(X) then has a uniform distribution on (0,1), and so
one can obtain a normally distributed random variable using the
second part of Eq. (5). The model has been developed to match
the desired linear Pearson correlation Cx. Linear correlation has a
serious deficiency in that it is not invariant under nonlinear strictly
increasing transformations such as the one in Eq. (5) and thus
Cx 6= Cz. In the model, every entry ρzizj of Cz must be computed
by inversely solving the equality for the desired correlations ρxixj :

ρxixj =

∫
∞

−∞

∫
∞

−∞

(xi − µi)
σzi

(
xj − µj

)
σzj

ϕ2
(
zi, zj, ρzizj

)
dzidzj (6)

where ϕ2
(
zi, zj, ρzizj

)
is the bivariate standard Gaussian PDF with

the correlation ρzizj . In total one must solve Nvar (Nvar − 1) /2
inversions of the double integral. Liu and Der Kiureghian [32]
and later Cario and Nelson [33] have stated several important
properties of the transformation in Eq. (6). Liu and Der Kiureghian
have [32] found simple regression formulas that can assist in
approximating the double integral associated with transformation
for several of the most frequent distributions.
There are two problems associated with the intermediate

correlations Cz of the underlying Gaussian vector obtained as a
solution of Eq. (6). First, for some combinations of marginals of
vector X and target correlations ρxixj , a feasible solution may not
exist i.e., some correlations ρzizj lie outside the interval −1, 1 and
thus such a vector X cannot be represented by the underlying
Gaussian vector Z . As will be shown in the companion part III [34],
our algorithm is able to construct such vectors X and therefore
we conclude that NORTA cannot be used for some vectors even
if they exist. The second problem is that even if all entries of
the correlation matrix Cz can be solved, the matrix as a whole
may become negative definite and thus NORTA-infeasible. The
reason is that |ρxixj | ≤ |ρzizj | (see Eq. (6)), and therefore the
positive definite matrix Cx may yield the negative definite Cz. The
probability of receiving theNORTA-infeasible correlationmatrix Cz
increases fast with the dimension of the problem Nvar, see [35].
Usually in such cases, however, the matrix Cz is ‘‘close’’ to a
positive semidefinite matrix, and therefore it is possible to find
the nearest feasible matrix in order to use the model. Ghosh
and Henderson [35] proposed fixing the matrix via a semidefinite
programming approach while Lurie and Goldberg [36] proposed
finding the nearest positive semidefinite matrix by adjusting the
lower triangular Cholesky matrix L via Gauss–Newton iterations
to make LLT close to Cz. Another approach may be to perform
spectral decomposition of Cz and change negative eigenvalues into
small positive ones (and decrease the rest to keep thematrix trace).
As will become clear later, our proposed approach automatically
performs the search for the nearest positive definitematrix aswell.
Biller and Nelson [37] proposed a combination of the NORTA

technique together with the Johnson translation system of
distributions [38] for cases when modeling data with unknown
PDFs. The Johnson system is reasonably flexible (it can match
any of the feasible first four moments) and its application allows
one to avoid evaluation of Φ(·) in the numerical integration
in Eq. (6). A very recent paper by Headrick and Mugdadi [39]
proposes connection of the NORTA approach with the generalized
lambda distribution as a tool for modeling partially defined
random vectors. An alternative approach named DIRTA (DIRichlet
To Anything) with a similar basis to the NORTA approach has
recently been published by Stanhope in [40].
Wenote that sampling of the underlying Cz-correlatedGaussian

vector Z is a well-documented and widely used task (see e.g. [41]).
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A direct approach is to generate uncorrelated standard Gaussian
vector Y and transform it via Cholesky linear transformation YLT(
Cz = LLT

)
or via spectral decomposition of the correlationmatrix.

