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This is to certify that I have examined this copy of a doctoral dissertation by

Miroslav Vořechovský
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Abstract

Quasibrittle materials such as concrete, fiber composites, rocks, tough ceramics, sea ice,
dry snow slabs, wood and some biomaterials, fail at different nominal strengths with
respect to their structural size. Smaller structures fail in a ductile manner which usually
involves distributed cracking with strain-softening. The stress redistribution that is caused
by fracture and distributed cracking engenders an energetic size effect, i.e., decrease of the
nominal strength of structures with increasing structure size. A structure far larger than
the fracture process zone (FPZ) fails in an almost perfectly brittle manner and, if the
failure occurs right at the crack initiation, the failure load is governed by the statistically
weakest point in the structure, which gives a basis to the statistical size effect.

Strategies for capturing the statistical size effect using the stochastic finite element
method in the sense of extreme value statistics are presented. They combine feasible types
of Monte Carlo simulation based on nonlinear fracture mechanics. This is exemplified by
various cases of size effect in plain concrete structures. A special attention is devoted
to size effects of concrete reinforcement in the form of yarns made of glass fibers (a new
composite material called textile reinforced concrete).

The interdisciplinary field of stochastic fracture mechanics is accessed by utilizing new
advanced software developments which progress beyond the traditional approach and
attempt to treat in a combined manner the reliability theory with fracture nonlinearity.
This approach automatically yields not only the statistical part of size effect at crack
initiation, but also the energetic part of size effect. Examples of statistical simulations of
size effect with nonlinear fracture mechanics software ATENA combined with probabilistic
software FREET are presented. Capturing the statistical size effect is made possible by
(1) incorporating the analytical results of extreme value statistics into the stochastic
finite element calculations, (2) implementing an efficient random field generation, and (3)
exploiting small-sample Monte-Carlo type simulation called Latin Hypercube Sampling.

The necessary steps towards the results were the development of mathematical tools
and algorithms (with their theoretical and numerical validation) and finally software de-
velopment (FREET). Next, the applications of the methods and software follow aiming
at study of size effects in various materials and loading conditions.
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Chapter 1

Introduction

1.1 Aims and general concept of the thesis

The intent of this chapter is to provide an overview of the problems tackled by the thesis and to enable
easy orientation throughout all parts and chapters. This dissertation is designed such that each part
can be read independently of others even though the sequence of chapters reflects gradual progress to
complex size effect studies by combining stochastic approaches with fracture mechanics. The thesis may
be considered a collection of author’s selected papers on the topic. The whole focus looks towards complex
description and understanding of size effect phenomena. The main attention is devoted to concrete as a
main representative of quasibrittle material (such as rock, tough ceramics, snow and ice, etc.) and one
of the most important building material in civil engineering.

The title of the thesis “Stochastic fracture mechanics and size effect” suggests the attempt to combine
both, the advanced tools of fracture (nonlinear) mechanics and stochastic approaches in order to model
the complex behavior of real material/structures considering material randomness or variability.

Efficient methods for numerical analysis of (reinforced) concrete structures have been the objective of
much research during the last few decades, and the main difficulty has been how to best capture material

nonlinearity. The aim is to model the complete response of a structure including the crack propagation in
the pre-peak, peak and post-peak states. A form of fracture mechanics that can be applied to such kind
of fracture analysis has been developed during the last three decades. Recently, commercial finite element
programs, using the crack band approach, have become available for this purpose. These tools, however,
remain at the deterministic level. On the other hand, the design practice in industry provides motivation
mainly for efficient implementation of existing simple material models, solution strategies, discretization
and interpretation of results. These topics will naturally remain as the priorities for commercial software
developers. But exceptions are nowadays appearing – the interdisciplinary field of stochastic fracture
mechanics is now finally infringed on by some advanced software developers, e.g. those of ATENA
(Cervenka and Pukl, 2003) or DIANA (Waarts, 2001).

The properties of many physical systems and/or the input to these systems exhibit complex random

fluctuations that cannot be captured and characterized completely by deterministic models. Probabilistic
models are needed to quantify the uncertainties of these properties, to develop realistic representations of
output and failure state of these system and to obtain rational and safe designs. Usually the softwares for
nonlinear analysis of reinforced concrete structures taking into account recent theoretical achievements of
fracture mechanics. However the software is purely deterministic, it means that all geometrical, material
and load parameters of a computational model had to be fixed to deterministic values. It does not
reflect the fact that generally material, geometrical and load parameters of nonlinear fracture mechanics
models are rather uncertain (random) and modeling of these uncertainties of computational model in a
probabilistic way is therefore highly desirable.

The achievements of material science and modeling of concrete would be less important if they do not
contribute to everyday design practice and structural reliability. The more complicated a computational
model of a structure is the more difficult is the application of reliability analysis of almost any level.
Linear elastic analysis enables simple reliability calculations – the last consistent reliability approach in
the design was the allowed stress method. Recent development introduced the significant inconsistency:
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Eurocode 2 (1991) design standard demands a non-linear analysis using first mean values and second
design values of material parameters. No real guarantee and information on safety can be obtained using
partial safety concept as accepted in present design codes. The approach generally fails if the internal
forces entering safety margin (failure criteria) are not proportional to the load level, as is in case of
complex non-linear problems, see e.g. Vořechovský (2000a,b, 2001c); Kala et al. (2001); Vořechovský and
Kala (2001).

The more complex (statically indeterminate) the structure is the less satisfying is the inconsistent
approach of partial safety factors. This is quite well-known problem and there is only one straightforward
solution: Implementation of safety factors to the results of statistical nonlinear analysis (failure load,
stresses, deflections, etc.), not to input parameters. The general trend is toward a consistent reliability
assessment as recommended by Eurocode 1 (1993). This is in agreement with effort of some research
teams, e.g. (Enevoldsen, 2001) pointed out economical consequences of probabilistic-based assessment in
bridge engineering. We aspire to contribute to solution of the aforementioned practical problems in the
thesis.

This document reflects the effort to combine both tools of nonlinear fracture mechanics and stochas-

tic simulation methods (small-sample) in order to capture the complexity of real structural behavior
(Vořechovský et al., 2002b). In the thesis we provide the theoretical basis and description of numerical
methods and approaches used in probabilistic module of (FREET), whose computational core is pro-
grammed by the author. The software is fully integrated into nonlinear finite element software package.
Theoretical background of relevant reliability techniques is provided together with information on theirs
role in reliability engineering.

The salient feature of quasi-brittle materials is a complex size effect on structural strength. Size
effect phenomenon manifests itself in form of a strong dependence of the nominal strength σN (nominal
stress at the failure load) on the characteristic dimension D (size) of the geometrically similar structures,
see Fig. 1.1. Since the uncertainties and spatial variability is inherently present in nature, the nominal
strength has a certain variability. The size effect is also characterized/accompanied by the change of the
nominal strength variability for different structure sizes. Size effect phenomenon has a great impact on
safe design and assessment of structures. The size effect is not present in current strength theories (either
plasticity or elasticity). The problem is that real large structures usually fracture under smaller failure
load than laboratory size specimens, see Fig. 1.1.
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Figure 1.1: Illustration of size effect on nominal strength and the range of structural sizes of interest in
the thesis

The history of description of size effect can be seen as a history of two fundamentally different
approaches — deterministic and statistical explanations. The first explanation was definitely statistical
— it dates back to the pioneering work of (Weibull, 1939a) and many others, mainly mathematicians.
Phenomenon that larger specimens will usually fracture under relatively smaller applied load was that
time associated with the statistical theory of extreme values. Then most researchers focused on the
energetic basis of size effect and the main achievements were purely deterministic. Let us mention e.g.
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the book of Bažant and Planas (1998) as an extensive source of information. Researchers used different
theories, from early works e.g. Shinozuka (1972); Mihashi and Izumi (1977); Mazars (1982) considered
uncertainties involved in concrete fracture. Some authors attempt to explain size effect by theories of
fractals (Carpinteri et al., 1994, 1995). Recently, there are attempts to combine last decade’s achievements
of both fracture mechanics and reliability engineering e.g. Carmeliet (1994); Carmeliet and Hens (1994);
Gutiérrez and de Borst (1999); Bažant and Novák (2000b) and others. This thesis is focused mainly on
the range of sizes where both phenomena, statistical and deterministic plays a significant role, see the
transitional zone in figure 1.1. This transition represents the range with the most difficult structural
scaling theory.

Arguments mentioned above represent basis for the need to combine efficient reliability techniques
with present knowledge in the field of nonlinear fracture mechanics. Remarkable development of computer
hardware makes the numerical simulation of Monte Carlo type of complex nonlinear responses possible.
The reasons for complex reliability treatment of nonlinear fracture mechanics problems can be summarized
as follows: (i) Modeling of uncertainties (material, load and environments) in classical statistical sense
as random variables or random processes (fields). The possibility to use statistical information from real
measurements; (ii) Inconsistency of design to achieve safety using partial safety factors — fundamental
problem; (iii) Size effect phenomena.

1.2 Thesis structure

The aims of the first chapter 2 of PART I are: (i) to briefly review methods for efficient structural
reliability assessment and (ii) to demonstrate the feasibility of the approach for analysis of nonlinear
fracture mechanics computational models. The emphasize is given to the techniques which are developed
for an analysis of computationally intensive problems which is typical for a nonlinear FEM analysis. The
chapter shows the possibility of “randomization” of computationally intensive problems in the sense of
the Monte Carlo type simulation.

Chapter 3 is focused on small-sample simulation method called Latin Hypercube Sampling (LHS).
In particular the chapter is focused on the problem of efficient imposition of statistical correlation within
framework of Monte Carlo type simulation (preferably LHS). Techniques presently available are discussed
first. The new efficient technique of imposing the statistical correlation when using LHS is suggested.
The technique is robust, efficient and very fast. The method has several advantages in comparison with
former techniques.

Stochastic finite element method (SFEM) had facilitated the use of random fields in computational
mechanics. Many material and other parameters are uncertain in nature and/or exhibit random spatial
variability. Efficient simulation of random fields for problems of stochastic continuum mechanics is in the
focus of both researchers and engineers. Achievements in stochastic finite element approaches increased
the need for accurate representation and simulation of random fields to model spatially distributed un-
certain parameters. To achieve this goal, the transformation of the original random variables into a set
of uncorrelated random variables can be performed through an eigenvalue orthogonalization procedure.
It is demonstrated that a few of these uncorrelated variables with largest eigenvalues are sufficient for
the accurate representation of the random field. The error induced by such truncation will be an object
of study in this chapter as well.

Chapter 4 discusses some features of combination of orthogonal transformation of covariance matrix
with LHS. An attention is devoted to error assessment of simulated samples of stochastic fields. A
proposed error assessment procedure has been performed for six alternatives of sampling schemes. The
alternative with best performance, i.e. the convergence to target values of statistics with low variability is
identified and recommended. Diminishing spurious correlation does not influence the capturing of these
statistics but does influence significantly realization of autocorrelation function of random field. It has
been shown that a spurious correlation influences significantly the scatter of autocorrelation function of
simulated random fields. We show that a clear indication of this scatter is the fulfillment of norms used
as objective functions in algorithm proposed in the preceding chapter.
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PART II of the thesis is focused on textile reinforced concrete, a new composite material for special
purposes. The tensile failure of fiber-reinforced composites is generally dominated by failure of the fiber
bundle. The matrix material, whether polymer, ceramic or metal, serves mainly to transfer the load
among the fibers through the elasticity, or yielding, debonding with sliding friction between the fiber
and matrix. The matrix can carry some load in a metal or polymer matrix composite but, after matrix
cracking, carries almost zero load in ceramic matrix composites. The two factors controlling fiber failure
are (i) the statistical fiber strength and (ii) the stress distribution along the fiber direction. The stress
along a fiber depends on the applied stress, but also on precisely how stress is transferred from a broken
fiber to the surrounding intact fibers and matrix environment. This stress transfer is governed by the
elastic properties of the constituents and by the fiber/matrix interface, and is difficult to obtain in the
presence of more than one broken fiber. There are two load sharing rules. One is “global load sharing”,
i.e. loads dropped due to fiber break(s) are shared equally among intact fibers. The presented work is
focused particularly on fiber bundles under global (equal) load sharing. The available statistical models
of strength of bundles are reviewed.

The thesis presents a newly developed micromechanical (chapter 5) model which is combined with
advances stochastic techniques (random variables and random processes capturing the spatial variability
of uncertain parameters). These models are given to context with classical approach (Weibull, 1939a)
and we proved that there must exist (as opposite to Weibull integral) statistical length scale. It is
explained why the nonlocal Weibull integral (Bažant and Xi, 1991; Bažant and Novák, 2000b,c) is not
general enough solution for the presented problems. We propose new formulas which are designed based
on asymptotic matching for approximation and prediction of the yarn strength under various conditions
and for the whole range of yarn lengths. These formulas are compared to available statistical theories of
strength of bundles. The detailed analysis of all substantial effect in the context of tensile test of yarn
enabled design of practical procedure of testing and evaluation of yarn strength (chapter 6).

It is shown how to decompose, analyze and compose partial phenomena present in the yarn tensile
test which is a stepping stone for coming analysis of the composite material with even more complex
behavior: textile reinforce concrete.

PART III begins with presentation of state of the art in deterministic and statistical size effects on
modulus of rupture of concrete structures (chapter 7).

Selected principles of behavior of multi-filament yarns can be applied in the context of plain concrete:
the micromechanical model of concrete can be constructed as a lattice with tensile elements. Therefore
some results from PART II apply to concrete and the chapter 8 shows how to do that.

The aim is to have a full stochastic description of complex concrete behavior enabling not only deter-
ministic analysis, but also statistical and mainly reliability analyzes and prediction. This is important
from safety and economical reasons.

The next chapter 9 introduces a new approach to stochastic nonlinear analyzes of large structures.
Standing firmly on the statistical theory of extreme values the text proposes a practical tool for simulation
of random scatter (spatial variability) in the context of FEM which is independent of the mesh. In some
sense the approach brings similar features to famous crack band model in deterministic computational
fracture mechanics (Bažant and Oh, 1983). Similarly to crack band model which is proved to be the-
oretically correct and compared to cohesive (fictitious) crack model due to Hillerborg et al. (1976) the
developed stochastic crack band model is derived from elaborate theory of ordered statistics and extreme
values (Fisher and Tippett, 1928; Gumbel, 1958; Gnedenko, 1943; Weibull, 1939a; Castillo, 1988). The
range of applicability (large structures) is explained and it is shown that the model performs well in the
size regions, where the combination of NLFEM and simulation of random fields is not useful. This is
because in case of large structures the computational demands render the utilization of random fields
inapplicable. The feasibility, correctness and predictive power of the approach is shown using numerical
examples.

The problem of structural scaling in a broad range of sizes is studied in the final chapter 10 of
PART III. The behavior of general quasibrittle material is shown to be the complex case of behavior
covering both the plastic and elastic-brittle behavior on two asymptotic extremes of sizes. The available
knowledge of fracture mechanics is combined with new achievements presented in PART II and PART
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III. This resulted in the new combined size effect formula for crack initiation problems of quasibrittle

failure. The new law covers both the deterministic scaling (characteristic material length) and statistical
scaling (autocorrelation length of variable strength) and their interaction over the whole range of sizes.
The asymptotic limits are checked with help of deterministic plasticity of the small-size structures and
stochastic-brittle behavior (Weibull type) of the large-size structures.

The numerical verification of the theoretical consistency with the assumptions is performed with the
practical example of Malpasset Dam failure in French Alps. The last chapter of PART III can be seen
as (theoretically) the most complex part of the whole thesis as it covers the knowledge gained from work
on all other parts as well as the state of the art of the field.

The computational tools used for numerical modeling were not ready at the beginning of author’s
doctoral study. In particular the stochastic simulations were done with simulation software developed by
the author. The combination of the computational core with a graphical user interface (GUI) developed
by Dr. Rusina constitutes the new unique software FREET. The software is presented in the Appendix
A. We have learned from our needs and from the weaknesses of other available programs and the newly
developed software provides many helpful features. The uncertainty can be modeled by more than 20
statistical distributions which are implemented in uniform manner enabling the user simple and robust
manipulation. The simulation of random variables is based on the new achievements described in PART I
of the thesis.

The main aim of the software is to enable a probabilistic treatment of complex engineering problems
coded into deterministic software where classical reliability approaches are not feasible. The software is
designed in the form suitable for relatively easy probabilistic assessment of any user-defined problem. The
name of the software reflects this strategy — FREET is the acronym for Feasible REliability Engineering
Tool (Novák et al., 2002b,c,d, 2003b, 2004). This probabilistic software was recently successfully inte-
grated with advanced non-linear fracture mechanics solution of concrete structures – the finite element
program ATENA (Cervenka and Pukl, 2003). The software continues to be developed.
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Chapter 2

Probabilistic assessment of
computationally intensive problems

The aims of this chapter are: (i) to briefly review methods for efficient structural reliability assessment
and (ii) to demonstrate the feasibility of the approach for analysis of nonlinear fracture mechanics com-
putational models. The emphasize is given to the techniques which are developed for an analysis of
computationally intensive problems which is typical for a nonlinear FEM analysis. The chapter shows
the possibility of “randomization” of computationally intensive problems in the sense of the Monte Carlo
type simulation. Latin hypercube sampling is used in order to keep the number of required simulations at
an acceptable level. Random variables are randomly generated under their probability distribution func-
tions, statistical correlation among them is imposed by the optimization technique, called the simulated
annealing developed previously and described in the presented dissertation, section 3.3 (chapter 3).

2.1 Reliability theory

The aim of statistical and reliability analysis is mainly the estimation of statistical parameters of structural
response and/or theoretical failure probability. Pure Monte Carlo simulation cannot be applied for
time-consuming problems as it requires large number of simulations (repetitive calculation of structural
response). Historically, this obstacle was partially solved by approximate techniques suggested by many
authors, e.g. Grigoriu (1982/1983); Hasofer and Lind (1974); Li and Lumb (1985); Madsen et al. (1986);
Schuëller (1998). Generally, the problematic feature of these techniques is the (in)accuracy. Research
was then focused on development of advanced simulation techniques, which concentrates simulation into
failure region (Bourgund and Bucher, 1986; Bucher, 1988; Schuëller and Stix, 1987; Schuëller et al., 1989).
In spite of the fact that they usually require smaller number of simulations comparing pure Monte Carlo
(thousands), an application for advanced structural analysis problem can be crucial and still almost
impossible. But there are some feasible alternatives: Latin hypercube sampling McKay et al. (1979);
Ayyub and Lai (1989); Novák et al. (1998) and response surface methodologies (Bucher and Bourgund,
1987).

The term stochastic or probabilistic finite element method (SFEM or PFEM) is used to refer to a finite
element method which accounts for uncertainties in the geometry or material properties of a structure,
as well as the applied loads. Such uncertainties are usually spatially distributed over the region of the
structure and should be modelled as random fields. From many works on SFEM worked out in last
three decades we can mention e.g. Vanmarcke et al. (1986); Yamazaki et al. (1988); Der Kiureghian
and Ke (1988); Brenner (1991); Ghanem and Spanos (1991); Kleiber and Hien (1992). The interest in
this area has grown from the perception that in some structures the response is strongly sensitive to the
material properties, and that even small uncertainties in these characteristics can adversely affect the
structural reliability. This is valid especially in the case of highly nonlinear problems of nonlinear fracture
mechanics.
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2.1.1 Fundamental concept of structural reliability

In general, structural design consists of proportioning the elements of structure such that it satisfies
various criteria of safety, serviceability, and durability under the action of loads. In other words, the
structure should be designed such that it has a higher strength or resistance than the effect caused by the
loads. Schematic representation of failure probability evaluation is shown in Fig. 2.1 by considering two
variables (one relating to the load S on the structure and the other to the resistance R of the structure).
Both E and R are random in nature; their randomness is characterized by the corresponding probability
density functions fE(e) and fR(r), respectively. Fig. 2.1 also identifies the deterministic (nominal) values
of these parameters EN and RN used in conventional safety factor-based approach. The area of overlap
between the two curves (the shaded region) provides basis for a qualitative measure of the probability of
failure. This area of overlap depends on three factors:

• The relative positions of the two curves: As distance between the two curves increase, the probability
of failure decreases. The position of the curves may be represented by the means (µE and µR) of
the two variables .

• The dispersion of the two curves: If the two curves are narrow, then the area of overlap and the
probability of failure are small. The dispersion may be characterized by the standard deviations
(σE and σR) of the two variables .

• The shape of the two curves: The shapes are represented by the probability density functions fE(e)
and fR(r).