This idea of transforming independent random variables
into correlated ones using orthogonal transformation has been
exploited in what is probably the most widespread technique for
correlation control in simulations, developed by Iman and Conover
[42] (later published and numerically verified by Florian [43] under
the name ‘‘Updated Latin Hypercube Sampling’’ (ULHS)). They used
the Spearman rank order correlation coefficient, which is invariant
undermonotone transformations of marginals, and therefore, they
removed the problemswith the intermediate Pearson’s correlation
matrix present in the NORTA technique. The method changes
the sample ordering of X while leaving the representative values
sampled directly from non-Gaussian marginals of each variable
untouched. The ordering of samples of X is equal to the ordering
of van der Waerden scores set for each variable as a (i) =
Φ−1 (i/(i+ 1)) for i = 1, . . . ,Nsim, which initially form amatrix A
of independent variables and are transformed into correlated ones
via ALT.
Iman and Conover used the technique in connection with

LHS, the efficiency of which was first shown in the work of
McKay et al. [2], but only for uncorrelated random variables.
Iman and Conover [42] perturbed Latin Hypercube Samples in
a way that reduces off-diagonal correlation—they diminished
undesired random correlation. The technique is based on iterative
updating of the sampling matrix, and Cholesky decomposition of
the actual current correlation matrix of vector X . This is simply
an application of the method published by Scheuer and Stoller for
normal vectors [44]. The second step (the procedure of correlating
independent variates) can be performed only once; there is noway
to iterate it and to improve the result, which is a disadvantage of
the technique.
The above described iterative technique formulated by Iman

and Conover [42] can result in a very low correlation coefficient if
generating uncorrelated random variables. However, Huntington
and Lyrintzis [21] have found that the approach tends to converge
to an ordering which still gives significant correlation errors
between some variables. Huntington and Lyrintzis have proposed
a so-called single-switch-optimized sample ordering scheme. The
approach is based on iterative switching of a pair of samples
of Table 1, which gives the greatest reduction in correlation error.
Huntington and Lyrintzis have shown that their technique clearly
performs well enough. However, it may still converge to a non-
optimum ordering. A different method is needed for simulation of
both uncorrelated and correlated randomvariables. Such amethod
should be adequately efficient: reliable, robust and fast.
As will be discussed in the companion Part III [34], the trans-

formation approaches are unable to exhaust all possible depen-
dency patterns between marginal random variables. Therefore,
they may turn out to be useless in practical applications with esti-
matedmarginals and covariances incompatiblewith themultivari-
ate Gaussian models after transformations. The presented work is
motivated mainly by the work in [21] and proposes a direct ap-
proach involving the induction of target correlation into samples
of random variables, which avoids transformations based on mul-
tivariate Gaussian or other distributions.

3. Correlation control by simulated annealing combinatorial
optimization

The correlation control problem is treated as a combinatorial
optimization problem in this paper; we attempt optimization of
the ranks of sample values. It is well known that deterministic
optimization techniques and simple stochastic optimization ap-
proaches can very often fail to find the global minimum [45,46].
Fig. 2. Energy landscape—the problem of local and global minima.

They are generally strongly dependent on the starting point (as
will become clear later, the starting point corresponds to the ini-
tial configuration of the sampling scheme, see Table 1). Such tech-
niques fail and finish with a local minimum such that there is no
chance to escape from it and find the global minimum (Fig. 2). The
ball in the illustrative figure jumps from one minimum to another
minimum when the energy landscape has high energy (for under-
standing let us imagine the shaking of the landscape). If the energy
is low, the ball will remain in one of theminima—the local or global
one. It is obvious that the best procedure for finding the globalmin-
imum is to start with high energy (temperature, excitation) and
then step by step decrease this temperature to almost zero (cool-
ing). During such a process the lowest position of the ball has to
be monitored: at the end it corresponds to the global minimum
(or at least to a ‘‘very good’’ local one). It can be intuitively pre-
dicted that in our casewe are definitely facing a problemwithmul-
tiple local minima. Therefore, the use of a stochastic optimization
method (which works with a nonzero probability of escaping from
local minima) seems to be a rational solution. The simplest form
of the stochastic optimization algorithm is the evolution strategy
working in two steps:mutation and selection. During the mutation
step, an ‘‘offspring’’ configuration is generated from a current ‘‘par-
ent’’ configuration. The selection step chooses the best configura-
tion between the ‘‘parent’’ and ‘‘offspring’’ to survive. The simplest
form of the algorithm selects offspring giving a smaller value of a
certain objective function E. However, such a rule can lead to a lo-
cal minimum solution. The selection step can be improved by the
Simulated Annealing approach, a technique which is very robust
concerning the starting point (initial arrangement of the sampling
scheme in Table 1).

3.1. General remarks on the Simulated Annealing technique

The Simulated Annealing (SA) method originated in the early
1980s when Kirkpatrick et al. [7] and Černý [8,9] independently
explored an analogy between the physical annealing process in
solids and the task of solving large combinatorial optimization
problems. A good coverage of the topic is provided by [45]. A quite
complete bibliography list is provided in [47].
Annealing, in metallurgy, refers to a heat treatment that alters

themicrostructure of amaterial causing changes in properties such
as strength and hardness. It causes a solid in a heat bath to enter
low energy states. In this process, the solid is first heated tomelting
point and then slowly cooled until the low energy ground state is
reached. If the initial temperature is not sufficiently high or the
cooling is carried out too quickly, the solid will freeze into a meta-
stable state rather than the ground state. Physical annealing can
be modeled successfully using computer simulation methods. In
one of these approaches,Metropolis et al. [10] in 1953 introduced a
simpleMonte Carlo algorithmwhich generates a sequence of states
in the solid in the following way. Given a current state i of the
solid, characterized by the positions of its particles, with energy
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Ei = Eparent, a subsequent state i+ 1 (called ‘‘offspring’’ here), with
energy Ei+1 = Eoff, is generated by applying a small distortion to
the current state (mutation), for example by the displacement of a
particle. The acceptance rule for the offspring configuration (i+ 1)
depends on the energy difference1E = Eoff − Eparent = Ei+1 − Ei:

P (1E) =
{
P− (1E) = 1, ∆E ≤ 0
P+ (1E) , ∆E > 0. (7)

In the so-called Boltzmann annealing, the acceptance probability
for an energetically higher configuration is related to the
Boltzmann distribution:

P+ (1E) =
exp

(
−Eparent/t

)
exp (−Eoff/t)+ exp

(
−Eparent/t

)
=

1
1+ exp (1E/t)

≈ exp
(
−1E
t

)
(8)

where t denotes the temperature of the heat bath. This acceptance
rule is known as the Metropolis criterion and the associated
algorithm is known as the Metropolis algorithm. The Metropolis
algorithm was generalized by the Kirkpatrick algorithm to include
a temperature schedule for efficient searching [7]. Therefore, the
Simulated Annealing algorithm can now be viewed as an iteration
of Metropolis algorithms, evaluated at decreasing values of the
control parameter t . Initially, the control parameter is given a
large value, and starting with an initial randomly chosen feasible
solution, a sequence (a random walk through the solution space
or Markov chain) of trials is generated. In each trial, an offspring
configuration i+ 1 is generated by applying a random elementary
change to the current configuration i (the set of configurations
attainable by such changes is called the neighborhood of i).
The control parameter (temperature) t is lowered in steps

with the system being allowed to approach equilibrium through
the sequence of Ntrials trials at each step. After an appropriate
stopping condition is met, the final configuration may be taken as
the solution of the problem at hand. Suppose ti is the value of
the control parameter (temperature) and Ntrials is the length of
the Markov chain generated at the ith iteration of the Metropolis
algorithm (number of loops or trials at the temperature ti. Suppose
u is a realization of the random variable U0,1 uniformly distributed
over [0; 1). Then, the Simulated Annealing algorithm may be
expressed by a flowchart in Fig. 4. Even though in the figure
we sketched the exact implementation as proposed and used for
correlation control, the algorithm is general. The performance of
the algorithm will be influenced by the following factors (termed
the cooling schedule):

(1) The initial value of temperature t0;
(2) Themethod of reducing the value of t after a sequence of trials;
(3) The minimum temperature tmin;
(4) The length of the Markov chain for each value of t (number of
loops, trials Ntrials);

(5) The choice of stopping condition(s).