0 mZ mE E, ,R Z

RE

pf

f e ,E ( ) fR ( )r , f zZ ( )

b sZ b sZ

0 E, ,R x

RE
f e ,E ( ) f rR ( )

x dx

mREN RN

Figure 2.1: Normal distribution of safety margin as a substraction of two normal random variables and
the meaning of the safety index β

2.1.2 Response and limit state function

The classical reliability theory introduced the form of a response variable (deflection, stress, ultimate
capacity, crack width etc.) or safety margin (in case that the function expresses failure condition) as the
function of basic random variables X = X1,X2, ...,XNV

Z = g (X1,X2, . . . ,XNV
) (2.1)

where g(.) represents functional relationship between elements of vector X (computational model, non-
linear fracture mechanics model in our case), see e.g. Freudenthal (1956b); Freudenthal et al. (1966);
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Madsen et al. (1986); Schneider (1996). Elements of vector X are geometrical and material parameters,
load, environmental factors, etc., generally uncertainties (random variables or random fields). These
quantities can be naturally also statistically correlated, see section 3.2.

In case that Z is safety margin, g(.) is called limit state function or performance function and can be
formulated usually using comparison of a real load and failure load. The structure is considered to be
safe if

g(X) = g(X1,X2, . . . ,XNV
) ≥ 0. (2.2)

The performance of the system and its components is described considering a number of limit states.
A limit state function can be explicit or implicit function of basic random variables, and it can be in
a simple or rather complicated form. Usually, the convention is made that it takes negative value if a
failure event occurs, so that the Eq. (2.2) holds. Therefore the failure event is defined as the space where
Z ≤ 0 and survival event is defined as the space where Z ≥ 0. Two basic classes of failure criteria can be
distinguished: structural collapse and loss of serviceability.

The primary goal of the statistical analysis is the estimation of basic statistical parameters/moments
of response variable Z, e.g. mean values and variances. Also a histogram and an empirical cumulative
probability distribution function are always valuable information. It can easily be done by Monte Carlo
simulation, by repetitive calculations of the computational model g(·).

2.1.3 Reliability index

Reliability analysis methods employing reliability index or safety index take into account second moment
statistics (means and variance) of the random variables. Cornell (1969) suggested to use the distance from
the expectation of the limit state function to the limit state function itself as an elementary reliability
measure which consider normal PDF. This yields the reliability index:

β =
µZ

σZ
(2.3)

where µZ and σZ are the mean value and the standard deviation of the safety margin Z. In this case
β is actually the reciprocal value of the coefficient of variation of the variable Z. The reliability index can
be interpreted geometrically as the minimum distance from the limit state function g(X) to the origin,
see fig. 2.1. Hasofer and Lind (1974) used this idea for generalized definition of the reliability index.
They proposed to use the minimum distance from limit state function (usually nonlinear) to the origin in
the uncorrelated normalized space as reliability measure. Such generalized reliability index is given by:

β = min
g(x)=0

√
uT u = min

g(x)=0




√√√√
NV∑

i=1

u2
i


 (2.4)

where β is the distance in a standard normal space U and g(X) = 0 is the limit state surface. The
point u⋆ at which β reaches the minimum is called the design point, see figs. 2.2 and 2.4.

Reliability index represents the reliability measure to express reliability. Estimation of Cornell´s
reliability index is rather simple, as it needs the estimation of basic statistical characteristics of safety
margin. This task can be solved using Monte Carlo type simulation and will be described in section 2.5.

2.1.4 Failure probability

The main aim of reliability analysis is the estimation of reliability using probability measure called the
theoretical failure probability defined as:

pf = P(Z ≤ 0). (2.5)

More formally, the theoretical failure probability as a measure of unreliability is defined as:

pf =

∫

Df

fX (X1,X2, ...,XNV
) dX1,dX2, ...,dXNV

, (2.6)
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Figure 2.2: FORM and SORM methods for reliability estimation
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Figure 2.3: Multiple design point

where Df represents failure region where g(X) ≤ 0 (integration should be performed over this region)
and f(X1,X2, ...,XNV

) is the joint probability density function of random variables (vector X).
Equality Z = 0 divides multidimensional space of basic random variables X = X1,X2, ...,XNV

into safe and failure region. Explicit calculation of integral (2.6) is generally impossible therefore the
application of a simulation technique Monte Carlo type is the simple and in many cases feasible alternative
to estimate failure probability integral (e.g. Rubenstein, 1981; Schneider, 1996; Schuëller and Stix, 1987,
and others).

The First Order Reliability Method (FORM) has initially been proposed by Hasofer and Lind (1974).
In the FORM, a linear approximation of the limit state surface in the uncorrelated standardized Gaussian
space is used to estimate the probability of failure. For this purpose it is necessary to transform the basic
variables into uncorrelated standard Gaussian variables 1 (U-space):

Yi =
Xi − µi

σi
, i = 1, . . . , NV (2.7)

where µi and σi are the mean value and standard deviation of the random variable Xi, respectively.

1Such transformation can only be used if the random variables Xi are uncorrelated. Generally a Rosenblatt transforma-
tion (Liu and Der Kiureghian, 1986) or any other transformation must be used in order to obtain the vector of uncorrelated
variables X

′ . Such vector can be standardized and used for the FORM method, however, we must note that the limit state
function must be transformed to the new space as well.
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The reliability integral can be written in the transformed U-space as:

pf =

∫

g(Y )≤0

fY (Y1, Y2, ..., YNV
)dY1,dY2, ...,dYNV

, (2.8)

The distance from the design point of the transformed limit state function to the origin is called
reliability index β.

0
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0
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Figure 2.4: Geometrical interpretation of failure probability pf (Eqs. 2.6 and 2.8) in case of two-variate
joint probability density fX (x1, x2)

Note that design point is the point on the limit state surface with the minimum distance to the origin
in standard normal space is considered to be important. It is also the point of maximum likelihood if
the basic variables are normally distributed. This point can be obtained by solving the optimization
problem expressed in Eq. 2.4. The maximum β is known as the reliability index. It can be shown that
the probability of failure is approximately given by:

pf = 1 − Φ(β) = Φ(−β), (2.9)

where Φ denotes the standardized Gaussian distribution function. In case of linear limit state function
and normally distributed basic variables no transformations are necessary and equation (1.7) yields just
the exact failure probability.

In spite of the fact that the calculation of failure probability using reliability index (according to
Cornell (1969) or Hasofer and Lind (1974)) does not belong to the category of very accurate reliability
techniques (e.g. Bourgund and Bucher, 1986), it represents a feasible alternative in many practical cases.

2.2 Stochastic analysis software

A large number of efficient stochastic analysis methods have been developed during last years. In spite of
many theoretical achievements the acceptability and a routine application in industry is still rare. Present
reliability software developers should bridge the demands on the usage of effective reliability methods
and easy and transparent use by an inexperienced user. We however, made an attempt to fill this gap
and deliver such software (see appendix A, FREET).

Three main categories of stochastic analysis can be distinguished:

• Approaches focused on the calculation of statistical moments of response quantities, like estimation
of means, variances etc. Uncertainties input into a response function. This group is usually named
statistical analysis.

• Approaches aiming at the calculation of estimation of theoretical probability of failure. Uncertain-
ties input into a limit state function. This group is usually named reliability analysis.
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• Approaches aiming at the quantification of sensitivity of output (response) on variations of input
variables. There are several different sensitivity measures available; each measuring a different kind
of sensitivity. Uncertainties input into a response or limit state function depending on what is the
output variable under investigation. This group is usually named sensitivity analysis.

There are many different methods developed by reliability researchers covering all the above mentioned
approaches. The common feature of all the methods is the fact that they require a repetitive evaluation
(simulation) of the response or limit state function. The development of reliability methods is from the
historical perspective a struggle for decreasing or to avoiding an excessive number of simulation (e.g.
Schuëller, 1998, etc.). From this point of view of the computational demands the major groups of the
methods belonging to the first category are as follows:

• Crude Monte Carlo simulation,

• Stratified sampling techniques,

• Perturbation techniques.

The methods of next category for reliability calculations can be distinguished as:

• Crude Monte Carlo simulation,

• Advanced simulation techniques, like importance sampling, adaptive sampling, directional sampling
etc. (Schuëller et al., 1989, e.g.),

• Approximation techniques, FORM, SORM etc. (e.g. Hasofer and Lind, 1974),

• Response surface methodologies (e.g. Bucher and Bourgund, 1987),

• Curve fitting techniques - evaluating samples of safety margin (e.g. Grigoriu, 1983; Li and Lumb,
1985).

The lists above are ordered according to the computational demands (the number of simulation
required) from the top downwards. There is a decreasing accuracy of the methods in the same direction.
In the case of computationally intensive problems there is an overlapping domain of methods, feasible
to apply. These techniques are implemented in many different alternatives in reliability software, e.g.
COMREL (RCP Munich), VaP (ETH Zurich), SLang (Weimar University), M-Star (UTAM Prague),
Crystall Ball (Decisionerring. Inc.), PROBAN (DNV software), COSSAN (Innsbruck University).

The intent of the chapter is to describe a practical tools to assess response statistics and reliability.
Relevant techniques and the probabilistic software developed for easy handling of practical reliability
problems are briefly described, the chapter should be considered to have just an informative value.

2.3 LHS: the small-sample stochastic technique

A special type of numerical probabilistic simulation called Latin hypercube sampling (LHS) makes it
possible to use only a small number of Monte Carlo simulations. This technique, originally proposed
by McKay et al. (1979), appeared to be useful reliability technique until present days. LHS is a special
type of Monte Carlo numerical simulation, which uses the stratification of the theoretical probability
distribution function of input random variables. The LHS is very efficient for the estimation of first two
or three statistical moments of structural response. It requires a relatively small number of simulations
- repetitive calculations of the structural response resulting from adopted computational model (tens
or hundreds). The utilization of LHS strategy in reliability analysis can be rather extensive. It is not
restricted just for the estimation of statistical parameters of structural response (Novák et al., 1998).

There are generally two stages of LHS, see chapter 3:

1. Samples for each variable are strategically chosen to represent the variables distribution function;

2. Samples are reordered to match required statistical correlation among variables.
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The cumulative probability distribution functions (CDF) for all random variables are divided into
N equivalent intervals (N is a number of simulations); one representant of each interval is then used in
simulation process once. This means that the range of the probability distribution function (Xi) of each
random variable is divided into NSim intervals of equal probability 1/NSim, see fig. 3.1. Based on this
precondition a table of random permutations can be used conveniently, each row of such a table belongs
to the specific simulation and the column corresponds to one of the input random variables. Such a table
of random permutations is presented in table 3.1 (page 21).

The second step is reordering LHS samples in such a way that they might match the prescribed
statistical correlation as much as possible. It can be done by using different techniques, a robust technique
based on the stochastic method of optimization called simulated annealing has been proposed recently
by Vořechovský and Novák (2002); Vořechovský et al. (2002a); Vořechovský and Novák (2003b). The
detailed theoretical description can be found in the referred papers or in the sections 3.2 and 3.3.

The main reasons for selection of LHS can be summarized as follows:

• EFFICIENCY - good accuracy in statistical characteristics of structural response using small num-
ber of samples.

• SIMPLICITY - the technique is suitable for implementation into complex commercial software as
it requires minor modifications of program core.

• TRANSPARENCY - as it represents an alternative of Monte Carlo simulation, the method is trans-
parent and understandable also for people who are not experts in reliability engineering; generally
the Monte Carlo type approach is close to engineering thinking.

The Latin hypercube sampling (LHS) simulation technique belongs to the category of advanced sim-
ulation method (McKay et al., 1979; Novák and Kijawatworawet, 1990). It is a special type of the Monte
Carlo numerical simulation which uses the stratification of the theoretical probability distribution func-
tion of input random variables. The following topics in which LHS can be applied are outlined as follows
(for more details see eg. Novák et al. (1998)):

• estimation of statistical parameters of a structural response,

• estimation of the theoretical failure probability,

• sensitivity analysis,

• response approximation,

• preliminary “rough” optimization,

• reliability-based optimization.

2.4 LHS: sensitivity analysis (nonparametric rank-order)

An important task in the structural reliability analysis is to determine the significance of random variables
- how they influence a response function of a specific problem. There are many different approaches of
sensitivity analysis; a summary of present methods is given in (Novák et al., 1993). The sensitivity
analysis can answer the question “which variables are the most important?”. In this way the dominating
and non-dominating random variables can be distinguished using certain sensitivity measures.

On the base of LHS there are two kinds of sensitivity analysis: Sensitivity in terms of coefficient of

variation and sensitivity in terms of nonparametric rank-order correlation coefficient.
The first approach is based on the comparison of partial coefficient of variation of the structural

response variable with variation coefficient of basic random variables. The second approach utilizes
the nonparametric rank-order statistical correlation between basic random variables and the structural
response variable: a straightforward and simple approach. Only the later approach is considered in this
text due to its advantages. LHS simulation can be efficiently used to obtain such kind of information.

The relative effect of each basic variable e.g. on the structural response can be measured using the
partial correlation coefficient between each basic input variable and the response variable (Iman and
Conover, 1980). The method is based on the assumption that the random variable which influences the
response variable most considerably (either in a positive or negative sense) will have a higher absolute
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value of the correlation coefficient between sampled input and resulting output than other variables.
In case of a very weak influence the correlation coefficient will be quite close to zero. Using the Latin
hypercube sampling this kind of sensitivity analysis is obtained as an additional result, and no significant
additional computational effort is necessary. An advantage of this approach is the fact that the sensitivity
measure for all random variables can be obtained directly within one simulation analysis. The rank-order
statistical correlation can be expressed by the Spearman correlation coefficient or Kendall’s tau.

Since the model for structural response is generally non-linear, a non-parametric rank-order correlation
is utilized. The key concept of non-parametric correlation reads: Instead of the actual numerical values
we consider the values of its rank among all other values in the sample, that is 1, 2, ..., NSim. Then
the resulting list of numbers will be drawn from a perfectly known probability distribution function -
the integers are uniformly distributed. In case of Latin Hypercube Sampling the representative values
of random variables cannot be identical, therefore there is no necessity to consider mid-ranking. The
non-parametric correlation is more robust than the linear correlation, more resistant to defects in data
and also distribution independent. Therefore it is particularly suitable for the sensitivity analysis based
on Latin Hypercube sampling.

As a measure of non-parametric correlation we use the statistic called Kendall’s tau. It uses only
the relative ordering of ranks: higher in rank, lower in rank, or the same in rank. Since it uses a weak
property of data, Kendall´s tau can be considered a very robust strategy.

As mentioned above Kendall´s tau is the function of ranks qji (the rank of a representative value of
the random variable Xi in an ordered sample of NSim simulated values used in the j-th simulation which
is equivalent to the integers in the table of random permutations in the LHS method) and pj (the rank
in ordered sample of the response variable obtained by the j-th run of the simulation process):

τi = τ (qji, pj) , j = 1, 2, . . . , NSim (2.10)

In this way the correlation coefficient τi ∈ 〈−1, 1〉 can easily be obtained for an arbitrary random
variable and we can compare them. The greater absolute value of τi for a variable Xi, the greater
influence has this variable on the structural response. An advantage of this approach is the fact that a
sensitivity measure for all random variables can be obtained directly within one simulation analysis.

The rank-order statistical correlation is expressed by the Spearman correlation coefficient (compare
to Eq. 3.6, p. 22)

S = 1 −
6

NSim∑

i=1

d2
i

NSim (NSim − 1) (NSim + 1)
(2.11)

where di is the difference of the order of the components in sequenced statistical files (ordered sample),
or by Kendall´s tau (similar results):

τi =
c − d√

c + d + extra − pj ·
√

c + d + extra − qji

(2.12)

For a detailed description of calculation, see Novák et al. (1993), here we present only a symbolic
formulae.

This nonparametric sensitivity can illustratively be shown by parallel coordinate representation (Weg-
man, 1990), which can clearly demonstrate the positive or negative influence of a basic random variable
Novák et al. (1998). Pairs of orders (basic input variable vs. response variable) are plotted in parallel
co-ordinates. This is shown in Fig. 2.5.

Here it should be noted that other measures of sensitivity exists, e.g. sensitivity in terms of coefficients

of variation or parametric stochastic sensitivity. Methods are well mapped in work of Novák et al. (1993).

2.5 LHS: reliability estimation based on curve fitting

As it was already mentioned in the introduction, the number of simulations is a crucial point to calculate
the reliability. Therefore approximation technique of FORM/SORM type are till often utilized (starting
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Figure 2.5: Parallel co-ordinates representations.

by fundamental paper by Hasofer and Lind (1974)). In the case of an extremely small number of sim-
ulations there are the following feasible alternatives only: the calculation of reliability index from the
estimation of the statistical characteristics of the safety margin (reliability index of Cornell, 1969) and
the curve fitting procedure. The first technique represents a simplification, and it is well known that it
gives an exact result only for the normal distribution of the safety margin.

The curve fitting approach is based on the selection of the most suitable probability distribution of
the safety margin. This selection is based on suitable statistical tests. When the mathematical model
of probability distribution is selected, the failure probability is calculated as a percentile. There are
limitations of such approach, see e.g. paper by Novák and Kijawatworawet (1990).

In case the response is the so-called safety margin (a limit state function is defined), statistical
characteristics of safety margin can be obtained via LHS, (Novák and Kijawatworawet, 1990; Li and
Lumb, 1985). Then, there is a possibility to select suitable PDF for response. The selection is done by
common well-known goodness-of-fit statistical tests (e.g. Kolmogorov-Smirnov test, Chi-square test), or
based on the theory of comparison tests of PDFs. Once the most suitable is selected, the theoretical
failure probability can be estimated as the value of CDF function at the zero point:

Pf = Φselected(0) (2.13)
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Figure 2.6: a) Best CDF obtained as a fit to computed histogram of results; b) Examples of fits
(using estimated statistical moments for analytical PDF) and the uncertainty in estimation in the failure
probability pf

This curve fitting approach is not, of course, restricted only for LHS usage. The accuracy of calcula-
tions via (2.13) is rather limited for the following reasons:

• Limiting accuracy of approximate numerical algorithm for Φselected,
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• distribution support is around the mean value of safety margin, not in tails (as LHS is suitable for
statistical calculations), therefore the selection of model distribution can be erroneous

• highly nonlinear limit state function can result in a PDF of safety margin of not one peak, then a
curve fitting approach cannot work properly.

The disadvantages and limitations of the approach were analyzed in detail by Novák and Kijawat-
worawet (1990). For one peak shape safety margin the approach works quite well approximately until
the order of magnitude of failure probability 10−6.

Another (relatively new) approach is based on bootstrap methods (see e.g. Kubanová and Linda, 2002);
re-sampling in order to decrease variance of estimation of response moments (based on tens of bins) is
done. This technique is under comprehensive study and algorithmization now, main focus is devoted to
the statistical significance of re-sampled data.

In spite of the above mentioned difficulties these indirect approaches represent straightforward simple
tool for failure probability estimation especially for cases when large number of simulations cannot be
performed and response surface methodologies fail as well.



Chapter 3

Random variables: sampling and
statistical correlation

Published in papers: Vořechovský and Novák (2002); Vořechovský et al. (2002a); Vořechovský and Novák
(2003b); Vořechovský (2002c,d)

3.1 Introduction

The aim of statistical and reliability analysis of any computational problem which can be numerically
simulated is mainly the estimation of statistical parameters of response variable and/or theoretical failure
probability. Pure Monte Carlo simulation cannot be applied for time-consuming problems, as it requires
large number of simulations (repetitive calculation of response). Small number of simulations can be used
for acceptable accuracy of statistical characteristics of response using stratified sampling technique Latin
Hypercube Sampling (LHS) (McKay et al., 1979; Iman and Conover, 1980; Ayyub and Lai, 1989).

Briefly, it is a special type of Monte Carlo numerical simulation which uses the stratification of
the theoretical probability distribution functions of input random variables. It requires relatively small
number of simulations (from tens to hundreds) – repetitive calculations of a response function resulting
from a computational model analyzed. LHS strategy has been used by many authors in different fields
of engineering and with both a simple and a very complicated computational model, list of applications
relevant to civil engineering is provided e.g. by Novák et al. (1998). LHS is suitable for statistical and
sensitivity calculations. However, there is a possibility to use it for probabilistic assessment within the
framework of curve fitting, see section 2.5.

The classical reliability theory introduced the basic concept formally using the response variable
Z = g(Y ), where g (computational model) represents functional relationship between elements of vector
Y . Elements of vector Y are generally uncertainties (random variables). These quantities can naturally
be also statistically correlated.

This part of dissertation is focused on the problem of efficient imposition of statistical correlation
within framework of Monte Carlo type simulation (preferably LHS). Techniques presently available are
discussed first. Although text in following chapters will deal with LHS, methods described in this work
can be generalized to any Monte Carlo type method. So in the following LHS will be treated as a
representative of Monte Carlo type simulation.