3.2. Application of annealing to correlation control in Monte Carlo
sampling

The imposition of a prescribed correlation matrix into a
sampling scheme can be understood as an optimization problem:
we want to minimize the difference between the target correlation
matrix (e.g. user-defined, prescribed) T and the actual correlation
matrix A (estimated from samples via a suitable statistic point
estimator such as Pearson’s correlation coefficient, Spearman’s rho
or Kendall’s tau). Let us denote the differencematrix (errormatrix)
E:

E = T − A. (9)
Moreover, we may, for a variety of reasons, want to highlight
the importance of arbitrary entries in the matrix T (e.g. user-
definedweights based on better knowledge of correlation e.g. from
measurements). Such an accentuation can be introduced by a
weight matrix W (a square and symmetric matrix of the same
order as T and A). The (symmetric) error matrix Ê , taking into
account the weights of entries, is constructed as:

Êi,j = Wi,j Ei,j, i, j = 1, . . . ,Nvar. (10)

If there is no accentuation of any particular correlation coefficient,
the matrixW is filled with unit weights and E = Ê .
To have a scalar measure of the error we introduce a suitable

matrix norm for Ê . In particular, a good and conservative measure
of the distance between T and A can be the norm defined as:

ρmax =

max
1≤i<j≤Nvar

∣∣̂Ei,j∣∣
Wi,j

(11)

where indices i, j in the denominator are those maximizing the
nominator. We simply find the maximum entry of Ê and divide
it by its weight to get the error in correlation. Even though this
norm has a clear meaning and known ‘‘units’’ (correlation) and can
be used as a good stopping condition in the iterative algorithm,
it is not a suitable objective function to be subjected to direct
minimization, see part III [34]. A better choice is a norm taking into
the account deviations of all correlation coefficients:

E =
Nvar−1∑
i=1

Nvar∑
j=i+1

Wi,j
(
Ei,j
)2 (12)

where we used the symmetry of the correlation matrices by
summing up the squares of the upper triangle off-diagonal terms
only. This norm proved itself to be a good objective function for the
optimization algorithm described below. The objective function
E can be further normalized by the sum of the weights of the
considered correlation coefficients (entries of the one off-diagonal
triangle of T ), and taking the square root yields a measure in units
of correlation:

ρrms =

√√√√√ E
Nvar∑
1≤i<j

Wi,j

(13)

which represents the normalized weighted error per entry and is,
therefore, suitable for comparison when examples of a different
number of variables Nvar are involved. Note that if equal unit
weights are used (Wi,j = 1 for i, j = 1, . . . ,Nvar) this norm
simplifies to

ρrms =

√
2E

Nvar(Nvar − 1)
(14)

which is called the root mean square correlation by Owen [48].
Note that for computer implementation of minimization it is

not necessary to compute the square root (Eq. (13) or (14)), as only
the differences between the norms matter. Eq. (12) suffices for the
objective function and also the normalization can be done after the
iterative algorithm has been completed. However, the initial and
terminating temperature (see later)must be redefined accordingly.
The norm E (Eq. (12)) has to be minimized; from the point

of view of definition of the optimization problem, the objective
function is E and the design variables are related to ordering in the
sampling scheme (Table 1). Clearly, in real applications the space
of the possible actual correlationmatrices A is extremely large and
we want to find an efficient near-optimal solution.
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With a combinatorial optimization problem we can simulate
the annealing process by making the following correspondences:
(i) A feasible solution during the process (the ordering of samples
in Table 1) corresponds to states of the solid; (ii) the cost E is a
function defined in the combinatorial problem and it corresponds
to the energy of the actual state (configuration); (iii) a randomly
chosen feasible initial state (configuration of sample, Table 1)
corresponds to the state of the solid after it has been heated to
melting point (iv) an elementary change to a solution corresponds
to a slight distortion in the state of the solid; (v) the control
parameter t corresponds to the temperature of the heat bath.
To review the two step optimization strategy as introduced in

Section 3; in the proposed algorithm, the first step (mutation)
is performed by a transition called a swap from the parent
configuration i (with error Eparent) to the offspring configuration
(Eoff). A swap (or a trial) is a small change to the arrangement
of Table 1. It is done by randomly interchanging a pair of two
values xi,j and xi,k. In other words one needs to randomly generate
i ∈ 〈2,Nvar〉 (choose the variable), and a pair j, k ∈ 〈1,Nsim〉, j 6= k
(choose the pair of realizations to interchange), see Fig. 5. Such a
change to the arrangement of samples requires the recalculation
of Nvar − 1 correlation coefficients in A (associated with variable
i) to update the objective function Eparent → Eoff. Naturally, the
‘‘parent norm’’ Eparent is calculated using the parent configuration
and the ‘‘offspringnorm’’ Eoff is calculatedusing thenewly obtained
offspring configuration. One swap may or may not lead to a
decrease (improvement) in the norm.
Note that a version of swapping may also be an interchange

of more than one pair of values of one variable or more variables
(multiple swaps as defined above in one transition between
configurations). The experience is that swapping more than a pair
of values at a time does not seem to improve convergence of the
algorithm. Therefore, from here on, we will not consider such a
vector type of swap.
In the second step (selection) one configuration between the

‘‘parent’’ and ‘‘offspring’’ is selected to survive. In the simplest
version a configuration (sampling scheme arrangement) giving
a smaller value of the objective function (norm E) is selected.
Such an approach has been intensively tested using numerous
examples. It has been observed that the method, in most cases,
could not capture the globalminimum. It failed in a localminimum
as only the improvement of the norm E resulted in acceptance of
‘‘offspring’’. Note that a similar approach, in a way, was applied
in [49] for random autocorrelated sequences.
An improvement is here proposed by employing the Simulated

Annealing technique (selection rule from Eq. (7)). As a result
there is a much higher probability that the global minimum
will be found in comparison with deterministic methods and the
simple evolution strategies. The advantage of this compared to
the simple evolution strategy described above (corresponding to
t = 0 in Eqs. (7) and (8)) is that there is a nonzero probability
of accepting an offspring configuration with higher error than
its parent (hill climbing). The acceptance rule with the nonzero
current temperature t in Eq. (7) gives us amechanism for accepting
increases in a controlled fashion. It is possible that accepting an
increase in the penalty function (E) will reveal a new configuration
that will avoid a local minimum or at least a bad local minimum.
The probability of accepting an increase (Eq. (7)) is driven

by the difference of norms ∆E and the excitation (temperature
t). This probability distribution expresses the concept that a
system in thermal equilibrium at temperature t has its energy
probabilistically distributed among all different energy states ∆E.
Note that ‘‘offspring’’ leading to a decrease in the objective function
is naturally accepted for the new generation (see Eq. (7)). At high
temperatures (the beginning of the optimization process), the
quantity P(∆E) is usually close to one for ∆E > 0. Thus, a state
Fig. 3. Acceptance probability for ‘‘hill climbing’’ (1E and t in a logarithmic scale).

Fig. 4. Flowchart of Simulated Annealing algorithm implementation.

with greater E is usually accepted. As the temperature lowers, the
system freezes, and configurationswith increases of E are accepted
with diminishing probability, see Fig. 3. Also as the temperature
falls, the algorithm converges to the optimum or a state which is
close to optimal, see Fig. 6. Even at low temperatures, there is a
chance (although very small) of a system being locally in a high
energy state.
At the end of an SA algorithm we accept the best configuration

obtained throughout the whole process and perform other Ntrials
randomchanges at zero temperature (i.e. accepting only improving
configurations). This enables us to search the surroundings of
the last obtained minima without the chance of hill climbing.
Our experience is that sometimes the solution can be slightly
improved.
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Fig. 5. Illustration of a random trial—swap of samples i and j of variable X2 .

Fig. 6. The norm E (error from Eq. (12)) vs. number of random swaps.