3.2 LHS: Sampling and statistical correlation

Latin hypercube sampling is a form of simultaneous stratification on all NV variables of the unit cube
[0; 1]

NV . There are several versions of LHS. In the centered version (called lattice sampling by Patterson
(1954)):

vi,j =
πj(i) − 0.5

NSim
, i = 1, . . . , NV , j = 1, . . . , NSim (3.1)
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where πj are independent uniform random permutations of 1 through NSim. Note that if NV = 1 (one-
dimensional integration) it represents the midpoint rule using integration points given by the formula
(3.1). In the unbiased version, due to McKay et al. (1979), we can view the midpoint rule as a one-
dimensional quasi-Monte Carlo sampling scheme, so the following stratified sampling method reads (in
high dimension NV ):

vi,j =
πj(i) − U i

j

NSim
, i = 1, . . . , NV , j = 1, . . . , NSim (3.2)

where U i
j are independent identically and uniformly distributed random variables within the interval

(0, 1), independent of the permutations πj .

The centered version in Eq. (3.1) was originally due to Patterson (1954) in the setting of agricultural
experiments, whereas the version in Eq. (3.2) was motivated by computer experiments.

The name “Latin hypercube” stems from a relationship between Latin hypercubes and Latin squares.
A Latin square is an NSim by NSim array of cells. Each cell has one of NSim different symbols (usually
letters) written in it. Every row of the array has each of the NSim symbols exactly once. So does every
column. Suppose the symbols are A, B, and so forth. Then the cells occupied by the letter A constitute
a Latin hypercube sample of NSim points in the NV = 2 dimensional coordinates of the array. There
is a rich combinatorial theory underlying the construction of Latin squares. That theory does not play
a role in the construction or analysis of Latin hypercubes, but it does become relevant in the study of
randomized orthogonal arrays.

A Latin hypercube sample tends to be more uniformly distributed through the unit cube than an
independent and identically distributed random variables (IID sample). A histogram of Xi

1 through
Xi

NSim
with NSim equal width cells would be perfectly at for each i = 1, . . . , NV while the corresponding

histograms for IID samples would typically be uneven. Perhaps the worst case Latin hypercube sample
has all NSim points arranged on the diagonal in the NV dimensional cube. The probability of such a
sample is (NSim!)1−NV as discussed later by Eq. (3.11).

Stratification with proportional allocation never increases variance compared to IID sampling, and
can reduce it. Therefore it is natural to expect that NV separate kinds of proportional stratification
applied simultaneously as in LHS should might reduce variance too in which lies its effectiveness.

In the context of numerical simulation methods for structural reliability theory, LHS is based on
Monte Carlo type of simulations of vector Y under prescribed probability distributions. Realizations are
simulated in a special way: the range of probability distribution function fi(Yi) of each random variable Yi

is divided into NSim equidistant (equiprobable) intervals, where NSim is number of simulations planned.
The identical probability 1/NSim for layers on distribution function is usually used. The representants of
the equiprobable intervals are selected randomly, realizations are then obtained by inverse transformation
of distribution function (point given by Eq. 3.2). The selection of midpoints as representants of each
layer (Eq. 3.1) is the most often used strategy:

yi,j = F−1
i (vi,j) = F−1

i

(
j − 0.5

NSim

)
, i = 1, . . . , NV , j = 1, . . . , NSim (3.3)

where yi,j is the j-th sample of i-th random variable Yi, F−1
i is the inverse of cumulative distribution

function of this random variable and NSim is the number of simulations, i.e. number of samples for
each random variable. It could be challenged to this simple methodology. One can criticize reduction of
samples selection to the midpoints in intervals (we call it interval median). Such objection deals mainly
with the tails of PDF, which mostly influences variance, skewness and kurtosis of sample set. This
elementary simple approach was already overcome by sampling of mean values related to the intervals,
(e.g. Keramat and Kielbasa, 1997; Huntington and Lyrintzis, 1998):

yi,j =

∫ zi,j

zi,j−1

y · fi(y) dy

∫ zi,j

zi,j−1

fi(y) dy

= NSim

∫ zi,j

zi,j−1

y · fi(y) dy (3.4)
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where fi is the probability density function of variable Xi and the integration limits are:

zi,j = F−1
i

(
j

NSim

)
, j = 1, . . . , NSim (3.5)

NSim

1

zi,jzi,j-1

zi,jzi,j-1

yi,j

yi

yi

fi ( )yi

Fi ( )yi

1.0

0

j-1

j

Figure 3.1: Samples as the probabilistic means of intervals

Samples then represent one-dimensional marginal PDF better in terms of distance of point estimators
from the exact statistics. In particular, the mean value is achieved exactly (analytical expression preserves
the mean) and estimated variance of data is much closer to the original one. For some PDFs (including
Gaussian, Exponential, Laplace, Rayleigh, Logistic, Pareto, or others) the integral (3.4) can be solved
analytically. In case of no or difficult solution of primitive it is necessary to use an additional effort:
numerical solution of the integral. However, such increase of computational effort is worthwhile indeed.
Samples selected by both described ways are almost identical close excluding those in the tails of PDFs.
Therefore more difficult method could be used there only considering the fact that tail samples mostly
influence estimated variance of sample set.

Generally in both cases, regularity of sampling (the range of distribution function is stratified) ensures
good sampling and consequently good estimation of statistical parameters of response using small number
of simulations. Sampling scheme is represented by table 3.1, where simulation numbers are in columns
and rows are related to random variables, NV is number of input variables.

Table 3.1: Sampling scheme for NSim de-
terministic calculations of g(Y )

sim: 1 2 · · · NSim

var1 y1,1 y1,2 · · · y1,NSim

var2 y2,1 y2,2 · · · · · ·
· · · · · · · · · · · · · · ·

varNV
yNV ,1 · · · · · · yNV ,NSim

Table 3.2: Target correlation matrix for
the sampling plan in table 3.1

sim: var1 var2 · · · varNV

var1 1 K1,2 · · · K1,NSim

var2 K2,1 1 · · · · · ·
· · · · · · · · · 1 · · ·

varNV
KNV ,1 · · · · · · 1

Having the samples of each marginal random variable ready, we may proceed to the second step
of LHS: statistical correlation imposition. There are generally two problems related to LHS concerning
statistical correlation: First, during sampling an undesired correlation can be introduced between random
variables (rows in table 3.1). For example instead a correlation coefficient zero for uncorrelated random
variables undesired correlation, e.g. 0.6 can be generated by random (the probability of such correlation is
one over the number of all possible orderings given by Eq. (3.11). It can happen especially in case of very
small number of simulations (tens), where the number of interval combination is rather limited. Second
problem we face is: how to introduce prescribed statistical correlation between random variables defined
by the target correlation matrix (table 3.2). Samples in each row of table 3.1 should be rearranged in
such a way to fulfill these two requirements: to diminish undesired random correlation and to introduce
prescribed correlation given by table 3.2.
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The efficiency of LHS technique was showed first time in work of McKay et al. (1979), but only for
uncorrelated random variables. A first technique for generation of correlated random variables has been
proposed by Iman and Conover (1982). One approach has been to find Latin hypercube samples in
which the input variables have small correlations. Iman and Conover (1982) perturbed Latin hypercube
samples in a way that reduces off diagonal correlation – they diminished an undesired random corre-
lation. The technique is based on iterative updating of sampling matrix, Cholesky decomposition of
covariance/correlation of matrix Y has to be applied. In their method, as a measure of the statistical
correlation, the Spearman correlation coefficient is used:

Sij = 1 −
6

NSim∑
k=1

(Rk,i − Rk,j)
2

NSim (NSim − 1) (NSim + 1)
(3.6)

where R is the (NV · NSim) matrix containing a permutation of the rank numbers in each row and
the coefficients Si,j represents the Spearman’s correlation coefficients between the variables i and j.
The estimated correlation matrix S is symmetric, positive definite (unless some rows have an identical
ordering). Therefore the Cholesky decomposition of the matrix S may be performed:

S = QT · Q (3.7)

and the new ordering matrix RB can be generated as follows:

RB
T = RT · Q−1 (3.8)

The rank numbers in each row of the ordering matrix R are then arranged to have the same ordering
as the numbers in each row of RB. The technique can be applied iteratively and it can result in a very
low correlation coefficient if generating uncorrelated random variables.

Since we are using the Cholesky decomposition of the covariance matrix S of Y , this matrix has to
be positive definite. This constitutes a severe restriction: the number of simulations has to be larger
than number of random variables (NSim > NV ). In relation to this restriction the usage of technique
described later (Simulated Annealing) has a great consequence: there is no restriction concerning number
of simulations NSim. Number of simulations can be extremely low as the covariance matrix of Y does
not have to be positive definite, NSim ≪ NV . Of course, there is a penalty for this advantage: spurious
correlation can be diminished only until certain limit as well as imposition of desired statistical correlation
structure. But very low number of simulations can still be used.

The problem of positive definiteness occurs here only in connection with correlation estimated by
Spearman correlation coefficient. Current techniques uses this estimator of correlation due to utilization
of Iman and Conover’s method. For the future purpose of generation of random fields (chapter 4) random
variables in matrix Y are Gaussian and generally there is no reason to use (robust) Spearman’s coeffi-
cient instead of classical linear Pearson’s estimator of statistical correlation (product-moment correlation
coefficient):

Sij =
cov(YiYj)√
D [Yi]D [Yj ]

=
Ci,j

Ci,iCi,j
(3.9)

where Ci,j is the point estimation of covariance between variables i and j. The computational formula
reads:

Sij =

NSim∑
k=1

(yi,k − yi) (yj,k − yj)

√
NSim∑
k=1

(yi,k − yi)
2

NSim∑
k=1

(yj,k − yj)
2

, yi =
1

NSim

NSim∑

k=1

yi,k (3.10)

The above described iterative technique due to Iman and Conover (1982) later published by Florian
(1992) under the name “Updated Latin Hypercube Sampling” (ULHS) can result in a very low correlation
coefficient if generating uncorrelated random variables and the Latin hypercube samples look like random
scatter in bivariate plot (top figs. 3.2 and 3.3), though they are quite regular in each univariate plot (Fig.
A.11, p. 132). However, Huntington and Lyrintzis (1998) have found that the approach tends to converge
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to an ordering which still gives significant correlation errors between some variables. Moreover, the scheme
has more difficulties when simulating correlated variables: the correlation procedure can be performed
only once, there is no way to iterate it and to improve the result. These obstacles stimulated the work of
Huntington and Lyrintzis (1998) who proposed the so called a single-switch-optimized sample ordering
scheme. The approach is based on iterative switching of the pair of samples of table 3.1 which gives the
greatest reduction in error. The authors showed that their technique clearly performs well enough, but
it may still converge to a non-optimum ordering. A different method is needed for simulation of both
uncorrelated and correlated random variables. Such methods should be efficient enough: reliable, robust
and fast, see chapter 3.3.

Note that the best possible result is obtained if all possible combinations of ranks for each row
(variable) itself in table 3.1 are treated. It would be necessary to try extremely large number of rank
combinations (and compute estimations of correlation matrices)

(NSim!)NV −1 (3.11)

It is clear that this rough approach is hardly applicable in spite of the fast development of computer
hardware.

The number given by (3.11) represents all equiprobable possible correlation matrices (orderings of
samples in table 3.1) in case when ordering is left random as proposed by Iman and Conover (1980).
Here we clearly see that the only “randomness” in LHS as described above is driven by the relative
ordering of samples (being sampled according to the deterministic sampling strategy, Eqs. 3.3 or 3.4).

Note that in the computational core of software FREET (see appendix A, p. 125) developed by
author this “brute force” approach of testing of all possible ordering is implemented for testing purposes.
However, the experience shows that in real applications it is practically not possible to test all sample
orderings.

Comments on random vector’s sampling

In fact the task in multivariate LHS is to generate samples of random vector Y with NV univariate
marginal components. However, practically the information available is restricted to (i) PDF of all
random variables (marginals) and (ii) a correlation matrix. This does not provide us with the joint PDF
of the whole random vector. If we had such information the correct procedure would be as follows: space
of all admissible Y -vector values should be divided into NSim equiprobable disjoint regions (of dimension
NV and probability 1/NSim). Each region would be represented by one sample. Sampling than cover
equally all possible values and the correlation structure is kept automatically. Unfortunately the explicit
form of the (simultaneous) joint probability density function with any admissible correlation structure
is restricted only to N -dimensional Gaussian random vector and several other particular potentialities.
Majority of existing models for random vectors however, are restricted to the bivariate case and/or can
only describe the small correlation between variables. Two models based on the earlier works of Nataf and
Morgenstern are recommended by Liu and Der Kiureghian (1986). The two models are the Rosenblatt
transformation due to Segal (1938) and Rosenblatt (1952) suggested by (Hohenbichler and Rackwitz,
1981) and Nataf transformation (Nataf, 1962). The former transformation requires work with a sequence
of conditional distributions and is a ono-to-one provided each conditional CDF is a strictly increasing
function of its arguments. Transformation is convenient only if the conditional distributions are easily
obtainable. Another drawback is that the transformation is dependent on the ordering of basic random
variables (sequence of conditional CDF). The Nataf transformation is more flexible and allows wider
range of correlation coefficients however, it employs iterative solutions of integrals on infinite domains
which may become numerically unstable. Due to the limitations of both the models, this section shows
approaches to find a solution of the problem by changing ranks of the samples instead of their values,
while the marginal probability density functions remain intact. Note that in practise of civil engineer the
information about joint PDF of a random vector is not available and the most often case is that when
specification of marginal distributions or correlation structure (measured, found in literature) is more or
less just rough estimate. Therefore we leave such concept and the idea of this work is to find a tool which
is robust, independent of marginal distributions, sufficiently general in scope and fast.

The foreshadowed obstacles are possibly the reason why all authors cited in the preceding sections
worked with sampling of marginal in one-dimensional space and combined these samples with the risk
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Figure 3.2: Top: Example of statistically independent samples representing two-dimensional PDF;
Bottom: Example of strong positive statistical dependence between samples from random vector

that no meaningful joint PDF of random vectors are obtained. All approaches discussed above and further
presume the imposition of the target correlation structure only by matrix (table 3.1) manipulations. The
task can be understood as the sample simulation of the multivariate distribution model consistent with the
prescribed marginals and covariances. So we leave the concept of samples selection out of NV -dimensional
PDF.

We are able to immediately visually check the correctness of sampling using the histograms of each
random variable (see Fig. A.11, p. 132 for the dialogs implemented in the software FREET) and the
pairs of random variables for the sake of checking the correlation, see figures 3.2, 3.3 and Fig. A.12 (p.
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Figure 3.3: Top: Another example of statistically independent samples;
Bottom: Example of negative statistical dependence between samples representing random vector

132) for the dialog implemented in FREET software (appendix A).

Of course, the correctness of the following technique (based on rank manipulations) should be con-
firmed using goodness-of-fit tests: it should be tested whether the samples simulated by the approach
can represent some joint PDF of random vector. These test should be performed for cases when the joint
PDF can be explicitly constructed and is known.
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3.3 Stochastic optimization method Simulated Annealing

The imposition of prescribed correlation matrix into sampling scheme can be understood as an optimiza-
tion problem: The difference between the prescribed K and estimated (generated) S correlation matrices
should be as small as possible. A suitable measure of the distance between K and S matrices can be
introduced; a possible norm is the maximal difference of correlation coefficients between matrices:

Emax = max
1≤i<j≤NV

|Si,j − Ki,j | (3.12)

or a norm E which takes into account deviations of all correlation coefficients can be more suitable:

Eoverall =

√√√√
NV −1∑

i=1

NV∑

j=i+1

(Si,j − Ki,j)2 (3.13)

This norm can further be normalized with respect to the number of considered correlation coefficients
(entries of lower triangle in the table 3.2):

Êoverall =
Eoverall∑

1≤i<j≤NV

1
=

2Eoverall

NV (NV − 1)
(3.14)

which represents an error per entry and is therefore suitable for comparison when examples of different
number of variables involved NV is to be performed.

The norm E has to be minimized, from the point of view of definition of optimization problem, the
objective function is E and the design variables are related to ordering in sampling scheme (table 3.1).

It is well known that deterministic optimization techniques and simple stochastic optimization ap-
proaches can very often fail to find the global minimum (Laarhoven and Aarts, 1987; Otten and Ginneken,
1989). They are generally strongly dependent on starting point (in our case the initial configuration of
sampling scheme). Such techniques fail and finish with some local minimum such that there is no chance
to escape from it – and to find the global minimum (Fig. 3.4). The ball in the illustrative figure is
jumping from one minimum to another minimum in case that this energy landscape has a high energy
(for understanding let us imagine shaking of landscape). If the energy is low, the ball will remain in one
of the minima - local or global one. It is obvious, that the best procedure to find the global minimum is
to start with high energy (temperature) and then step by step decrease this temperature to almost zero
(freezing or cooling schedule). During such process the lowest position of the ball has to be monitored: at
the end it corresponds to global minimum (or at least to a “very good” local one). It can be intuitively
predicted that in our problem we are definitely facing the problem with multiple local minima. Therefore
we need to use the stochastic optimization method which works with nonzero probability of escaping
from local minima. The simplest form is the two-membered evolution strategy which works in two steps:
mutation and selection.

Step 1 (mutation): In the r-th generation a new arrangement of random permutations matrix
used in LHS is obtained using random changes of ranks, one change is applied for one random variable.
Generation should be performed randomly. The objective function (norm E) can be then calculated using
newly obtained correlation matrix (it is called “offspring norm” and the norm E calculated using former
arrangement is called “parent norm”).

Step 2 (selection): The selection chooses the best norm between the “parent” and “offspring” to
survive: For the new generation (permutation table arrangement) the best individual (table arrangement)
has to give a value of objective function (norm E) smaller than before.

Such approach has been intensively tested using numerous examples. It was observed that the method
in most cases could not capture the global minimum. It failed in a local minimum and there was no chance
to escape from it, as only the improvement of the norm E resulted in acceptance of “offspring”. More
efficient technique had to be applied. The step “Selection” can be improved by Simulated Annealing
approach, a technique which is very robust concerning the starting point (initial arrangement of random
permutations table). The Simulated Annealing is optimization algorithm based on randomization tech-
niques and incorporates aspects of iterative improvement algorithms. The method represents the analogy
with annealing of crystals. The difference compared to simple approach described above is that there
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Figure 3.4: Energy landscape - problem of local and global minimum

is a chance to accept offspring leading to a worse norm E and such chance is based on the Boltzmann
probability distribution:

Pr(∆E) ≈ e

( −∆E
kb · T

)

(3.15)

where ∆E is the difference between the norms E before and after random change (parent and offspring
norm). This probability distribution expresses the concept when a system in thermal equilibrium at tem-
perature T has its energy probabilistically distributed among all different energy states ∆E. Boltzmann
constant kb relates temperature and energy of the system. Even at low temperatures, there is a chance
(although very small) of a system being locally in a high energy state. Therefore, there is a corresponding
possibility for the system to move from a local energy minimum in favor of finding a better minimum. In
other words, there is some probability to escape from local minimum. There are two possible branches
to proceed in the step 2 (selection):

1. New arrangement (offspring) results in decrease of the norm E. Naturally “offspring” is accepted
for the new generation.

2. New arrangement does not decrease the norm E. Such “offspring” is accepted with the probability
given by (3.15). This probability changes as the temperature T changes.

As a result there is much higher probability that the global minimum is found in comparison with
deterministic methods and simple evolution strategies.

Constant kb relates E and T ; however, it can be considered to be equal to one in our case because both
quantities share the same units of correlation measure. In classical application of Simulated Annealing
approach for optimization there is one problem: how to set the initial temperature T? Usually it should
be considered heuristically. Fortunately, our problem is constrained in the sense that all possible elements
of correlation matrix are always within the interval 〈−1; 1〉. Based on this fact the maxima of the norms
(3.12) and/or (3.13) can be estimated using prescribed and hypothetically “most remote” matrices K
from S (filled with unit correlation coefficients, plus or minus). This approach represents a significant
advantage: The heuristic estimation of initial temperature is neglected, the initial setting of parameters
can be performed without the guess of the user and the “trial and error” procedure.

The initial temperature has to be decreased step by step, e.g. using reduction factor fT after constant
number of iterations (e.g. thousands) applied at temperature Ti:

Ti+1 = Ti · fT (3.16)

The simple case is to use e.g. fT = 0.95. Note that more sophisticated cooling schedules are known in
Simulated Annealing theory (Laarhoven and Aarts, 1987; Otten and Ginneken, 1989).

Figure 3.5 shows the general implementation of Simulated Annealing in C language. The three
parameters of the method are emphasized by color and are printed in bold. All parameters can be set
by user in the FREET software (see appendix A) however, they can be set automatically as described
above.
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T =        ;
initial_arrangement();
E_parent = compute_E();

(    i=0 ; i<      ; i++){
set_change();

{

E_offspr = compute_E();

( E_best > E_offspr){
E_best = E_offspr;
save_best_arragement();

}

( E_parent > E_offspr){
E_parent = E_offspr;

}    {
dE = E_offspr - E_parent;
u  = rand(0,1);

(u > exp(-dE/T) ) back_change();
E_parent = E_offspr;

}
}
T = T*0.95;

}     (T >      );

T_start

LOOPS

T_min

//set  the initial teperature
//generate parent
//compute parent norm

//generate offspring
//compute  offspring norm

//seek for the best generation

//accept improved generation

//simulated annealing to decide
//norm difference
//random number
//not accepted
//    accepted

//cooling

//here we accept the best arrangement from the whole process

do
for int

if

if

else

if
else

while

Figure 3.5: Sketch of Simulated Annealing algorithm implementation in C

3.4 Numerical examples

3.4.1 Correlated properties of concrete

In order to illustrate the efficiency of the developed technique, consider an example of correlation matrix,
which corresponds to properties of a concrete. They are described by 7 random variables, prescribed
correlation matrix is presented in lower triangle. Upper triangle shows estimated statistical correlation
after application of Simulated Annealing (SA), for two different number of LHS-simulations (8, 64). Final
values of norms are included: first line corresponds to norm (3.12) second line (bold) means overall norm
(3.13).

K8 =




1 −0.017 0.700 0.863 −0.026 0.487 0.875

0 1 0.020 0.067 −0.039 0.104 −0.017

0.7 0 1 0.729 −0.016 0.823 0.700

0.9 0.1 0.8 1 0.024 0.543 0.863

0 0 0 0 1 0.031 −0.026

0.5 0.1 0.9 0.6 0 1 0.487

0.9 0 0.6 0.9 0 0.5 1




, E8 =

(
0.0996

0.186

)

K64 =




1 −0.001 0.697 0.902 0.000 0.502 0.898

0 1 0.0041 0.099 0.000 0.099 0.001

0.7 0 1 0.793 0.000 0.895 0.605

0.9 0.1 0.8 1 0.000 0.604 0.894

0 0 0 0 1 0.000 0.000

0.5 0.1 0.9 0.6 0 1 0.497

0.9 0 0.6 0.9 0 0.5 1




, E64 =

(
0.0073

0.014

)

It can be seen that as the number of simulations increases, the estimated correlation matrix is closer to
the target one. Using standard PC (400MHz CPU) the computer time needed to run the SA algorithm
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Figure 3.6: The norm E (error) vs. number of random changes; see Fig. A.9 for the image as implemented
in FREET software

took about two seconds. Figure 3.6 shows the decrease of norm E during SA-process. Such figure is
typical and should be monitored. An identical figure is displayed in the software FREET, see Fig. A.9
(p. 131).

3.4.2 Non-positive definite prescribed correlation matrix?

In real applications of LHS technique in engineering, statistical correlation represents very often a weak
part of a priori assumptions. Because of this poor knowledge the prescribed correlation matrix K on
input can be non-positive definite. The user can face difficulties to update correlation coefficients in order
to make the matrix positive definite, see Fig. A.6, p. 129. The example presented here demonstrates that
when a non-positive definite matrix is on input, Simulated Annealing can work with it and of course, the
resulting correlation matrix is positive definite. It is as close as possible to originally prescribed matrix
but the dominant constraint (positive definiteness) is satisfied automatically.

Let us consider a really very unrealistic simple case of statistical correlation for three random variables
A, B a C according to the matrix K (columns and rows correspond to the ranks of variables A, B, C):

K =




1 0.9 0.9

1 −0.9

symm. 1


 −→optim. S(1) =




1 0.499 0.499

1 −0.499

1


 , E(1) =

(
0.401

0.695

)

The correlation matrix is obviously not positive definite. Strong positive statistical correlation is
required between the pairs of variables (A, B) and (A, C), but strong negative correlation between
variables (B, C). It is clear that only compromise solution can be done. The method resulted in such
compromise solution without any problem, S(1) (number of simulations NSim was high enough to avoid
limitation in number of rank combinations). This feature of the method can be accepted and interpreted
as an advantage of the method. In practical reliability problems with non-positive definiteness exist
(lack of knowledge). It represents the serious limitation for usage of some other methods (Cholesky
decomposition of prescribed correlation matrix).

In real applications it can be a greater confidence to one correlation coefficient (good data) and a
smaller confidence to another one (just estimation). Solution to such problems is weighted computation
of both norms (3.12) and (3.13) – Weighted Simulated Annealing Optimization Method. For example the
norm (3.13) can be modified in this way:

Eoverall,w =

√√√√
NV −1∑

i=1

NV∑

j=i+1

wi,j · (Si,j − Ki,j)2 (3.17)
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where wi,j is weight of a particular correlation coefficient Ki,j .
In the spirit of thoughts leading to norm given by equation (3.14), we can standardize the result

by total number of weights such that we reach comparability to case with different number of variables
involved or different values of the weights:

Êoverall,w =
Eoverall,w∑

1≤i<j≤NV

√
wi,j

(3.18)

This norm is the most universal and proved itself to be a good objective function for optimization
algorithm described above. Note that this norm shrinks to the simple formula (3.13) in case of no
weighting (unit weights are used).

Several examples of choices and resulting correlation matrices (with both norms) follow. Resulting
matrices S(2) and S(3) demonstrate similarity of resulting errors (equivalent weights – symmetry) while
S(4) and S(5) illustrate significance of proportions between weights. Matrix K is targeted again. The
weights wi,j are given in lower triangle. Weights of accentuated members and resulting values Si,j are
underlined.

Table 3.3: Numerical study of weighted simulated annealing optimization with non-positive definite
matrix K

Norm name: Emax Eoverall Eoverall,w Êoverall,w

Equation: (3.12) (3.13) (3.17, targeted) (3.18)

S(2) =




1 0.311 0.311
1 1 −0.806
1 10 1


 0.589 0.838 0.884 0.171

S(3) =




1 0.311 0.806
1 1 −0.311
10 1 1


 0.589 0.838 0.884 0.171

S(4) =




1 0.355 0.355
1 1 −0.747
1 5 1


 0.545 0.786 0.843 0.199

S(5) =




1 0.236 0.236
1 1 −0.888
1 100 1


 0.664 0.939 0.947 0.079

3.5 Concluding remarks

The increased efficiency of LHS can be achieved by the proper selection of samples representing the layered
probability content of random variables. The solution to this lead to explicit formulas in many cases.
Unfortunately in some cases an additional integration must be done numerically since the integral may
not be solvable in closed form. However, the extra effort of doing the numerical integration is justified
by the statistical accuracy gained.

The new efficient technique of imposing the statistical correlation when using LHS is suggested. The
technique is robust, efficient and very fast. The method has several advantages in comparison with former
techniques:

• The technique uses only changes of ranks in sampling matrix. Number of simulations does not
increase CPU time in practical cases, but for increasing number of random variables more SA
simulations is needed to achieve a good accuracy. The technique is robust, Simulated Annealing
can be terminated if the error (norm) is acceptable (users decision).
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• The problem of imposing statistical correlation is constrained precisely, therefore the initial tem-
perature for annealing can be estimated.

• The technique can work also with non-positive definitive matrices defined unconsciously by user as
input data.

The methods are implemented by author in C++ programming language in forms in dynamically
linked libraries (DLL) and constitutes the computation core of the multipurpose software package FREET

based on LHS for statistical, sensitivity and reliability analysis of computational problems, see ap-
pendix A.
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Chapter 4

Simulation of random fields and
error assessment

Published in papers: Vořechovský and Novák (2003a); Novák and Vořechovský (2004)

4.1 Introduction

Stochastic finite element method (SFEM) had facilitated the use of random fields in computational me-
chanics. Many material and other parameters are uncertain in nature and/or exhibit random spatial
variability. Efficient simulation of random fields for problems of stochastic continuum mechanics is in the
focus of both researchers and engineers. Achievements in stochastic finite element approaches increased
the need for accurate representation and simulation of random fields to model spatially distributed un-
certain parameters.

The spatial variability of mechanical and geometrical properties of a system and intensity of load can
be conveniently represented by means of random fields. Because of the discrete nature of the finite element
formulation, the random field must also be discretized into random variables. This process is commonly
known as random field discretization. Various methods have been developed for the representation and
simulation of random fields utilized within the framework of SFEM (e.g. Vanmarcke et al., 1986; Yamazaki
et al., 1988; Schuëller et al., 1990; Liu et al., 1995, and many others). Most available algorithms for random
fields simulation are based on spectral representation theorem, random field is represented approximately
by a finite number of waves with random amplitude and/or phase and/or frequency, (e.g. Spanos and
Ghanem, 1989; Ghanem and Spanos, 1991). Nowadays many types of random fields representation
exist, such as spectral representation methods, time- and frequency-domain hybrid simulation methods,
covariance decomposition methods.

In following we will deal with random fields simulation based on orthogonal transformation of covari-

ance matrix in connection with different types of Monte Carlo simulation. Methodology is closely related
to Karhunen-Loève expansion (Loève, 1977). These methods produce stationary and ergodic Gaussian
processes, transformations into another distributions (translations) will be mentioned in section 4.3. We
will focus on error assessment of simulated fields and utilization of LHS methodology thoroughly discussed
in the preceding chapter.

The computational effort in reliability problem is proportional to the number of random variables,
therefore it is desirable to use small number of random variables to represent a random field. Simulation
of the random field by a few random variables is especially suitable for problems where theoretical failure
probability should be calculated. It enables an efficient use of advanced simulation techniques based on
importance sampling (Brenner, 1991; Vořechovský, 2000a). To achieve this goal, the transformation of
the original random variables into a set of uncorrelated random variables can be performed through an
eigenvalue orthogonalization procedure (Schuëller et al., 1990; Liu et al., 1995). It is demonstrated that a
few of these uncorrelated variables with largest eigenvalues are sufficient for the accurate representation
of the random field. The error induced by such truncation will be an object of study in this chapter as
well.



34 Simulation of random fields and error assessment

4.2 Orthogonal transformation of covariance matrix

Suppose that a spatial variability of random parameter is described by the Gaussian random field a(x),
x = (x, y, z) is the vector coordinate which determines the position on the structure. Numerical analysis
requires a discrete representation of random field. A continuous field a(x) is described by discrete values
a(xi) = a(xi, yi, zi), where i = 1, . . . , N denotes the discretization point.

As the randomness of the spatial variability in 3-dimensional nature is generally not isotropic, the
autocorrelation function of the spatial homogeneous random field is supposed to be a function of the
distances between two points |∆x|, |∆y| and |∆z|. The following commonly used exponential form of an
autocorrelation function is considered:

Raa(∆x,∆y,∆z) = σ2 · exp

[
−

( |∆x|
dx

)pow

−
( |∆y|

dy

)pow

−
( |∆z|

dz

)pow ]
(4.1)

in which dx, dy and dz are positive parameters called correlation lengths and σ is the standard deviation
of the random field. With increasing d a stronger statistical correlation of a parameter in space is imposed
and opposite. Of course, an isotropic autocorrelation function has all correlation lengths identical. The
power pow is usually two which leads to well known bell-shaped autocorrelation function. In case of
isotropic fields the autocorrelation would depend only on the Euclidian norm.

When the finite element method is used, the structure is divided into an appropriate number of finite
elements of small sizes. The size of each finite element must be small enough from the material property
variability (correlation length), as well as from the stress/strain gradient point of view. It must be small
enough so that the values of random field can be considered approximately constant within each element
(or vicinity of an integration point). Note that generally the discretization mesh of random field mesh and
finite element mesh may be different. Consider the fluctuating components of the homogenous random
field, which is assumed to model the material property variation around its expected value. Then the
N values, ai = a(xi), are random with zero mean and autocorrelated. xi is the location of the centroid
of element i or integration point (depending on the discretization of random field). Their correlation
characteristics can be specified in term of the covariance matrix Caa, whose ij-component is given by:

cij = Cov[aiaj ] = Raa(∆xi,j ,∆yi,j ,∆zi,j) (4.2)

The random variables can be transformed to the uncorrelated normal form by solution of an eigenvalue
problem (e.g. Schuëller et al., 1990; Liu et al., 1995). In order to reduce the computational effort, an
eigenvalue orthogonalization procedure can be employed:

CXX = ΦΛΦT (4.3)

where CXX is the covariance matrix (for unit variance, σ2 = 1 ). The matrix Φ represents the orthogonal
transformation matrix (eigenvectors). The covariance matrix in the uncorrelated space Y is diagonal
matrix Λ:

CYY = Λ (4.4)

where the elements of diagonal are the eigenvalues (λ1, λ2, . . . , λN ) of covariance matrix CXX.
Usually, not all eigenvalues have to be calculated and considered for next step (simulation) as the

fluctuations can be described almost completely by a few random variables. This can be done by arranging
the eigenvalues in descending order, calculating the sum of the eigenvalues up to the i-th eigenvalue and
dividing it by trace of Λ. The reduction of number of random variables in fact depends on relationships
between total dimensions and discretization of the structure (model) and given correlation lengths. If the
random properties of closely adjacent elements are correlated, the original (full) set of random variables
can be represented by a smaller number of uncorrelated random variables. Example of description of the
randomness by the most important random variables is given in Fig. 4.2. And in addition to, reduction
could be a corollary of a truncation error in solution of eigenvalues of CXX. In cases when correlation
lengths are comparable to total dimensions of heavily discretized model the solution of eigenvalues of
assembled covariance matrix results in a few dominant eigenvalues and many small eigenvalues. The
latter eigenvalues (variabilities of assigned random variables) does not to be included. For example if
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the smallest found eigenvalue is 1 · 10−15, then corresponding random variable have standard deviation√
1 · 10−15 = 3.16 · 10−8.

Let the chosen number of important dominating random variables by eigenvalue analysis be NV . Now,
the eigenvector matrix Φ denotes the reduced eigenvector matrix containing only the respective eigenvec-
tors to the NV most important eigenvalues. Then the vector of uncorrelated Gaussian random variables
Y T = [Y1, Y2, . . . , YNV

] can be simulated by a traditional way (Monte Carlo simulation). The random
variables of vector Y have mean zero and standard deviation

√
λ1,

√
λ2, . . . ,

√
λNV

. The transformation
back into correlated space yields the random vector X by the relation:

X = ΦY (4.5)

As already mentioned, the procedure enables significant reduction of uncorrelated random variables for
representation of random field especially for higher values of correlation length. These random variables
can be simply generated by plain MCS, representation of random field is formed via formula (4.5).

Note that such reduction depends on:
1. Correlation length of random field : Only if correlation length is large (with respect to dimension

of structure and discretization) the reduction is progressive. In limiting case when correlation length
approaches infinity, the result is that random field can be represented by one random variable only
(random field is equivalent to random variable). Opposite, if correlation length approaches zero, no
reduction is possible and all random variables have to be involved for proper representation of random
field.

2. The criterion selected for reduction: Naturally used criterion is based on control of variability
captured by reduced set of random variables. Eigenvalue matrix of covariance matrix of Y contains
variances of random variables. They are equivalent to eigenvalues, only the largest eigenvalues are
dominating and should be used. The question “how many?” can be answered by calculating the ratio
of contribution of eigenvalues to the overall variability of field. Note that the selection is a compromise
solution: Less variables is used less variability is captured. The reduction results generally to simulation
of random field which have variance smaller than required. A certain underestimation of this statistics
will always occur.

There are two major computational burdens associated with the method:

1. Solution of eigenvalue problem. This may be seen as a serious drawback of the technique for large
SFEM system. But such initial computational effort is rewarded later at the step of Monte Carlo
simulation resulting in efficient and transparent technique.

2. Simulation of uncorrelated random variables. Answers to this problem can be found in chapter 3
where a new stable, reliable and efficient generator of correlated random variables is presented.

The main advantage of this approach is that advanced simulation techniques based on the concept of
importance sampling can be used for reliability calculations because these techniques can usually work
efficiently under the set of limited number of random variables. The possibility of determination of
theoretical failure probability with a good numerical accuracy is then guaranteed.

4.3 Latin Hypercube Sampling utilization

Majority of papers on LHS is focused on the level of random variables and LHS is rarely employed for
random fields simulation in SFEM. The aim of this chapter is to repeat the possibility of improvement
of the method based on orthogonal transformation of covariance matrix for random field simulation,
suggested e.g. by Novák et al. (2000) and to show some new improvements to the method. The approach
is based on utilization of stratified sampling technique LHS for simulation of dominating uncorrelated
random variables which are gained through eigenvalue analysis of covariance matrix. The result of this
combination is that only a few random variables and quite small number of simulations is necessary for
accurate representation of a random field. A comparison with classical Monte Carlo simulation (MCS)
reveals the superior efficiency and accuracy of the method. A parametric studies focused on the quality of
simulated random fields (target statistical parameters and simulated statistical characteristics of random
field) are presented later. An emphasize is given to the region of very small numbers of simulations
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(tens, hundreds). This is particularly important for SFEM analysis of complex computationally intensive
problems (e.g. nonlinear FEM modeling) leading to a considerable need of CPU-time. The quality of the
representation of the structural response is closely related to the quality of the random fields.

Small number of simulations can be used for acceptable accuracy using some stratified sampling, one
often used alternative is LHS technique. This technique belongs to the category of advanced simulation
methods (McKay et al., 1979; Iman and Conover, 1980; Iman and Shortencarier, 1984). The idea of LHS
is discussed in chapter (3). Utilization of LHS method for simulation of Gaussian uncorrelated variables
as described in previous section (reduced space of variables) is the simple idea of improvement of random
field simulation using orthogonal transformation of covariance matrix. The keypoint is that matrix Y of
random variables from the uncorrelated space is assembled with utilization of stratified sampling LHS. It
is expected that the superiority of this stratified technique comparing MCS will continue also for accurate
representation of random field, thus leading to a decrease of number of simulations needed. This should
be proved at least numerically. The methodology for an assessment of error of simulations is described
in section 4.4, numerical examples inclusive.

Transformation to non-gaussian processes

Simulation of the discretized random field has to take care of considerable correlations and non-Gaussian
distributions. This means that a transformation from standard Gaussian space (in which random numbers
are generated) to correlated non-Gaussian space has to be carried out. This requires application of the
Rosenblatt-transformation. A prerequisite of this transformation is the knowledge of the joint probability
density function of all random variables. Usually, this knowledge is limited to marginal distributions and
correlations. In this case, the Nataf (1962) model for the joint density is widely used. For application
of this model the correlation matrix in standard Gaussian space must be adjusted according to the
distribution type. It should be noted that in some situations this may lead to a non-positive definite
correlation matrix, which renders the model inapplicable.

Direct transformation method to values of Gaussian random field X would be applied in discretization
points

X̃i,j = F−1 [ΦN (Xi,j)] (4.6)

where ΦN is normal CDF and F−1 represents inverse of desired CDF.

4.4 Error assessment of random field simulation

When any method for random field simulation is used it is required that the statistical characteristics
of the field generated be as close as possible to the target parameters. Generally, the mean values,
variances, correlation and spectral characteristics (we will use the common term “statistics”) cannot
be generated with absolute accuracy. Basic information about random field is captured by its second
moment characteristics, i.e. the mean function µ and the covariance function Caa:

µ(x) = E[a(x)] (4.7)

Caa(x1,x2) = E{[a(x1) − µ(x1)] · [a(x2) − µ(x2)]} (4.8)

Some samples of random fields for a parameter are simulated from the population parameters. A
certain statistic of the particular simulation may be very close to or quite far away from the value of
corresponding target parameter. When the seed of the pseudo-random number generator is changed other
random fields are generated and other values of all sample statistics are naturally obtained. Therefore,
each of these statistics can be considered as a random variable with some mean value and variance. The
simulation technique is considered as best one which gives an estimated mean value of the statistics very
close to the target mean value and also closest to zero variance of the statistics. In our case of zero mean
value and unit variance of random field (basic target statistical parameters) we expect to get estimated
mean around zero and variance around one.
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Figure 4.1: Random field realizations for correlation length a) d = 0.1 m; and b) d = 1 m. Means and
± standard deviations are plotted.

The assessment can be done by performing more runs of the same simulation process with a different
random setting of the seed of pseudo random number generator. Thus samples are artificially generated
from the population in this way.

The procedure itemized above is repeated Nrun times each time with different initial random setting
of the seed. Naturally statistics obtained in each run are different, e.g. different mean as and variance
σas

. As measures of the accuracy of simulation, the mean values and variances are calculated from Nrun

statistics obtained.
Here should be tackled some extremely important aspects of random fields simulation for stochastic

finite element analysis (SFEM): Spurious correlation reduction, a restriction resulting from Cholesky
decomposition of covariance matrix, orthogonal transformation of covariance matrix (called sometimes
spectral decomposition) and the utilization of Latin hypercube sampling (LHS) for random fields simu-
lation. All these aspects are important for computational efficiency, robustness and accuracy in SFEM.
A superiority of correlation control LHS was already showed by many researchers, e.g. Schuëller et al.
(1990); Brenner (1991); Liu et al. (1995); Novák et al. (2000); Bucher and Ebert (2000) and others. A
practical consequence is using small number of simulations of random field to achieve satisfactory accu-
racy. In spite of these achievements some arising questions remained not answered and remarks should
be done.