Fig. 6 shows the decrease of norm E versus the number of
swaps during the SA process. Such a figure is typical and should
be monitored. In the figure we also plot the temperature and the
current best value of the minimized norm E.

3.3. Cooling schedule

As already mentioned in the classical application of the SA
approach for the optimization of unexplored functions there is
the problem of finding the optimal cooling schedule. In particular,
the five parameters listed at the end of Section 3.1 are generally
unknown. Usually they must be set heuristically. Fortunately, the
correlation control problem is constrained in the sense that all
possible elements of the correlation matrix are always within the
interval 〈−1; 1〉. This makes the application of the method to
correlation control very straightforward and easily automated.
The maximum of the norms (11) and/or (12) can be estimated

using the prescribed matrix T and hypothetically the ‘‘most
remote’’ matrix A (filled with unit correlation coefficients, plus or
minus). For small to moderate correlations our experience with
countless numerical examples has shown that a good starting
temperature is: t0 = 50/Nsim when the sample ordering table is
randomly rearranged before the start of the Simulated Annealing.
Also, we know that the minimum of the objective function is zero
(T and A match). These facts represent a significant advantage:
the heuristic estimation of initial temperature is not necessary—
the initial setting of parameters can be performed automatically
without estimation by the user and the ‘‘trial and error’’ procedure.
The minimum temperature can be set to be equal (in order) to
the required value of error function E. Concerning the number of
trials at a given temperature, Kirpatrick et al. [7] give the following
guidance: at each temperature, the simulation must proceed long
enough for the system to reach a steady state. Our experience
is that an optimal number of trials is related to the size of the
searched space, i.e. to both Nvar and Nsim. We recommend using
Ntrials = NNvar Nsim (the value N varies between 1 and 10 and its
choice is clarified in the companion part III paper).
The initial temperature has to be decreased gradually, e.g. using

the reduction function f (tj) after a constant number of trials
Ntrials applied at temperature tj. A sufficiency proof was shown
to put a lower bound on the temperature schedule as tj =
t0/ ln(j) [50]. A logarithmic temperature schedule is consistent
with the Boltzmann algorithm, e.g. the temperature schedule can
be taken to be tj = t0 ln(j0)/ ln(j), where j0 is a starting index.
Some researchers using the Boltzmann algorithm use exponential
schedules, e.g. tj = t0 exp((c − 1)j), where 0 < c < 1. An
exponential temperature schedule:

tj+1 = ctj, (15)

has been widely used with great benefit in combinatorics with
0.7 ≤ c ≤ 0.99. We use this simple rule for the jth
temperature with c = 0.95, i.e. in each cooling step j after Ntrials
trials the temperature is obtained as tj = c j t0. The number
of temperature steps from t0 till tmin is known in advance and
can be easily computed as ln(t0/tmin)/ ln(c) rounded down to
an integer number. The result can be multiplied with Ntrials to
get the maximum total number of swaps (tested configurations)
during one run of the algorithm (reached if no stopping condition
is used). To conclude, we refer to the above-cited references or
publications [45,46,51] for more sophisticated cooling schedules
known in Simulated Annealing theory.

4. Numerical examples

4.1. Univariate sampling
This section presents a comparison of two sampling schemes

introduced in Section 2.1. The compared sampling schemes are
denoted as LHS-median (Eq. (2)) and LHS-mean (Eq. (3)). For
comparison, sample sets from two different distribution functions
were used, namely Gaussian distribution (symmetric around
the mean value) and the exponential distribution (skewed).
Convergence of the estimated statistics from Nsim values are
plotted against the number of samples Nsim. In particular,
convergence of four point estimations of the mean value, standard
deviation, skewness and kurtosis excess to the target values is
studied. The target values are {1, 1, 0, 0} in the case of Gaussian
and {1, 1, 2, 6} in the case of exponential distributed variables.
The results are plotted in the middle and right columns of