4.4.1 Reduction of spurious correlation

Sampling scheme of Monte Carlo type methods (such as stratified sampling LHS) can be represented by
Table 3.1, where input variables are columns in matrix Y . Orthogonal transformation of covariance matrix
(correlation control, section 4.2) leads to significant improvement – a reduction of number of random
variables to represent random field (truncation NV ≪ N). These aspects are illustrated in Fig. 4.2
where the sum of eigenvalues divided by trace (portion of normalized variability expressed in percentage)
is plotted vs. number of random variables used for representation. The figure is constructed for 1D
homogenous stationary normalized Gaussian random field with exponential autocorrelation function,
structure size 10 m, two correlation lengths d = 0.1 m and d = 1 m, N = 128. It can be seen that in
order to capture the variability of random field, smaller number of random variables r is needed in case
of larger correlation length. For example, in order to simulate 95 % of variability we need only NV = 10
in case d = 1 m, but for d = 0.1 m NV = 89.

What are the consequences of spurious correlation to autocorrelation function variability of simulated
random fields? The study has been done for correlation length 1 m and for two numbers of simulations
– an error assessment based on samples simulations from population is described later. From all 128
random variables only 52 has been used after orthogonalization procedure to represent random field (the
smallest eigenvalue taken into account was 1 · 10−15, which represents a random variable with negligible
standard deviation). The results are shown in Fig. 4.3, mean values and the scatterband represented
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Figure 4.2: Reduction of number of random variables based on normalized variability.

by mean ± standard deviation of autocorrelation function is plotted. Figure 4.3a) shows the result
for NSim = 32, spurious correlation is not diminished (LHS-mean-SC). It is obvious that capturing of
target autocorrelation function is weak and the scatterband is large. The explanation is clear, using
only NSim = 32 leads to large both norms (3.12) and (3.13), see page 26. Only a slight improvement
can be seen if spurious correlation is diminished (LHS-mean-SCD), Fig. 4.3b). When NSim increases to
64, capturing of autocorrelation function is better, Fig. 4.3c), d). Note that now the alternative with
diminished spurious correlation by SA resulted in excellent function capturing with very small variability,
see figure 4.3d). This fact corresponds with both norms which are in case d) very small. It can be
seen that the spurious correlation at the level of simulation of independent random variables influences
negatively the autocorrelation function. These illustrative figures also clearly indicate that norms used
as objective functions in Simulated Annealing algorithm (section 3.3) can be interpreted as a qualitative
prediction of resulting quality of autocorrelation structure.
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Figure 4.3: Scatterband of autocorrelation function Caa(ξ) for NSim = 32: a) LHS-mean-SC; b) LHS-
mean-SCD; and NSim = 64: c) LHS-mean-SC; d) LHS-mean-SCD
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4.4.2 Classification of sampling schemes

Next comment should be given to present state of art of LHS procedures. LHS is utilized by authors for
simulation of statistically uncorrelated random variables with Gaussian distribution. The classical ap-
proach is to use centroids of layers on distribution function to obtain realizations (see mapping represented
by formula (6) of the discussed paper). Huntington and Lyrintzis (1998) showed that this approach gives
samples with a mean close to desired one, but sample variances can be significantly different. They pro-
posed a new sampling scheme (also used by Keramat and Kielbasa (1997) (section 3.2). All possibilities
of sampling method can be summarized as follows:

• crude Monte Carlo simulation (MCS);

• Latin hypercube sampling under original scheme, McKay et al. (1979), (LHS-median);

• Latin hypercube sampling under improved scheme, Huntington and Lyrintzis (1998) (LHS-mean).

These schemes can be applied in two alternatives:

• No attention is paid to spurious correlation (SC);

• Spurious correlation diminished (SCD)

There are three different method to diminish spurious correlation available nowadays: Method based
on Cholesky decomposition of covariance matrix, (Iman and Conover, 1982); Single-switch optimization
scheme, (Huntington and Lyrintzis, 1998); Method based on simulated annealing due to Vořechovský and
Novák (2002) which will be used in the following.

There are 6 combinations, cases with SC and SCD, which are sampled by MC, LHS-half and LHS-
mean. What is the best alternative? Naturally, the quality of sampling schemes can be intuitively
predicted even without numerical experiment, e.g. combination (MCS) and (SC) should definitely belong
to worst case and combination of (LHS-mean) and (SCD) should be the most efficient. Note, that in
case of random field simulation using the orthogonal transformation of covariance matrix, the quality
of sampling is influenced by criterion for a reduction of number of random variables. A proper error
assessment based on numerical experiment is the most objective method for qualitative assessment of
sampling schemes listed above.

The quality of generated random field is a primary task and should be tested first. The approach for
error assessment can be elaborated in a similar way to as the general error assessment procedure due to
(Novák et al., 1995, 2000).

When any method for random field simulation is used, it is required that the statistical characteristics
of the field generated should be as close as possible to the target statistical parameters. Generally, the
mean values, standard deviations, correlation and spectral characteristics (we will use the common term
“statistics”) cannot be generated with absolute accuracy. In our case the accuracy will be influenced by:

• Number of random variables NV used for representation of random field (reduction of original space
via orthogonal transformation of covariance matrix);

• Correlation length d;

• Sampling technique of uncorrelated Gaussian random variables (MCS or LHS) in connection with
fulfilment of correlation structure;

• Number of discretization points N ;

• Number of simulations used NSim.

Some samples of random fields for a parameter are simulated from the population parameters. A
certain statistics of the particular simulation may be very close to or quite far away from the value of
corresponding target parameter. When the seed of the pseudo-random number generator is changed, other
random fields are generated and other values of all sample statistics are naturally obtained. Therefore,
each of these statistics can be considered as a random variable with some mean value and variance. The
simulation technique is considered as best one which gives an estimated mean value of the statistics very
close to the target mean value and also closest to zero variance of the statistics. In our case of zero mean
value and unit variance of random field (basic target statistical parameters) we expect to get estimated
mean around zero and variance around one.
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The assessment can be done by performing more runs of the same simulation process with a different
random setting of the seed of pseudo random number generator. Thus samples are artificially generated
from the population in this way. Procedure can be described as follows (for one particular run):

• NSim simulations of random field are performed with initial random seed setting and prescribed
parameters;

• Statistics are evaluated from NSim generated realizations of the random field over all N discretiza-
tion points (capturing also the ergodicity as the basic property of random field) mean as and
standard deviation σas

are evaluated.

• Correlation and spectral characteristics can be examined too (autocorrelation function or power
spectral density).

The procedure itemized above is repeated Nrun times, each time with different initial random setting
of the seed. Naturally, statistics obtained in each run are different, e.g. different mean as and standard

deviation σas
. As measures of the accuracy of simulation, the mean values and standard deviation are

calculated from Nrun statistics obtained. Symbolically, we assign the following symbols:

• Mean(as), Mean(σas
) for mean values of mean as and standard deviation σas

.

• Std(as), Std(σas
) for standard deviations of mean as and standard deviation σas

.

If the simulation is successful, then Mean(as) → 0, Mean(σas
) → 1 and standard deviations Std(.) → 0

(hypothetical limits for NSim → ∞).

Let us consider 1D structure of length 10 m (e.g. beam), the structure is divided into 128 discretization
points associated with finite elements (N = 128). For univariate Gaussian random field with zero mean
two values of correlation length are considered in order to show the influence of this parameter, d = 0.1 m
and d = 1 m. Random field realizations are illustratively shown in Fig. 4.1 for 16 simulations only. The
region of small number of simulations (NSim = 8, 16, 32, 64, 128, 256, 512) has been selected in parametric
study – implicitly it was supposed that the superiority of LHS should appear for small number simulations
(tens, hundreds). Number of runs Nrun = 30 was selected for estimation of statistics. So the random
fields had to be simulated Nrun × NSim times for a statistics of interest.

The following alternatives have been selected for the error assessment: MCS-SC, MCS-SCD, LHS-
half-SC, LHS-half-SCD, LHS-mean-SC and LHS-mean-SCD. The results are plotted in Fig. 4.4.

Mean value: An ability to simulate mean value of random field is excellent in all alternatives of LHS
(figures a) and b)), even for very low number of simulations. This ability is rather poor in case of MCS,
mean value of mean fluctuates and standard deviation of mean is high in comparison to LHS (around
the order 10−18 for LHS alternatives, which is just a noise due to numerical inaccuracy).

Standard deviation: The ability to simulate standard deviation of random field is documented in
figures c) and d). Again, capturing of this statistics is “random” in case of MCS, standard deviation
of standard deviation is high in comparison to LHS. LHS-half underestimates mean value of standard

deviation (figure c)) for low number of simulations. The capability of improved sampling scheme LHS-
mean is much better and convergence to target statistic (unit standard deviation) is faster. This is a
general feature of LHS tested at the level of random variables.

An important fact is documented: There is no significant difference between alternatives SC and
SCD in case of MCS, LHS-half and LHS-mean sampling schemes. Both LHS methodologies generally
prescribes mean value in section (discretization point) of a field, but variability (standard deviation) in
section is better for LHS-mean sampling.

Diminishing spurious correlation has small influence on these basic statistics of random field (in our
study statistics of random fields are “smeared” lengthwise, but an impact of spurious correlation could
remain in sections of random field realizations). In most cases differences are negligible and points coincide
in presented figures. As was shown above, a spurious correlation influences negatively the autocorrelation
structure of random field. Note, that if we construct statistics presented in Fig. 4.4 for different correlation
length of the field, similar trends will be obtained.
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4.5 Conclusions

It has been shown that a spurious correlation influences significantly the scatter of autocorrelation function
of simulated random fields. A decrease of scatter-band is influenced by the possibility to diminish the
spurious correlation. The method for diminishing spurious correlation based on stochastic optimization
method SA appeared to be robust and efficient for random field simulation. This possibility is limited
in case of very small number of simulations (with respect to number of random variables representing
random field). A clear indication of this limitation is the fulfillment of norms used as objective functions
in SA to diminish spurious correlation.

The quality of simulated random fields should be assessed by usage of both basic statistics (mean
value and standard deviations) applied for simulated mean and standard deviation is more suitable and
recommended. An error assessment has been performed for six alternatives of sampling schemes. The
best performance, ie. the convergence to target values of statistics with low variability has been achieved
in case of LHS approach with improvement (LHS-mean). Diminishing spurious correlation does not
influence the capturing of these statistics but does influence significantly realization of autocorrelation
function of random field.

The superior efficiency of LHS and correlation control is confirmed. But attempt has been done to
show better the role of correlation control – diminishing spurious correlation in random field simulation
and importance of sampling schemes for simulation of uncorrelated random variables.

Generally the quality of both estimated autocorrelation and cross-correlation depends on the quality of
imposition of correlation among random variables. Cross-correlation is estimated using NSim realizations
in N discretization points. Therefore one can obtain N point estimations of cross-correlation coefficient
for each pair of random fields I and II ρI,II(0). Of course, it should be estimated also cross-correlation
with coordinate (time) separation vector dA,B , i.e. cross-correlation of two different discretization points
A, B for each pair of random fields ρI,II(dA,B). Meaning of these terms is illustrated in figures 4.5
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Figure 4.5: Shape similarity of corresponding realizations of random fields I and II (dx = dy = 10m).
Cross-correlation coefficient ρI,II(0) = 0.65

and 4.6. Both random fields I and II were obtained from standard Gaussian random field using simple
memoryless translation by Eq. (4.6), chapter 4.3. Corresponding realizations of random field I before
translation are given in figure 4.7.
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Chapter 5

Micromechanical model and random
properties within the yarn cross
section

Published in paper: Chudoba, Vořechovský, and Konrad (2004)
The chapter presents numerical study of sources of randomness/disorder in the multi-filament yarn

as they occur in the tensile test. For the analysis, we formulate an efficient deterministic model based
on the superposition of the filament response. The considered distributions of the material properties
include both the variations of properties from filament to filament and the variations of strength and
stiffness over the length of each filament. In the chapter, we introduce the developed modeling technique
and study the influence of filament-related distributions of material properties with respect to the size
effect. In the following chapter 6 or in the paper by Vořechovský and Chudoba (2004a), the length-related
distributions are considered. Both papers provide the basis for correct interpretation of the data obtained
from the tensile test on multi-filament yarn with varied specimen length.

5.1 Introduction

The composite material combining the cementitious matrix with textile reinforcement has become a
subject of an intensive research in the last decade (Curbach and Hegger, 2001). The forming flexibility of
the textile structures and the ductility of the produced composites opens up new possibilities especially
in two application areas of civil engineering:

• production of efficient light-weight structural elements (Hegger, 2002) and

• strengthening and retrofitting of existing buildings (Curbach, 2002).

The heterogeneous nature of both the reinforcement and the matrix introduces sources of randomness
at several scales of the material structure. For the robust modeling of the overall material behavior it
is inevitable to identify and analyze the sources of randomness both experimentally and numerically. In
particular, it is very important to capture the disorder in the material structure and the random distri-
bution of defects and material properties. These sources of randomness introduce the length (volume)
dependent behavior that is generally referred to as statistical size effect (Bažant, 2002a).

The primary motivation for the present study was to determine the statistical distributions of filament
properties in order to analyze their performance in the crack bridges and in the heterogeneous bond
layer of cementitious composites. The need for a sound description of the length-dependent behavior of
reinforcing yarns is documented in Fig. 5.1 with the classification of the effective length scales of the
tensile test, of the crack bridge (sleeve filaments) and of the structure (core filaments).

The direct experimental determination of the statistical distributions using an expensive filament
tensile test turned out to be very difficult to construct in a reproducible manner. The only way to
obtain the filament data was to derive them indirectly from the tensile tests on the bundles by applying
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a numerical model. The tests have been performed with varied yarn length in order to quantify the
statistical size effect inherent to the bundle as an additional effect to be reproduced in the modeling.

The key concept in capturing the statistical size effect of a single filament is the weakest link model,
mathematically first formulated by Fisher and Tippett (1928) and Weibull (1939a), later also by Epstein
(1948). This concept has been applied in the formulation of the fiber bundle models (FBM) originally
introduced by Daniels (1945) and Coleman (1958). The FBM’s are constructed as a parallel set of fibers,
each of which has a Weibull distribution of strength (e.g. Phoenix, 1978a; Harlow and Phoenix, 1978b,a;
Smith and Phoenix, 1981). Fibers break if the load acting on them exceeds their local strength (threshold
value). Upon the fiber failure, there are two possible rules for the stress redistribution: (1) equal load
sharing (ELS) with equal redistribution of the load among all the intact fibers (filaments) remaining in
the set, and (2) some type of local load sharing (LLS) where the force released by the broken fiber is
transferred to its nearest neighbors. In spite of their simplicity, these models capture the most important
aspect of material damage and provide a deeper understanding of the fracture process.

The FBM’s provided a basis for successful micro-mechanical models considering localization (Byeerlein
and Phoenix, 1997), the effect of the matrix between the filaments (Phoenix et al., 1997) and the nonlinear
behavior (Krajcinovic and Silva, 1982) extensions of FBM’s have been introduced taking into account
the possible multiple cracking of the filaments by replacing the brittle filament failure with a continuous
damage parameter (Kun et al., 2000).

When considering other sources of randomness than strength, the FBM’s must be replaced by a
deterministic micromechanical model combined with full Monte-Carlo simulation technique. This ap-
proach has been used in analyzing the influence of the distribution of the bundle strength for different
fiber arrangements on the stress concentration around the broken fibers (Ibnabdeljalil and Curtin, 1997).
The prohibitive computational costs have been reduced by simplified micromechanical models like break-
influence superposition based on the shear-lag model (Beyerlein and Phoenix, 1996) or the lattice Green’s
function technique adopted to composite failure (Zhou and Curtin, 1995).

Another source of randomness in form of the interaction patterns randomly distributed over the yarn
has been studied by Hidalgo et al. (2002). The disordered structure of filaments has been captured
by continuous redistribution law ranging from the LLS to ELS rules and randomizing the interaction
diameter in a Monte-Carlo simulation.

In the case of the AR-glass or carbon yarns, the FBM’s do not cover all the effects observed in
the experiment. The difficulty is, that besides the randomly distributed strength, the tensile test setup
necessarily introduces additional sources of randomness that may essentially influence the response of the
specimen. In particular, it is inevitable to include the influence of delayed activation and varying filament
length. Furthermore, for some types of rovings (e.g. AR-glass) there are also differences between cross
sectional area of individual filaments in the yarn sample.

By including these effects in the numerical model together with the influence of the stochastic dis-
tribution of material properties over the length we are able to capture/reproduce the whole loading and
failure process during the test, size effect inclusive. As a result, we obtain more information about the
filament properties and their interactions in the bundle. The filament bundle model capturing all the
interacting effects occurring in the tensile experiment with varied specimen length provides the stepping
stone for robust modeling of the failure process in the bond layer with cementitious matrix.

In the present chapter we first describe the effects occurring during the tensile experiment of the yarn
with the special focus on the yarn types used in the Textile Reinforced Concrete (TRC), see Sec. 5.2.
After that, we describe the deterministic model covering the effects identified in the tensile experiment
(Sec. 5.3) and study their qualitative influence on the load-displacement diagram (Sec. 5.4). The
influence of delayed activation is then studied on selected wave patterns in detail (Sec. 5.5) and discussed
in connection with the performed experiments in the Sec. 5.6.

In the following chapter 6 we study the influence of random distribution of strength and stiffness
along filaments. In the same paper, the resulting size effect (roving strength dependence on the length)
is studied with and without the effect of delayed activation using the numerical model.

5.2 Effects included in the tensile test

Before constructing the numerical model we review the general behavior of a multi-filament yarn in the
tensile test. Fig. 5.2 shows the load-displacement curves obtained from the tensile test on AR-glass



5.2 Effects included in the tensile test 47

rovings with lengths varied in the range from 10 to 500 mm. The velocity of loading has been set to 1%
strain in a minute.

The response curves allow us to identify the following four effects:

A Gradual increase of the stiffness up to the maximum stiffness of the bundle. This phenomenon is
amplified for short samples.

B Reduction of the maximum stiffness with the decreasing length of the sample.

C High scatter of the stiffness and maximum force for short samples and reduced scatter for long
samples.

D Brittle failure of short samples as opposed to the ductile failure of long samples.

E Maximum deformation εmax [%] differs significantly for different lengths although identical mate-
rial was used.

In order to model the yarn behavior in various loading conditions, these complex effects must be
explained and quantified in terms of simpler or even elementary effects that may be appointed either to
the (1) material constituents, i. e. the individual filaments, or to the (2) filament ensemble or (3) to the
experimental setup.

In the first case, linear elastic brittle behavior of the AR-glass is assumed. Its characteristics (strength
f t(x), material stiffness E(x) and area A(x)) may exhibit variations along the filament: as shown in the
Fig. 5.4. If there are flaws in the glass microstructure, there may also be locally concentrated reductions
of strength. Finally, the interaction between filaments is realized either by the bonding or friction between
filament surfaces.

Second, the cross sectional area varies from filament to filament within the ensemble: Ai(x) 6= Aj(x),
where i, j are filament labels. Further, the disorder distribution in the bundle leads to two effects es-
sentially influencing the overall behavior depending on the wave pattern geometry: (1) in case of lose
independent waves it results in delayed filament activation and unequal stress distribution in filaments
at a given control load and (2) in case of wave geometry inducing pressure between filaments, e.g. spiral
form, it leads to higher interaction between filaments through friction and damage localization in clusters.

bridge
structure

test

bridgel
l

l

LL

Figure 5.1: Effective length scales

Third, the most crucial part in the construction of the tensile experiment is the clamping of the yarn
ends. In general, an ideal clamping is impossible and some kind of response distortion is always present.
Therefore, it is important to construct the clamping in a way that allows us to factor out its influence
from the measured response. In the applied experimental setup developed at the Institute for Textile
Technology of the Aachen University, the yarn ends are fixed in epoxy resin (Gries and Royé, 2003).
Without going into details of this setup we summarize the sources of distortion of the measured response
that must be considered: First, the length of the individual filaments li varies due to the uneven surface
of the epoxy resin (see Fig. 5.4). This effect is present both for bundles with a flat cross sections as well
as with a circular cross section. Second, for short samples the deformation of the epoxy resin cannot be
neglected since it significantly distorts the measured deformation. Third, in the post-peak region, the
epoxy resin gets unloaded and contracts with an uncontrolled velocity that may induce dynamic loading
effects especially for short filaments.
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Figure 5.2: Tensile tests on AR-glass rovings with varied length, raw data
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Figure 5.3: Tensile tests on AR-glass rovings with varied length, corrected data by subtracting the
deformation of the epoxy clamping

Since the forces transmitted by short and long yarns are comparable and the deformable epoxy-
made clamping is kept identical, the resulting diagram is distorted mainly for short samples. Corrected
diagrams (deformation of epoxy resin subtracted) are presented in Fig. 5.3. These manifest very brittle
failure after the peak load instead of expected long post-peak zone due to the scatter in stiffness.
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Figure 5.4: Elementary characteristics of filaments and their ordering in the yarn
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5.3 Deterministic model

The full coverage of the specified elementary effects would be possible using the finite element model
including the specified sources of randomness. However, by realizing that we are dealing with bundles
consisting of up to 3000 filaments with relatively dense discretization (e.g. for short autocorrelation
structure of the material properties) we have to conclude that the computational complexity of the deter-
ministic model makes the statistical evaluation by means of the Monte Carlo computation impracticable
due to the prohibitive computational cost. In particular, with nf number of filaments and with nn nodes
and ne = nn − 1 finite elements in each filament the order of structural stiffness matrix becomes nfnn.

In case that shear interaction is modeled in adjacent nodes, the stiffness/structural matrix is a band
diagonal matrix with the number of nonzero elements equal to circa nnnf (2nf + 1). In a realistic case
of nf = 1600 and nn = 100 the number of nonzero elements is 160000 · 1601 = 256.16 · 106. For double
precision numbers, this corresponds to memory size of 2 GB and is obviously unaffordable for stochastic
non-linear computation even using today’s high performance computers.

In case that no interaction between filaments is taken into account the structural matrix is tridiagonal
so that, using the symmetry, the number of nonzero entries is 2nfnn. This corresponds to a moderate
size of the system matrix of 2.6 MB. However, using the finite element discretization with Newton-
Raphson scheme to trace the load displacement diagram for this problem would be just like using a
sledge hammer to crack a nut. As we show next, the explicit computation of the load-displacement
curves of filament bundles in tension is possible by superposition of the filament response (SFR) during
the tensile loading. The model is applicable to the material with a negligible friction, like AR-glass, and
allows us to drastically reduce the computational costs to such extent, that the statistical analysis of the
nonlinear response becomes feasible.
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Figure 5.5: Superposition of the filament response with varying filament strength, stiffness, length and
activation strain.

The yarn idealization reflecting the filament geometry and structure schematically exemplified in the
Fig. 5.4 is shown in the Fig. 5.5. The bundle with the nominal length l is represented by an ordered set
F of parallel filaments. For each filament i ∈ F , the following material properties are defined:

li filament length
Ai average cross sectional area
ε0
i activation strain
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The properties of the i-th filament may fluctuate over its length. Their discrete values are represented
by an ordered set of material points Mi. The number of material points m is equal for all filaments. The
material properties of the filament i are represented as a set of value triples in equidistant points

Mi :=
{[

Ei,j , Ai,j , f
t
i,j

]
| j = 1 . . . m

}
, (5.1)

where Ei,j is the Young modulus, Ai,j the cross sectional area and f t
i,j the strength in the i-th filament

and j-th material point.
The maximum force in each material point is computed as

Ri,j = f t
i,jAi,j . (5.2)

Applying the fact that the filament strength equals to the strength of the weakest member/element we
define the maximum force transmitted by the i-th filament as

Ri = min
j∈Mi

(Ri,j). (5.3)

Using the equidistant sampling of the material points the overall stiffness of the i-th filament may be
computed by static condensation (Fig. 5.6):

1

Ki
=

∑

j∈Mi

1

Ki,j
= li

∑

j∈Mi

1

Ei,jAi,j
. (5.4)

E   , A , Ki,j i,j i,j E ,A ,K , Ri i i i

Figure 5.6: Effective filament stiffness Ki and minimum strength Ri

With the evaluated resistance and stiffness at hand we can determine the nominal strain at the filament
failure

εf
i =

Ri

lKi
+ ε0

i , (5.5)

so that the strains at the breaking of all filaments can be enumerated in an ordered set

E :=
{

εf
i ∈ R | εf

i ≤ εf
i+1,∀i ∈ F

}
. (5.6)

The subset of unbroken filaments at breaking of the i-th filament is defined as follows

Zi :=
{

k | εf
k ≥ εf

i ,∀k ∈ F
}

. (5.7)

The total force transmitted by the roving at the breaking strain εf
i of the i-th filament is computed as

the sum of forces transmitted by the unbroken filaments

F
(+)
i =

∑

j∈Zi

Kj(ε
f
j − ε0

j ). (5.8)

The force after the rupture of the i-th filament is obtained by subtracting its contribution from F
(+)
i

F
(−)
i = F

(+)
i − Ki(ε

f
i − ε0

i ). (5.9)

By evaluating the Eqs. (5.8) and (5.9) for each εf
i from the ordered set E we may directly calculate

the levels of loads at all filament breaks. Thus, the load-displacement curve can be constructed as a set
of force-displacement triples ordered according to the set E

R :=
{[

εf
i , F

(+)
i , F

(−)
i

]
| εf

i ∈ E
}

. (5.10)
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Here, every deformation εF
i has two associated forces: before (F

(+)
i ) and after (F

(−)
i ) the filament break.

For further numerical studies we can now define the maximum tensile force at the nominal length l as

R(l) = max
i∈F

f
(+)
i . (5.11)

As already stated, this computation neglects any kind of interaction between filaments and corresponds
to the ELS. Therefore, the model is only applicable if the influence of shear is small. The Fig. 5.7 shows the
localization of failure for a bundle after the rupture of a filament, a phenomenon that cannot be captured
by the present model. Localization of failure into narrow zones due to shearing asserts mainly for long
yarns providing sufficient length to build up forces comparable with the filament strength. Obviously,
the increasing shearing capacity leads to more homogeneous force distribution within the bundle, and
consequently to a more brittle failure as shown in the Fig. 5.7b. In case of delayed activation, the
increased shear transmission leads to faster activation of yarn stiffness due to the interaction of filaments
between the waves (See Fig. 5.7c).

L

L

a)

c)

b)

Figure 5.7: a) Overloading of 2 elements in the neighborhood of failed element under LLS rule. b)
Comparison of roving load-deformation diagrams without and with significant shear interaction between
filaments. c) Stiffness activation through shear for delayed activation.

Still, there is a range of yarns that exhibit very small influence of shear as can be observed on the
random distribution of breaks along the yarn length during the tensile test. The evaluation of the tensile
response in terms of the set R defined in Eq. 5.10 is absolutely inexpensive in comparison with the
full finite element computation and, therefore, very suitable for the statistical analysis including random
variables and random fields.

5.4 Parametric studies

The formulated SFR model allows us to get a deeper insight into the behavior of the idealized bundle by
analyzing the qualitative influence of the included effects in detail. In the examples below we study the
influence of randomness of each single parameter simultaneously. The study is limited to the material
parameters varying only across the filaments i ∈ F in the bundle.

The filament material is AR-glass with the following expected values of the (generally random) tensile
strength, modulus of elasticity and filament diameter:

E[f t] = 1.49 GPa,
E[E] = 70 GPa,
E[D] = 26 µm

(5.12)

The analysis of the random properties over filament length (Mi) is provided in the following chapter 6.
We illustrate the behavior of the yarn using a load-deformation diagram. For the sake of simplicity we

use 16 filaments only, while the real number of filaments in the studied yarn is approximately 100-times
higher. In order to have the resulting forces in the figures comparable to the real values, the forces are
given in cN. Diagrams of the deterministic yarns with parameters on mean values are always plotted by
dashed line for comparison.

5.4.1 Different filament lengths

As mentioned previously, in the applied experimental setup the yarn ends were fixed by using epoxy resin
enfolding all the filament in the cross section. The cut through the clamping in the Fig. 5.8 shows that
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the yarn cross section has been homogeneously penetrated by the resin to enable gradual transmission of
the force into the individual filaments.

Figure 5.8: Yarn penetrated by the epoxy resin

The difficulty with this kind of fixing is that the resin penetrates also in the x direction (see Fig. 5.4)
with the consequence that the individual filaments have different lengths. For this reason, it is important
to study the sensitivity of the response with respect to the scatter in the filament length. The load-
deformation diagrams for the yarn 100, 50, 10, 5, 1 and 0.5 mm long with a variation range 2 mm of the
individual filaments and constant E, f t, A are shown in the Fig. 5.9. Here, the distribution was assumed
linear between the minimum and maximum filament length. The minimum filament length mini∈F (li)
is set equal to the nominal length l and the maximum length maxi∈F (li) is set to l + 2mm, roughly
corresponding to 1mm unevenness of the epoxy resin surface at both clamped ends.

Obviously, the scatter in the filament length leads to the scatter in the stiffness (see filament diagrams
in Fig. 5.9). As a result, the maximum strength cannot be reached simultaneously in all filaments which
causes reduction of the maximum tensile force transmitted by the yarn. This is especially true for short
specimen (Fig. 5.9c and 5.9d) with relatively ductile failure. The examples in Fig. 5.9 e) and f) represent
an unrealistic case where the nominal length is shorter than the maximum additional length of 2 mm.
With an increasing length, the relative differences in length become smaller and the strength of the bundle
approaches the nominal strength of the bundle (Fig. 5.9a and 5.9b).

As a result, we may conclude that the variations in the filament lengths act as an opposite effect with
respect to the statistical size effect and may even drown the size effect for short specimen lengths. Second,
this effect introduces ductile failure of short specimen which contrasts with the response measured in the
test (see Fig. 5.3).

5.4.2 Differences in filament diameters

The cross sectional area of the filaments in the bundle exhibits relatively high scatter. In the particular
case depicted in the Fig. 5.8 the diameter takes values between 23 and 29 µm.

Let us assume constant E, f t, l as in the previous example (see Eq. 5.12) and the variation of the
filament diameter within the cross section given as E[D] = 26µm and COV (D) = 10% (standard
deviation is 2.6µm). The cross sectional area of the filament i over its length is assumed Ai,j = const,∀j ∈
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Figure 5.9: The influence of linearly distributed addition of 2 mm to the nominal length a). . . f)
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Figure 5.10: The influence of randomness of diameters between the filaments

Mi we conclude that this kind of scatter does not influence the maximum deformation: all the filaments
fail simultaneously at the displacement

uf
i =

Ri

Ki
=

f tAi

EAi
l = uf = εf l. (5.13)

The maximum strength of a yarn equals to that of a perfect one only if the cross sectional area of the
filament i (Ai,j) is symmetrically distributed around the nominal (mean) value E[A]. The total stiffness
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of the yarn with random Di is calculated as

K =
∑

i∈F

Ki =
E

l

∑

i∈F

Ai(θ)

=
E

l

π

4

∑

i∈F

D2
i (θ),

(5.14)

where θ stands for the random nature. If we assume that the diameter D(θ) is a Gaussian random variable
with statistical moments specified above, the distribution of cross-sectional areas Ai of the filaments in
the bundle is not symmetrical around the mean (associated with gamma distribution). Nevertheless, it
can be seen in Fig. 5.10 that the stiffness of the yarn with 16 normally distributed Di’s is only slightly
higher than the stiffness of the perfect yarn. It is because the mean value of the sum of squares is almost
equal to the average filament area: 1/n

∑
j=1...n D2

j (θ) ≈ A.
We may conclude that the “symmetric around mean” scatter of the filament cross sectional area does

not significantly change the response with respect to the response of the deterministic computation with
mean area. However, it should be noted, that this conclusion does not hold when considering also the
scatter of Ai,j along the filament length Mi.

5.4.3 Delayed activation of filaments

The waviness of filaments leads to their delayed activation during the loading process. In order to study
its qualitative influence on the response we have defined a constant activation density function (see Fig.
5.11) distributed over the activation range 0 ≤ ε0 ≤ ε0

n, where ε0
n ∈ E is the activation strain of the

last filament. Depending on the relation between strain at the first filament rupture εf
1 = R1/K1 and

activation strain of the last filament ε0
n we may distinguish three qualitatively different load displacement

diagrams:

a) For εf
1 = ε0

n/2 the constant maximum force is reached in the range εf
1 ≤ ε ≤ ε0

n due to the equal
activation and failure rates. The maximum achieved stiffness is the half of the stiffness of a perfect
yarn without delayed activation.

b) For εf
1 = ε0

n the loading deformation range and failure deformation range are equal and the stiffness
activated at the maximum force is the equal to the total stiffness of a perfect bundle without delayed
activation.

c) For εf
1 = 2ε0

n the maximum bundle stiffness is activated over a longer deformation range leading to
higher maximum force and to shorter failure deformation range.

By realizing that the activation strain is computed as a relative extra length of the filament i with
respect to the nominal length ε0

i = (li − l)/l we may expect wider activation range for short specimen
(Fig. 5.11a) and narrow activation range for long specimen (Fig. 5.11b). As can be seen in the figure, the
maximum force is lower for short samples than for long samples. Thus, we may conclude that waviness
drowns the statistical size effect and must be included in the interpretation of the measured data in order
to assess the length dependent strength of the bundle accurately.

5.5 Correspondence between the delayed activation and wavi-
ness

In order to provide the correct interpretation of the experimental data we need to explain the qualitative
correspondence between the waviness and the delayed activation. As shown in the Fig. 5.12, the activation
density function changes with the length of the sample. During the production of the yarn and during the
preparation of the experimental setup several waviness patterns may be included in the yarn structure.
It is helpful to classify the fundamental waviness patterns according to their influence on the delayed
activation with respect to the changing nominal specimen length l (Fig. 5.12). We may distinguish the
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Figure 5.11: Comparison of three constant densities of delayed activation of filaments
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Figure 5.12: Distribution of relative extra length for changing nominal length

following three limiting cases: (A) unbounded scale up of the delayed activation, (B) the stabilization in
the finite limit shape and (C) the disappearance of delayed activation with l → ∞.

In order to answer the question which case comes in question for a particular type of yarn we evaluate
the delayed activation for selected types of waviness shown the Fig. 5.13. The study includes patterns
(a) and (b) that are introduced during the production process, (c) arising during the test preparation,
and (d) appearing during the packaging.

Let the filament geometry within the bundle be defined by the wave function w(x, a), where a ∈ 〈0, 1〉
is the parameter fixing the filament position within the bundle. The relative extra length of a single
filament is computed as

li =

∫ l

0

√
1 + w(x, a)′2 dx. (5.15)

and the activation strain is obtained as the normalized extra length of the filament: ε0
i = (li − l)/l.

The activation density can then be constructed as a histogram of ε0
i , i ∈ F . The Fig. 5.13 shows four

selected types of w(x, a) with the obtained ε0
i histograms for varied nominal length. The histograms are

plotted as bars divided in 10 segments, each representing 10% fractions of filaments in the whole yarn.
The shorter the histogram segment, the narrower the activation range of the corresponding 10% fraction
of filaments in the yarn.

In the first pattern (a) we have defined a periodic waviness with a uniform wave shift in the x
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Figure 5.13: Wave patterns with corresponding activation profiles (i = 0 . . . (n − 1))

direction. The corresponding histograms oscillate around the limit activation strain. Uniform activation
can be assumed from the length 100mm. This kind of waviness pattern leads to the stabilized delayed
activation for sufficiently long specimens (case B in Fig. 5.12).

In the second pattern (b) we show waviness pattern with a uniform distribution of amplitudes within
regular periodic waves. The corresponding histograms show that most of the filaments get activated in
the beginning of the loading. For large l the differences in filament lengths become negligible and the
influence of delayed activation disappears (case C)

The third pattern (c) shows a single wave that is scaled with the nominal length l. There is a
higher fraction of filaments with larger amplitudes. In particular, we have chosen a linear distribution of
filaments along the amplitude. The activation diagrams show constant activation density functions that
get reduced to simultaneous activation for large l (case C).

The last pattern (d) shows the length distribution resulting from the coiling of the yarns onto the
bobbins. Obviously, this length distribution leads to the constant delayed activation density that does
not change with the length l. The length differences scale up linearly with the nominal length (case A in
Fig. 5.12).

The performed study allows us to assess the plausibility of the applied delayed activation density
with respect to its change with the specimen length. In particular, it allows us to identify the type of
waviness included in the yarn from the load/deformation diagrams and compare them with the explicitly
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observable waviness.

5.6 Identification of the parameter distributions

The distribution of the activation density can be estimated directly from the experimental curves by
fitting the gradual increase of the stiffness up to its maximum value. In case that εf

1 ≤ ε0
n we can directly

identify ε0
n as a point at which the maximum stiffness is achieved. The densities obtained by fitting are

shown in the left four diagrams of the Fig. 5.16 and re-plotted as a sequence of histograms in the Fig.
5.14 in order to make them comparable with the densities resulting from the wave patterns studied in the
Sec. 5.5. The comparison shows that the tested yarn possesses the combination of the waviness patterns
of type (a), (b) and (c), while the pattern (d) is apparently negligible.
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Figure 5.14: Activation density function reflecting the tensile tests

The pattern (a) and (b) may be observed visually in the picture of the tested yarn (Fig. 5.15). The
wave pattern (c) develops during the specimen preparation and becomes dominating for short specimens.

Figure 5.15: Waves in the tested yarn

In particular, the influence of the periodic patterns (a) and (b) disappears for specimen lengths
relatively short with respect to the wave period T/2. Then, the pattern (c) starts to play dominating
role and the profile of the delayed activation approaches a constant function. Unfortunately, reliable
experimental results for short lengths of 10 mm could not be produced during the work on this paper.
The reason is that the deformation of the epoxy resin clamping becomes significant for the interpretation of
the results. This effect can be seen in the Fig. 5.2 on the reduced slope (stiffness) of the load-deformation
curve measured for the short specimen.

The load-deformation curves calculated for the considered lengths using the obtained activation den-
sities are plotted in the right four diagrams of the Fig. 5.16. The resulting maximum forces are plotted
for each length in the upper curve of the Fig. 5.17 together with the experimentally obtained results
plotted in the lower curve. As already indicated in the Sec. 5.4.3 the delayed activation results in the
strength reduction for shorter specimens. This contrasts with the statistical size effect bringing about
strength reduction for longer specimens.

Obviously, the measured response must be interpreted as a combination of both effects. In order to
perform the decomposition of the measured size effect Rǫ(l) into the statistical size effect Rω(l) and the
effect of delayed activation Rδ(l) we introduce the corresponding size effect functions in the normalized
form:

ǫ(l) = Rǫ(l)/Rideal, ω(l) = Rω(l)/Rideal, δ(l) = Rδ(l)/Rideal, (5.16)
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Figure 5.16: Delayed activation densities and load deflection curves (experiment and simulation). Left:
zoom into the beginning of L-ε diagrams. Right: whole L-ε diagrams.

where Rideal stands for the maximum total force of a perfect bundle. Then, the limiting cases of the
statistical size effect ω(l) and of the delayed activation effect δ(l) are:

lim
l→0

ω(l) = 1, lim
l→∞

ω(l) = 0

lim
l→0

δ(l) = max
i∈F

Ri/Rideal, lim
l→∞

δ(l) = 1
. (5.17)
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Figure 5.17: Size effect observed in experiment and reverse size effect induced by delayed activation

While the limits of ω(l) are obvious from the weakest link model, the limits of δ(l) deserve more detailed
discussion. In the extreme case of an infinitely long specimen we would obtain immediate activation of
all filaments and achieve the maximum achievable strength Rideal with δ(∞) = 1. In the other extreme
of an infinitely small specimen we can only draw a conditional theoretical conclusion: Realizing that the
wave patterns considered in the Fig. 5.13 lead either to a finite activation range in cases (a), (b), (d) or
even to an infinite activation range in case (c) we can state that there exists a sufficiently small specimen
length Λ ≥ 0 so that for l ≤ Λ each filament fails before the next one gets activated. As a result, the
maximum total force is given as the maximum filament strength occurring in the bundle:

R(l) = max
i∈F

Ri for l ≤ Λ (5.18)



5.7 Conclusions 59

In other words, the bundle does not reach the state of a parallel load transmission, but acts as a zip
fastener being opened. Of course, this picture is only illustrative since the model does not reflect the
two and three-dimensional aspects of the material structure when l gets comparable with the filament
diameter.

With the constructed limits, the normalized measured size effect may be expressed in a multiplicative
form

ǫ(l) = ω(l) δ(l) (5.19)

with the qualitative plot shown in the Fig. 5.18. Again, this relation is only illustrative and neglects
other length-dependent effects discussed in this paper or even their interactions. Nevertheless, an im-
portant message is that at least in the case of multi-filament yarn, the size effect must be considered
in a complex sense: including both the sources of randomness affecting the filament strength and those
affecting the stiffness evolution of the bundle in a length-dependent manner.

R(l)
Rideal [−]

1

l[m]

ω(l)
δ(l)

ǫ(l)

Figure 5.18: Correspondence between the statistical size effect ω(l), influence of delayed activation δ(l)
and measured size effect ǫ(l)

5.7 Conclusions

The available fiber bundle models could not be used for modeling the response measured in the yarn
tensile test, because they impose practically unachievable assumptions of regular force transmission in
the clamping at the ends and do not capture the disorder in the structure of filaments in the bundle.
For this reason, we have developed a deterministic simplified computational model in order to include
additional sources of randomness affecting the evolution of the stiffness during the loading.