Fig. 7. Since the Gaussian distribution is symmetric the average
and sample skewness alwaysmatch themean and skewness values
irrespective of Nsim. In the case of standard deviation and kurtosis,
we see the slower convergence of the LHS-median samples. Using
the non-symmetric exponential distribution, we highlight the fact
that LHS-mean samples always match the mean value (it obeys
its definition, Eq. (3)) while LHS-median samples may suffer from
considerable errors in the mean for very small samples. Overall,
the convergence of statistics to the target moments is faster for the
LHS-mean scheme.
To illustrate where the differences come from, a comparison of

samples selected for Nsim = 1 . . . 10 is made in Fig. 7 left. From
the figure, it is clear that the differences between samples selected
mainly concern the samples in the tails while samples in the core
region are nearly identical for both schemes.
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Fig. 7. Comparison of stratified sampling schemes: LHS-median (solid circles) and LHS-mean (boxes). Top row: Gaussian variable, Bottom row: Exponential variable. Left
column: comparison of sample selection for Nsim = 1 . . . 10; Middle column: convergence of mean value and sample standard deviation; Right column: convergence of
sample skewness and sample kurtosis.
4.2. Correlated properties of concrete

In order to illustrate the efficiency of the developed technique,
consider an example of a correlation matrix which corresponds
to the properties of a concrete. They are described by 7 random
variables; a prescribed Spearman rank order correlation matrix is
presented in the lower triangle ( ). The upper triangle ( ) shows
the estimated statistical correlation (SCC) after the application of
the proposed (SA) algorithm, for two different numbers of LHS-
simulations (Nsim = 8, 64). When Nsim = 8, the matrices read

( T , A)T

=



1 0 0.7 0.9 0 0.5 0.9
0 1 0 0.1 0 0.1 0

0.667 0 1 0.8 0 0.9 0.6
0.881 0.095 0.857 1 0 0.6 0.9
0 0.048 0 0 1 0 0

0.476 0.119 0.905 0.643 −0.024 1 0.5
0.952 0 0.643 0.881 0.048 0.476 1

 .

And for Nsim = 64 the matrices

( T , A)T

=



1 0 0.7 0.9 0 0.5 0.9
0 1 0 0.1 0 0.1 0
0.7 0 1 0.8 0 0.9 0.6
0.9 0.1 0.799 1 0 0.6 0.9
0 0 0 0 1 0 0
0.5 0.1 0.9 0.6 0 1 0.5
0.9 0 0.601 0.899 0 0.5 1

 .

Both numbers of simulations are greater than the number of
variables Nvar. The final values of the correlation error norms
(Eqs. (11) and (14)) are: ρmax = 0.057, ρrms = 0.029 for 8
simulations andρmax = 0.0007, ρrms = 0.0003 for 64 simulations;
the second norm corresponds to the overall norm subjected to
minimization (Eq. (12)). It can be seen that as the number of
simulations increases, the estimated correlation matrix is closer to
the target one. Using a standard PC (2 GHz CPU) the computer time
needed to run the SA algorithm was about half a second.

4.3. Non-positive definite prescribed correlation matrix?

In real applications of the LHS technique in engineering,
statistical correlation very often represents a weak point in a
priori assumptions. Because of this poor knowledge, the prescribed
correlationmatrix T on input can be non-positive definite. The user
can face difficulties with the updating of correlation coefficients in
order to make the matrix positive definite.
Alongside this problem, algorithms based on Cholesky decom-

position or orthogonal transformation of the correlation matrices
T or A require the matrix to be positive definite. This constitutes
a severe restriction. The usage of the proposed technique (opti-
mization based on Simulated Annealing) has a great consequence:
there is no restriction concerning the number of simulations Nsim.
The number of simulations can be extremely low as the correlation
matrix A of X does not have to be positive definite, Nsim � Nvar. Of
course, there is a penalty for this advantage: spurious correlation
can be diminished only until a certain limit, as well as the impo-
sition of a desired statistical correlation structure. But a very low
number of simulations can still be used.
The examples presented belowdemonstrate a casewhen a non-

positive definite matrix T is on input, Simulated Annealing can
work with it and create a sample set with the resulting correlation
matrix as close as possible to the originally prescribed matrix
(andwith the dominant constraint of positive definiteness satisfied
automatically).
Let us consider a really very unrealistic and simple case of

statistical correlation for three random variables A, B and C
according to the matrix T :

(
T
A

)
=

( A B C

A 1 0.9 0.9
B 0.499 1 −0.9
C 0.499 −0.499 1

)
.