We have shown that the stiffness evolution in the early stages of loading influences the maximum
tensile force in the bundle. The model serves as a basis for a complex stochastic analysis of the complex
size effects including all mentioned effects employing the random field simulation technique. The modeling
technique and the evaluation of the complex size effect is described in detail in the following chapter 6.

Even without the full stochastic analysis, we may provide two important general results now:

• In qualitative terms, the numerical studies have shown, that the experimentally observed size effect
is underestimated for shorter samples. As a consequence, an extrapolation of the size effect curve
using the standard fiber bundle models from short-length experiments to long lengths would lead
to an overestimation of their strength.

• The traditional FBM’s cannot be used in order to derive the filament properties directly from the
experimental data. The correct procedure is shown in the following chapter 6 or in the paper by
Vořechovský and Chudoba (2004a).

As a final remark, we note that the phenomena of delayed activation may be present in any material
structure. The only question is at which length scale of material structure it appears. In case of multi-
filament yarns the length scale of delayed activation overlaps with the length scale of other sources of
randomness (varying strength and stiffness) so that it must be included in the evaluation of the true size
effect.
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Chapter 6

Random properties over the length
and size effect

Published in paper: Vořechovský and Chudoba (2004a)

The present study addresses the influence of variations in material properties along the multi-filament
yarn on the overall response in the tensile test. In previous chapter we have described the applied
model and studied the influence of scatter in material characteristics varying in the cross section with no
variations along the filaments. In particular, we analyzed the influence of varying cross sectional area,
filament length and delayed activation. Inclusion of these effects allowed us a better interpretation of
the experimental data, especially with respect to the gradual stiffness activation, post-peak behavior and
size effect. In the present paper, the length-related distributions of stiffness and strength are included by
applying the Monte Carlo type simulation of random fields. Such an approach allows us (1) to demonstrate
the strong need for including length scale to random fluctuation of strength along the filaments and (2)
to combine several sources of randomness in a single analysis so that their significance can be evaluated
from the tensile test response.

6.1 Introduction

The present work has arisen from the need to evaluate the variations of material properties in a AR-glass
multi-filament yarn used in the production of textile-reinforced concrete. The heterogeneous nature of
both the reinforcement and the matrix calls for thorough study of several sources of randomness that
must be accounted for simultaneously.

In the preceding chapter (Chudoba et al., 2004) we have analyzed the influence of variations in the
filament characteristics on the total response of a multi-filament bundle in the tensile test. The study
included variations in three parameters influencing the stiffness and stress evolution of a bundle during
the loading in different ways: filament diameter, filament length and delayed activation of individual
filaments. In spite of the differences in the form of the calculated response curve, the variations in the
three studied parameters have a common effect: the maximum tensile force gets reduced with a decreasing
yarn length, i.e. in an opposite direction of length dependency compared to the statistical size effect in the
classical sense (e.g. Weibull, 1939a; Bažant and Xi, 1991; Bažant and Planas, 1998; Bažant and Novák,
2000b).

The main result of the previous study was a detailed description of the influence of waviness especially
for short yarns on the maximum tensile force as an assumption for the correct interpretation of the tensile
test response. It has been shown that the gradual increase of stiffness in the beginning of loading may
be used to calibrate the activation density function and to evaluate its impact on the maximum tensile
force. In order to establish the correspondence between the delayed activation and the wave patterns
in the yarn (waviness) we have derived the activation density function for four idealized types of wave
patterns. This study helped us to describe the kind of waviness occurring in the studied AR-glass yarn.

An algorithm used for the stochastic analysis is based on the superposition of the filament response
(SFR) and provides an efficient tool for numerical tracing of the failure process in a material structure
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consisting of linear-elastic brittle components. Similar algorithm has been used to visualize damage
patterns in the anti-plane analysis of a two-phase composite Alzebdeh et al. (1998). The evaluation
of the tensile response based on the SFR procedure is inexpensive in comparison with the full finite
element computation and, therefore, very suitable for stochastic analyzes employing simulation of random
fields. Furthermore, in the case of the studied AR-glass yarns, the friction between filaments has been
neglected. This simplification has been justified by the post-peak amount of friction observed in the
tensile experiment and allowed us to use the global load sharing rule for stress redistribution upon a
filament failure (Phoenix, 1978a).

Up to this point, our study of variations in the filament parameters has been conducted on a one-at-
a-time basis, the random nature of the distribution could be disregarded. In the present study, we focus
on the effect of the spatial distribution of the material characteristics including their autocorrelation
structure, in particular the strength f t and E-modulus. In this case, we consider the randomness of
their distribution stationary random processes. In particular we use a Monte Carlo type simulation
method (Latin Hypercube Sampling) combined with orthogonal transformation of covariance matrix for
representation of random fluctuation of filament properties. For the repeated evaluation of the randomized
response we use the SFR algorithm (Chudoba et al., 2004).

By including both cross sectional and length-related variations in the modeling framework we are able
to capture the whole loading and failure process during the test, including the size effect. An independent
representation of the mentioned sources of randomness in the model allows us to focus the analysis on the
separate effects in the test one after the other. Following the deviced calibration procedure, the influence
of the considered sources of randomness on the overall response can be traced back in a systematic way.

In this chapter, we first present the applied method of capturing the size effect due to the strength
fluctuations along a single filament and relate the results to the local (classical) Weibull and non-local
Weibull strength-based models in Sec. 6.2. After that in Sec. 6.3 we analyze the size effect due to
the variations of the strength along the parallel system of filaments using both the stochastic numerical
simulations and the analytical and numerical models due to Daniels (1945). The effect of the randomized
stiffness along the bundle is added in Sec. 6.4. Finally, in Sec. 6.5 the stochastic model is applied to the
performed tests on AR-glass rovings with the demonstration of the systematic calibration procedure for
identifying the material parameters and their statistical characteristics.

6.2 Random strength along the filament

In the randomization of the material properties of the simulated yarn we distinguish the variability over
the filaments i ∈ F in the yarn sections and the variability of stiffness and strength parameters over the
material points of each filament Mi. In the latter case of the spatial randomization (along the filament)
it is necessary to account for distance-dependent autocorrelation of properties at two sampling points.
Further, in case of strength randomization it is particularly necessary to correctly reflect the tails of the
distribution in order to capture its minima.

In order to address these issues we analyze the correspondence between the two possible approaches
to spatial randomization of the strength:

• The filament is considered as a chain of independent random parts/sub-chains with a given length
and, therefore, can be simulated by independent identically distributed random variables. This
kind of spatial randomness is built in the derivation of the Weibull integral (6.1) for the failure
probability Pf .

• The other possible approach is to include autocorrelation along the filament and represent ran-
domness of material parameters by one-dimensional random field (random process). This can be
supported by the argument that there must exist some distance in which the fluctuation of param-
eters is correlated. This distance is independent of filament length and is a constant.

Due to the direct link between the strength randomization using the independent identical distributions
(IID) and the Weibull distribution of Pf with a known asymptotic behavior we will use it to verify the
ability of the stochastic model to cover the tails of the strength distribution.
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Figure 6.1: Weibull scaling

6.2.1 Spatial strength randomization using IID

Since we are dealing with strength of a fiber, we are interested particularly in the minima of strength
realization over the filament length. It is well known from the theory of extreme values of IID that there
are three and only three possible asymptotic (nondegenerate) limit distributions for minima (Fisher and
Tippett, 1928) satisfying the condition Fn(x) = [1− (1−F (x))n]. In order to avoid degeneration we look
for the linear transformations with constants an and bn (depending on nf ) such that the limit distributions
L(x) = lim

n→∞
Ln(anx + bn) = lim

n→∞
1 − [1 − Ln(anx + bn)]n. Since we are using the Weibull elemental

distribution the extreme values (minima) belong to the domain of attraction of Weibull distribution, and
the sequences of constants an and bn are known, see (e.g. Gnedenko, 1943; Gumbel, 1958; Castillo, 1988).

Using the weakest-link model together with the Weibull-type function for concentration of defects,
the probability of failure Pf at a given level of stress σ is expressed as the so-called Weibull integral
(Weibull, 1939a):

Pf (σ) = 1 − exp


−

∫

l

〈
σ

s0

〉m
dl

l0


 (6.1)

where the Malacuya brackets stand for positive part 〈•〉 = max(•, 0). For a given Weibull modulus (shape
parameter) m we have a length l0 with the corresponding scale parameter of random strength distribution
s0. In the case of a single filament, the stress σ is a positive constant so that we can rewrite the Eq.
(6.1) as − ln (1 − Pf ) = l/l0 (σ/s0)

m
. The strength level for a chosen level of Pf can now be expressed

as a function of the filament length l:

σ (l) = s0 [− ln (1 − Pf )]
1/m

(
l0
l

)1/m

. (6.2)

This size effect equation is a power law represented as a straight line in the double-log plot of l vs. σ
with the slope −1/m and passing through s0 at l0 (see Fig. 6.1d). The analytical determination of the
mean strength requires an integration over all possible lengths l and leads to an expression employing
the Gamma function Γ :

σ (l) = s0Γ (1 + 1/m)

(
l0
l

)1/m

(6.3)

The corresponding coefficient of variation (COV) of filament strength distribution is a constant indepen-
dent of the filament length given by the Weibull modulus m:

COV =

√
Γ (1 + 2/m)

Γ2 (1 + 1/m)
− 1. (6.4)

Now, in order to establish the correspondence with the strength randomization by IID we visualize the
important property of the Weibull distribution (Eq. 6.1): the scale parameter of the Weibull distribution
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can be adjusted by for any length l1 to deliver the same Pf as for the original reference length l0:

s1

s0
=

(
l0
l1

)1/m

(6.5)

The length l0 is sometimes referred to as “representative” but its choice is arbitrary so that we call it
“reference length” throughout the text.

The two chains displayed in Fig. 6.1b have the same length lf and different reference lengths l0 and
l1 with corresponding scale parameters s0 and s1 complying with Eq. (6.5). Probability density function
is denoted by PDF and cumulative density denoted by CDF. The diagram in Fig. 6.1a shows the scaled
strength distributions corresponding to l0 and l1. For a given stress level both distributions yield the
same value of Pf as shown in Fig. 6.1c.

As a consequence the size effect σ(l) obtained from Eq. (6.2) is identical for both reference lengths
l0, l1 and the scale parameters s0, s1, respectively. This can be seen on the example of the median size
effect (Pf = 0.5) displayed in double-logarithmic plot in the Fig. 6.1d. This demonstrates the inherent
feature of the Weibull distribution in the context of the weakest-link model already revealed in the Eq.
(6.5): it is arbitrarily scalable with respect to the reference length l0.

This feature must be kept in mind when assessing the applicability of the independent identically
distributed random variable simulations. Regarding the chain segments in Fig. 6.1b as sampling points
j ∈ M of an IID random variable simulation we may reproduce the size effect with the slope −1/m from
Fig. 6.1b numerically in the following way:

1. assign each segment j ∈ 〈1, nm = l/l0〉 random strength level f t
j following the distribution in the

Fig. 6.1a,

2. determine the filament strength by finding the minimum segment strength minj∈M(f t
j ),

3. repeat (1) and (2) in nsim number of simulations and evaluate the mean filament strength,

4. perform the step (3) for all the filament lengths l of interest.

Realizing that the reference length of one segment l1 is arbitrarily scalable, we may perform this random-
ization with arbitrary segment length, including very small l1 → 0 with the scaling parameter s1 → ∞
and still obtain the same size effect. However, such a randomization has nothing to do with the real
spatial distribution of strength along the fiber. Obviously, the strength scale must remain bounded for
short segments. Otherwise, it would be theoretically possible to measure an arbitrarily high strength
with very short specimens.

This discrepancy calls for the introduction of a length scale at which the assumption of IID at the
neighboring sampling points must be abandoned. The anticipated shape of the size effect law reflecting
the real spatial distribution of strength for short reference lengths is plotted in the Fig. 6.1d as a dashed
line.

6.2.2 Spatial strength randomization using stationary random process

The length scale gets conveniently introduced in the form of an autocorrelation structure of the strength
random field. From here on any applied random field will be stationary homogeneous and ergodic with
autocorrelation function:

Raa(∆d) = exp

[
−

( |∆d|
lρ

)p ]
(6.6)

where lρ is positive parameter called correlation length of the random field. With decreasing distance d a
stronger statistical correlation of a parameter in space is imposed. By setting the power p = 2 we construct
the so called squared exponential autocorrelation function or bell-shaped or Gaussian autocorrelation
function.

Advanced simulation techniques for the simulation of underlying random variables (Latin Hypercube
Sampling) are coupled with an efficient implementation of orthogonal transformation of covariance matrix
(see e.g. Novák et al., 2000; Olsson and Sandberg, 2002; Vořechovský and Novák, 2003a) needed for
discrete representation of random fields (vectors). Latin Hypercube Sampling method is usually used
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for cheap estimation of first statistical moments of response by means of simulations. This Monte Carlo
type method has been tested to converge to correct results for extremes of random variables and the
required number of simulations needed to capture the statistics of extremes accurately has been found,
too (Vořechovský, 2004a).

A method by Vořechovský (2004b) with the possibility of cross-correlated random fields has been ap-
plied to obtain material parameters reflecting the input probability distributions. For accurate generation
of uncorrelated Gaussian random variables needed for the expansion of a field the optimization technique
Simulated annealing has been used (Vořechovský and Novák, 2002). A comparison of efficiency of differ-
ent random variable simulation techniques needed for expansion of stochastic fields with a detailed error
assessment has recently been published by Vořechovský and Novák (2003a).

The algorithm for the evaluation of the filament strength remains the same as described in the previous
section, except for the randomization of the strength using the LHS technique in order to capture its
extremes properly. Examples of the simulated random strength field realizations are shown later in the
paper in the Fig. 6.6 for three filament lengths.

Since the most important value of the random strength process is its global minimum throughout
the filament/process length, we used very dense discretization of the field. In particular 15 discretization
points were used within the autocorrelation length. Clearly, this imposes a limit for modeling of filaments,
let alone yarns, because such dense grids cannot be handled by today’s computers in spite of their fast
development. Fortunately, such detailed modeling of minima of long process is not necessary if we know
its asymptotic properties (as will be shown later).

The calculated mean size effect curve (mean minima vs. length) qualitatively follows the dashed
line shown in Fig. 6.1d. While the right asymptote converges to the size effect obtained from the
IID randomization, the left asymptote becomes constant at the level of the basic (elemental) strength
distribution. This means that for very long filaments (l ≫ lρ), the influence of autocorrelation between
neighboring points becomes negligible and the extremes of the field become identical to extremes of
IID. On the other hand, for very short filaments (l ≪ lρ) the spatial fluctuations in strength become
insignificant, the random strength field is replaced by one random variable.

The transition zone between the two asymptotes is of special interest. It is an occasional practice
(e.g. Bažant et al., 2004c) to avoid the more expensive random field simulations by defining the mean
size effect as a bilinear curve consisting of the two described asymptotes with an intersection at [lρ, µ0],
see chapter 10. In such an approach the Weibull distributed IID randomization (with COV given by the
Weibull modulus in Eq. (6.4)) is performed with the chain segments of the length l0. Random elements
larger than l0 (considered a known material parameter) are assigned with random mean strength scaled
according to Eq. (6.5). However, elements smaller than l0 are assigned with the mean µ0 being equal to
the mean strength of the filament of zero length and also being the mean corresponding to the length l0. In
other words, the Weibull power law gets limited by a constant level of mean strength for elements smaller
than l0. Then, the mean strength of a filament with the length l = l0 lies exactly on the intersection of
the two introduced asymptotes, see Fig. 6.1d. While this approach gives a good approximation of the
field extremes (minima) for long filaments (large structures), it obviously leads to an overestimation of
the mean strength for lengths l ≈ lρ (see Fig. 6.4). The reason is that the spatial correlation is too high
and strongly influences the random strength field.

In order to introduce the statistical length scale in the Weibull power law for the mean size effect, we

modify the Eq. (6.2) by introducing the length-dependent function f(l) as a replacement of (l0/l)
(1/m)

in the following form

σ (l) = s0 [− ln (1 − Pf )]
1/m

f(l) (6.7)

Here we preserve the approximation of the minima by Weibull distribution (Pf = 1−exp[−σ/(s0f(l))]m).
The coefficient of variation of Weibull distribution depends on m (similarly to the Weibull IID case) and
is length-independent. Therefore, it is again given by the Eq. (6.4).

The means size effect can be analogically to Eq. (6.3) as:

σ (l) = s0 Γ (1 + 1/m) f(l) (6.8)

The calculated mean of minima of one Weibull random process (single filament) covering the whole
range of lengths is plotted in the upper curve of Fig. 6.4. The three introduced zones of the statistical
size effect are denoted: single random variable (l/lρ → 0), autocorrelated random field (l/lρ ≈ 1) and the
set of independent identically distributed random variables (l/lρ → ∞).
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We suggest to approximate the numerically obtained size effect by Eq. (6.7) with f(l) expressed by
one of the following formulas:

f (l) =

(
l

lρ
+

lρ
lρ + l

)−1/m

(6.9)

or

f (l) =

(
lρ

lρ + l

)1/m

(6.10)

This approach is done intuitively by asymptotic matching (left and right asymptotes are advocated
above by the reasoning; and for the transitional sizes we use a smooth “interpolation”). The numerically
obtained mean of minima lies in between these two approximations.

It should be mentioned, that another commonly applied way of introducing the length scale into the
framework of the Weibull integral of Pf is to introduce the dependence between the sampling points of a
strength randomization using IID indirectly by averaging the instantaneous stresses in the neighborhood
of a material point (called non-local Weibull integral), see e.g. (Bažant and Xi, 1991; Bažant and Novák,
2000b). However, in our case of a uni-axial stress state and elastic-brittle filaments, the stress level
is constant along the filament so that no averaging can be performed. In our opinion, this reveals an
inconsistency in combining the stress averaging and the Weibull form of the Pf in order to introduce
some kind of spatial correlation. The problem is that the key concept in deriving the Weibull integral
of Pf is the independency of the failure probability Pf,1 of a subelement on its neighbors (survival
probabilities are multiplied), see Weibull (1939a). This approach misuses the length scale introduced in
phenomenological terms to mimic autocorrelation in the process zone, see section 7.3.1 p. 85. However,
it does not necessarily reflect the statistical length scale associated with material randomness.

The nonlocal averaging is nowadays widely used as a limiter of spurious strain localization (e.g.
Bažant and Planas, 1998). It proved itself to be a strong tool for regularization of ill-posed problems.
But the statistical non-locality introduced by averaging of stresses entering Weibull integral (Bažant
and Xi, 1991; Bažant and Novák, 2000b) aims at introducing the spatial correlation (dependence) of
neighbor stresses. However, the approach (see section 7.3.1) may become inconsistent with the derivation
of integral, which is local by definition. Moreover, it brings the length scale driven by deterministic
nature (deterministic characteristic length) which generally may differ from the statistical length caused
by material randomness. The argument is that statistical description of material should not depend on
structural geometry or loading conditions.

6.3 Random strength along filaments within the bundle

Having demonstrated the correspondence between the stochastic simulation and the classical Weibull
theory we proceed in a similar way in the validation of the stochastic model for the bundle of nf parallel
filaments. Again, we shall first focus on the randomization of strength using both the random process and
the independent identically distributed random variables simulations, in order to allow for the comparison
with the classical model of nf parallel fibers formulated by Daniels (1945). The comparison will be
performed by means of the size effect both for the numerical (sec. 6.3.1) and for the asymptotic analytical
(sec. 6.3.2) forms of the Daniels’s model for the distribution of bundle strength Q∗

n.

In the stochastic simulations, we shall exploit the efficiency of the explicit response tracing algorithm
based on the superposition of the filament response (SFR) described in the previous chapter or by
Chudoba, Vořechovský, and Konrad (2004).

6.3.1 Comparison with Daniels’s numerical recursion

Daniels (1945) considered a system of nf independent parallel fibers stretched between two clamps with
equal load sharing. Filaments i ∈ F share the identical distribution function of strength FX (x) =
Fi (x) = Pi (f t ≤ x/A). Besides the distribution, the filaments have also equal cross sectional area. The
maximum tensile force of a filament given as R(θ) = Af t(θ) (θ stands for random nature) gets randomized
for the individual filaments: R(i) and ordered (R(i) ≤ R(i+1)) so that the marginal probability distribution
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function of R(k) can be obtained in terms of fX(x) and FX(x) as (see e.g. Gumbel, 1958):

fi (xi) = i

(
nf

i

)
[FX (xi)]

i−1
[1 − FX (xi)]

nf−i
fX (xi) (6.11)

The maximum tensile force of the bundle is given by:

Q∗
n = max

1≤i≤nf

(
R(i) ·

nf − i + 1

nf

)
(6.12)

Here, the yarn load is measured in terms of load per filament, i.e. 1/nf times the total load on the
system. The distribution of Q∗

n was investigated by Daniels (1945) under the assumption that filament
strengths are independent and identically distributed random variables with known common distribution
function. Daniels (1945) showed the distribution function of the maximum tensile force of the bundle
with (IID) filaments to be:

Gn (x) = P (Q∗
n ≤ x) =

nf∑

i=1

(−1)
i+1

(
nf

i

)
[FX (x)]

i
Gn−i

(
nfx

nf − i

)
(6.13)

where G0 (x) ≡ 1 and G1 (x) = FX (x). The distribution functions Gn(x) obtained from this recursive
formula for nf = 1, 2, 4, 8, 16 filaments are shown as dotted curves in the top diagram of the Fig. 6.2 for
forces higher than 700 N for better legibility.
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Figure 6.2: Top: Gradual change of the filament strength distribution from Weibull to asymptotically
Gaussian for bundles with growing number of filaments nf (in the circle). Exact results of Daniels’s
recursion (6.13) for small nf is compared to numerical results by Monte Carlo simulation using the SFR
algorithm Bottom: Samples of the whole L-D diagrams obtained by the SFR algorithm for selected
numbers of filaments nf in the yarn. Yarns are sketched and the mean value of strength ± standard
deviation is marked by a circle with errorbars.