The correlation matrix is obviously not positive definite.
A strong positive statistical correlation is required between
the pairs of variables (A, B) and (A, C), but a strong negative
correlation between variables (B, C). It is clear that only a
compromise solution can be reached. The method resulted in such
a compromise solutionwithout anyproblem, see the lower triangle
A and the corresponding norms were ρmax = ρrms = 0.401 (the
number of simulations Nsim was high enough to avoid limitation
in the number of rank combinations). This feature of the method
can be accepted and interpreted as an advantage of the method. In
practice, reliability problems with non-positive definiteness exist
(lack of knowledge). It represents the serious limitation in the
usage of some other methods (e.g the Cholesky decomposition of
prescribed correlation matrices).
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Table 2
A numerical study of weighted Simulated Annealing optimization with the non-
positive definite matrix T .

No.
(

W
A

)
,

(
ρmax
ρrms

)

1

 1 1 5
0.3557 1 1
0.7470 −0.3557 1

, (
0.153
0.101

)

2

 1 10 10
0.7477 1 1
0.7477 −0.1182 1

,
 0.152
0.0715


3

 1 1 10
0.3117 1 1
0.8057 −0.3117 1

,
0.09430.0651


4

 1 1 100
0.2386 1 1
0.8861 −0.2386 1

,
 0.0139
0.00877



4.4. Weighting of correlations

In real applications an analyst can have a greater confidence
in one correlation coefficient (good data) and lower confidence in
another one (just an engineering estimation). The solution to such
a problem is to weight correlation coefficients in T .
Several examples of choices and the resulting correlation

matrices (with both norms) follow. Table 2 illustrates the
significance of proportions between weights using numerical
examples with the same non-positive definite matrix T as was
used in the previous section. The weights Wi,j are given in the
upper triangle, accentuated entries are typed in bold. Resulting
correlations are typed in the lower triangle.

5. Conclusions

The proper selection of samples representing the layered
probability content of randomvariables and their ranks influencing
statistical correlation is decisive for efficiency of LHS.
Application of combinatorial optimization based on Simulated

Annealing for control of statistical correlation when using Monte
Carlo type sampling such as LHS is proposed. The problem of
statistical correlation control is constrained precisely, therefore
parameters for the optimization (the initial temperature for
annealing) can be calculated in advance. The technique is robust,
efficient and very fast. The method has several advantages in
comparison with previously developed techniques. The proposed
technique for correlation control:

• Appears extremely efficient for very small numbers of simula-
tions (tens, hundreds). In these cases a spurious random cor-
relation can also happen, and the proposed correlation control
can diminish it.
• Only changes the ranks in the sampling matrix. The technique
does not change for different marginal densities and imposed
correlation structures. The number of simulations does not
necessarily increase CPU time in practical cases, but for
an increasing number of random variables more Simulated
Annealing trials are needed to achieve good accuracy. The
technique is robust, and SimulatedAnnealing can be terminated
if the correlation error (norm) is acceptable (users decision).
• Is independent of the sample selection. The sample set may be
obtained by sampling from parametric distribution or by raw
data, bounded or unbounded, continuous or discrete, etc. The
only requirement is that each random variable is represented
by the same number of Nsim realizations.
• Can work also with non-positive definitive matrices defined
unconsciously by the user as input data. Moreover, arbitrary
correlations may be accentuated or suppressed by weights.
• Is implemented in FReET reliability software [52,53] and is
already used for reliability studies and uncertainty analyses
[54–58], for random field simulation [59–61] and for virtual
preparation of a training set for artificial neural networks in
inverse analysis problems [62].

A detailed study of performance and further comments on
the ability of the technique to construct joint probability density
functions is presented in the companion paper, part III [34].
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