In the same Figure we show the results of the stochastic simulation using the IID randomization of
the filament strength for the bundles with up to 800 filaments. As plotting positions of the simulations
we use i/(nsim+1) (for reasons see Gumbel (1958, sec. 1.2.6)). It can be seen that the agreement between
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the simulation and the recursive Daniels’s formula is perfect. Nevertheless, the determination of failure
probabilities at the low level of stress using Monte-Carlo method requires large number of simulations.
On the other hand, the recursive formula does not require any additional computational effort for small
probabilities. However, as nf becomes larger than 32 the recursion becomes very demanding and then
the only way to estimate the probability distribution is the use stochastic simulation. In addition, the
stochastic simulation combined with the SFR algorithm delivers not only the strength distribution but
is also able to trace the whole loading process as shown in the three diagrams at the bottom of the Fig.
6.2.

6.3.2 Comparison with Daniels’s and Smith’s asymptotic result

For the verification of the asymptotic convergence of stochastic simulation with independent identically
distributed random filament strength we shall exploit the fact that for nf → ∞ the distribution function
Gn(x) converges to normal distribution (Daniels, 1945). In particular, Daniels obtained positive constants
µ∗ and σ∗ such that

√
nf (Q∗

n − µ∗)/σ∗ tends to a normal random variable with zero mean and unit
standard deviation. In other words, for large nf the distribution function of the yarn strength, Gn (x)
can be approximated as

Gn (x) = P (Q∗
n ≤ x) ≈ Φ

(
x − µ∗

σ∗

√
nf

)
(6.14)

where Φ(·) stands for standard normal cumulative density. The parameters of distribution (the mean
value and variance) are: µ∗ = E[Q∗

n] = x0 [1 − F (x0)], σ∗2/nf = D[Q∗
n] = x2

0F (x0) [1 − F (x0)]. The
result is valid under the conditions that a number x0 maximizing the function µ(y) = y[1 − F (y)] is
unique and positive and limy→∞ µ(y) = 0, so µ∗ = µ(x0) = sup[µ(y)], y ≥ 0.

In the case of Weibull strength distribution of each filament FX(x) = 1− exp(−(x/s)m) (zero thresh-
old), where s is the scale parameter and m the Weibull modulus; the parameters can be easily obtained
as:

x0 = s · m−1/m

µ∗ = s · m−1/m · e−1/m

σ∗ = s · m−1/m ·
√

e−1/m
[
1 − e−1/m

] (6.15)

In this case the result of asymptotic normality of strength Q∗
n is valid in the central region of the

distribution. Clearly, if the strength of filaments is Weibull (limited from left by a zero threshold) the
tail of Q∗

n cannot become Gaussian (Q∗
n must have a Weibull tail). However, the distance from the mean

value (central part) to the tail measured in the number of standard deviations gets so large with high nf

that the tail gets practically unimportant.

Taking a closer look at the asymptote one can observe slowness of convergence (as n
−1/6
f ). It should

be pointed out that Gn(x) is quite straight on normal probability papers even for small nf so in that
respect the approximation is good. Also the variance of numerically obtained Gn(x) is very close to that
predicted by Daniels’s result. However, the error in mean value (shift) disappears extremely slowly with
growing nf . The reason is that for small number of filaments nf the maximum Q∗

n can be reached at
wide range of y, not just x0. As n → ∞ the action point y shrinks from the wide range to x0 only.

Smith (1982) found a way to eliminate the gap between the real Gn(x) and Daniels’s normal approx-
imation by adjusting µ∗ to µ∗∗ using the actual (finite) number of filaments nf in the following way

µ⋆⋆ = µ⋆⋆ (nf ) = µ⋆ + n
−2/3
f b⋆λ (6.16)

For full derivation see Smith (1982). In case of Weibull F (x) the parameter b∗ = s ·m−(1/m+1/3)e−1/(3m).
Best results are obtained for the coefficient λ = 0.996. The error of approximation is then at most
O(n−1/3(̇ log nf )2) which is an excellent improvement, mainly for small numbers of filaments in the yarn.
For nf → ∞ the Smith’s prediction µ⋆⋆ converges to Daniels’s µ⋆.

The strength randomization of 1600 filaments by IID is displayed both in the linear plot and normal
probability paper in the Fig. 6.3 and its best fit by a Gaussian distribution is compared to Daniels’s and
Smith’s analytical results respectively. In our case the Weibull modulus is m

.
= 4.54, value typical for

glass or polymer fibers (COVft = 0.25). The scale parameter s = 0.727N corresponds to the maximum
force of one filament and results in the mean filament strength µ0 for reference length l0. For the example
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of a yarn with nf = 1600 filaments the mean value of normal approximation of maximal bundle force
predicted by Daniels is (nf · µ⋆) = 668.7N and Smith’s refined value is (nf · µ⋆⋆

1600) = 672.1N. Our
numerical simulation by Monte Carlo gives estimation of the mean µ = 672.7N so the Smith’s refinement
is an excellent performer. The standard deviation of the yarn strength is numerically estimated to be equal
to 9.674 N and Daniels’s formula multiplied by nf gives the value of 8.297N. For the sake of comparison
of results, plots of Daniels’s approximation, Smiths’s refinement and the Monte Carlo simulations on a
probability paper are plotted in Fig. 6.3. The analytical formula due to Daniels (1945) results in mean

0

0.2

0.4

0.6

0.8

1

0

2
1

-1
-2

0.5

-0.5

0.5

0.95
0.99

0.01
0.05

0.8

0.2

0.999

0.001

630 640 650 660 670 680 690 700 710

0

2

1

-1

-2

-3

-4

3Simulated data

Best fit

re
d
u
ce

d
 v

ar
ia

te

Daniels µ⋆

Smith µ⋆⋆

Yarn strength Q⋆
1600 · nf [N]

P
(Q

⋆ 1
6
0
0
· n

f
≤

x
)

Figure 6.3: Comparison of simulated data, Daniels’s and Smith’s normal approximation for a yarn with
nf = 1600 filaments with independent identically distributed random strength in linear plot and normal
probability paper.

strength shifted far from the exact one for small bundles.

6.3.3 Size effect of bundles for increasing number of filaments nf

In the stochastic simulations, we used the response tracing algorithm based on the superposition of the
filament response (SFR) described in the previous paper by Chudoba et al. (2004) together with simulation
of random process needed for spatial randomization of strength. From here on we will use the abbreviation
MSEC for mean size effect curve (a curve in the bi-logarithmic plot of size vs. mean strength). In Fig.
6.4 we have plotted the MSEC for various number of filaments in the randomized bundle. The right scale
in the Fig. (6.4) shows the efficiency of the bundle depending on the number of filaments nf and the yarn
length l. It looks like the parallel curves are only shifted downwards with increasing number of filaments.
The intersection of the horizontal asymptote with the inclined IID asymptote seems to happen always at
the autocorrelation length of lρ, so the autocorrelation length propagates to bundles unchanged causing
curvature of MSEC compared to classical Weibull IID case (straight line). This is an important property
because it indicates that the size effect can be expressed as a product of the length effect with the effect
of increasing number of filaments.

Indeed, with regard to the Daniels’s assumption of common strength distribution of independent fila-
ments that applies for any length we may express the Weibull bundle strength per filament in dependence
on l and nf using the Eq. (6.16) as

µ⋆⋆
I (nf , l) = µ⋆⋆(nf )f(l). (6.17)

In other words both effects can be evaluated independently using either analytical formulation or stochas-
tic SFR simulation. Subsequently, they can be composed using Eq. (6.17) into a combined size effect
surface. An example of such a surface constructed with f(l) of the form (6.10) and with bundle efficiency
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µ⋆⋆(nf ) calculated numerically for a short bundle with the SFR algorithm is plotted in Fig. 6.5. Obvi-
ously, with nf → ∞ the surface (6.17) reduces to the curve µ⋆f(l). This demonstrates that the mean
strength is asymptotically independent of the number of filaments nf .

Regarding the strength variability of the yarn we note that COV of strength depends on Weibull
modulus m irrespective the length. The Fig. (6.4) presents effective values of the Weibull modulus
mCOV computed for different number of filaments from COV by solving the formula (6.4). Of course,
only for the case of a single-filament-bundle the value mCOV really represents a shape parameter of
Weibull strength distribution. On the other hand, COV decreases for growing nf with the rate 1/

√
nf .

To summarize, while the weakest-link model (series coupling & extending in length) leads to the decrease
of mean and constant COV, the yarn (parallel coupling & increasing nf ) results in asymptotically constant
mean and fast decay of COV.

The last question is the distribution of the strength. In case of a single filament, the PDF of Q∗
1

remains Weibull. With increasing nf the probability distribution of Q∗
n gradually changes to Gaussian

(Daniels, 1945), see Fig. 6.5.

6.4 Random stiffness along the bundle

6.4.1 Asymptotic behavior with random stiffness

The results obtained for bundles with random filament strength are not sufficient to describe the size
effect of real bundles, where also the stiffness filament stiffness is variable. The original Daniels’s results
(both, the numerical recursion and asymptotic normality of strength) are derived under the assumption
of equal (deterministic) stiffness.

The asymptotic normality of the distribution of the fiber bundle strength has been demonstrated
under less strict assumptions than those used by Daniels (see Hohenbichler, 1983, for a review). It has
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been shown that the asymptotic normality is also valid under certain weak dependencies between filament
strengths and for independent filaments but with general force-displacement relations.

Even though the asymptotic distribution is known for many cases, this result is not always a good
approximation for small to medium-size yarns. This is because the convergence to the asymptotic distri-
bution is very slow. Based on the procedure of Hohenbichler and Rackwitz (1983) the exact distribution
can be determined from the system reliability results. The authors used transformation of two pairs of
input random variables (filament strength f t and a corresponding peak strain) into standardized space of
uncorrelated normal variables and solved the reliability using First Order Reliability Method (FORM).

When the stiffness is random together with random strength (but linear stress-strain law until sudden
failure is kept) the total force L(ε) as a function of deformation is:

L (ε) =
∑

Fi (ε)

where the summation is over all unbroken filaments from the set i ∈ F . Strength of the yarn is

Q∗
n = max

ε
L (ε) = max

ε

∑
Fi (ε) (6.18)

The distribution function of Q∗
n is

Gn (x) = P
(
max

ε

∑
Fi (ε) ≤ x

)
= P

(
∩
ε

∣∣∣
∑

Fi (ε) − x ≤ 0
)

(6.19)

and from the reliability bound of parallel systems we can write the inequality

Gn (x) ≤ min
ε

[
P

(∑
Fi (ε) − x ≤ 0

)]
(6.20)

The maximum value of F (ε) occurs in peak points of the filaments so the intersection in the formula
is therefore over nf events.
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Let the ordered deformations of fiber failures be a set of random variables: εf
(1) ≤ εf

(2) ≤ . . . εf
(nf ).

The total yarn force at ε = εf
(k) is

L
(
εf
(k)

)
=

n∑

i=k

Fi

(
εf
(k)

)
=

n∑

i=k

εf
(k)

R(i)

εf
(i)

(6.21)

Let us consider F(i) the strength of filament with maximal strain ε(i). The yarn strength is then

Q∗
n = max

1≤k≤n
L

(
εf
(k)

)
= max

1≤k≤n

n∑

i=k

εf
(k)

R(i)

εf
(i)

(6.22)

(which simplifies to formula (6.12) for equal stiffness). The distribution function of Q∗
n is

Gn (x) = P

[
n
∩

k=1

{
n∑

i=k

εf
(k)

R(i)

εf
(i)

− x ≤ 0

}]
(6.23)

Unfortunately, in our case we have also the activation deformation of each filament a random variable
distributed according to the “activation density”. (ε0

i activation strain) and we will seek the distribution
numerically.

In our model we have the set of nf triples - basic random variables
(
R1, ε

0
1, ε

f
1

)
,

(
R2, ε

0
2, ε

f
2

)
, . . . ,

(
Rn, ε0

n, εf
n

)
. The random variables Ri, ε0

i and εf
i within each triple may be dependent. In the expression

for Gn (x) the basic random variables have been ordered as
(
R(1), ε

0
(1), ε

f
(1)

)
, . . . ,

(
R(n), ε

0
(n), ε

f
(n)

)
and

these triples are no longer independent. We may perform the Rosenblatt transformation to make them
independent.

6.4.2 Comparison between the effect of random strength and stiffness

The numerical study using the randomized E-modulus has been performed with nf variate uncorrelated
fields. In order to demonstrate the differences with respect to the strength-induced size effect, the strength
randomization is included as well. The parameters of applied normal distributions of randomized E-
modulus and f t are summarized by Eq. (6.27) and Eq. (6.28). The spatial randomization has been
performed with common squared-exponential autocorrelation function (6.6) both for E-modulus and for
strength f t.

Similarly to the Part I the yarn performance is illustrated qualitatively using the load-strain diagram
on a yarn with 16 filaments only. The real number of filaments in the yarn is approximately 100-times
higher. In order to have the resulting forces in the figures comparable to the real values, the forces are
given in cN. Of course, the true maximum force of 1600 filament bundle cannot be obtained by scaling
up the results from the small bundle. Nevertheless, the small bundle can be effectively used to study the
effects of random stiffness, strength and their interactions with varying length. The simulation of real
yarns is postponed to the Sec. 6.5.2.

In particular, two 16-variate processes for the two random parameters E and f t were simulated as
the 16-variate Gaussian random process discretized using vectors with the m number of material points
j ∈ Mi for each filament i, i = 1, . . . , 16. The simulated random process for three ratios between the
nominal length and the autocorrelation length l/lρ is shown in the first row of the Fig. 6.6. The left scale
in the first row shows values of the tensile strength f t while the right hand scale presents values of the
Young’s modulus. The nsim = 50 realizations of the random field is plotted representing the properties
of the first filament in a bundle of 16 (filaments). Due to the identical autocorrelation structure the
realizations of E and f t are qualitatively similar. For the purpose of this study, 50 bundle realizations
(simulations) have been performed, which might not be sufficient for real simulation of statistics, especially
when higher statistical moments of the response (or even reliability) are targeted. We must keep in mind
that nsim must be significantly increased to ensure that the samples represent high-dimensional space
of independent Gaussian random variables needed for expansion of the fields in case of long specimens
(l/lρ → ∞). Besides the calculated response load-strain curves for random strength f t and E-modulus,
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the Fig. 6.6 also shows the mean value and standard deviation of the resulting maximum tensile force
together with the sketch of corresponding PDF.

The results obtained with the randomized strength are shown in the second row of the Fig. 6.6 and
demonstrate once again the reduction of maximum tensile force with an increasing nominal length l.
Except of the reduction of the maximum load we observe the reduced scatter in the response for long
samples which is a classical feature of the statistical size effect.
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Figure 6.6: Comparison of the three random fields with different correlation lengths and load deflection
diagrams of 16 filament yarn with fields applied to f t and E.

All three chosen ratios between the process length and its autocorrelation length fall into the transition
zone (l/lρ ∈ 〈1, 100〉) between the random variable case and the IID case for each filament.

The effect of the fluctuating E-modulus described by 16-variate vector random field (16 uncorrelated
random processes) is shown in the third row of the Fig. 6.6. The response curves reveal a scatter in
stiffness that gets amplified for short yarns (or shorter correlation lengths) and that vanishes for long
yarns. The explanation for this is obvious: realizing that the stiffness of the i-th filament with nm number
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of discretization points gets computed as

K(i) =




m∑

j=1

K−1
(i),j




−1

=

m∏
j=1

K(i),j

m∑
s=1

m∏
j=1;j 6=s

K(i),j

(6.24)

and the stiffness of the bundle with nf filaments is obtained as

K =

n∑

i=1

K(i) =




n∑

i=1

m∏
j=1

K(i),j

m∑
s=1

m∏
j=1;j 6=s

K(i),j


 (6.25)

we notice that the fluctuations get smeared for long filaments (l/lρ → ∞) and overall stiffness converges
to the value K∞ = nfµEA/l.

Regarding the ultimate strength, the short yarns fail at lower forces, because of the irregular stress
distribution across the yarn during the loading. Filaments with lower effective stiffness accomplish only a
reduced contribution to the overall force transmission at the peak load and reach their maximum force only
later in the post-peak region. This effect gets amplified for specimens of the length l ≪ lρ with constant
stiffness along the filament. Then, the random field can be reduced to random variable assigning constant
stiffness to each filament in the bundle. This case furnishes the lower bound on strength reduction due
to the scatter in stiffness. The qualitative form of the size effect curve with (i) both E-modulus and f t

random is compared to (ii) case with random f t in Fig. 6.7 bottom.
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strength. Bottom: Size effect curves due to the scatter in strength and scatter in both stiffness and
strength

The relative amount of strength reduction rE(l) due to the random stiffness for varying specimen
length may be approximately expressed using the function:

rE (l) = kE


1 +

lρ
1

l
+ Lp


 , Lp = lρ

kE

1 − kE
(6.26)

where kE is the ratio between short yarn (l ≪ lρ) strength with (i) both E and f t random and (ii)
random f t. This suggested function has horizontal asymptotes and defines smooth transition between
kE for short yarns and 1 for long yarns, see Fig. 6.7 top.
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6.5 Application to the experiment

Putting the results from the preceding and from the present chapter together allows us to account
for all the considered sources of disorder in the yarn and in the distortions of the test setup within a
single computational model. With the stochastic simulation framework at hand we now proceed with
the simulation of the tensile test on yarns and filaments with varied length in order to quantify the
significance of the included sources of randomness in a real material.

6.5.1 Testing of single filament

The most natural way of identifying the distributions of the filament strength and stiffness is to test
single filaments with varied length. These experiments have been performed by carefully extracting
single filaments from the AR-glass 2400 tex yarns on the testing machine (Fafegraph ME).

However, the tensile test on AR-glass filament has turned out infeasible as far as the measured strength
was concerned. The problem was that the measured maximum forces were obviously distorted due to the
damage of the glass in the clamps as documented by the big portion of the specimens that broke in the
vicinity of the clamps. As a result, lower strength has been measured than actually available.

Nevertheless, some information could be extracted from the test results since the positions of break
(either free length, or clamp) have been recorded for all specimens. Surprisingly enough, no size effect
could be observed on the filaments that broke in the free length with the lengths l = 0.01, 0.018, 0.030,
0.055, 0.10 m. The explanation for this has been delivered later by the simulations of the bundle tests.
As documented further, all the tested lengths fall into the range l < lρ (see Fig. 6.9) with negligible
fluctuations of strength and, consequently, without significant size effect.

Fortunately, the measurement of stiffness provided reliable data, especially thanks to the careful
documentation of the association between the specimens and the measured response and also of the
original positioning of specimens along the filament. Due to the large differences between the filament
diameters in the bundle but low fluctuations over its length, it turned out to be very important to quantify
the stiffness separately for each group of specimens stemming from the same filament. We appointed the
scatter in stiffness solely to the E-modulus. The cross sectional area has been considered constant and
has been set to the mean value of diameter determined from the micrographs of the yarn cross section
(see Fig. 5.8, page 52).

µE = 70 GPa, σE = 10.5 GPa, (COVE = 15%)
filament diameter (circular cross section) = 26 µm

(6.27)

Clearly, a good testing of isolated filaments is desirable for its statistical characterization, but the
design of a reliable testing set up is by no means trivial. Except of the mentioned distortions, also
problems with capturing the influence of coating and of the pre-selection of “better” (stronger) specimens
during their extraction from the bundle would have to be addressed.

6.5.2 Tensile test on a bundle

Because of the difficulties with determining f t using the tensile test on filament, we had to identify the
sought distributions with the help of the stochastic simulation of the tests on bundles. Before starting with
the calibration procedure we summarize the types of influence of the investigated sources of randomness
on the load-deformation response for increasing specimen length.

The Table 6.1 shows the tendencies in the measured load-deformation curve for increasing nominal
length l for a finite level of scatter in the material parameters. For example, the first row indicates
that the observed gradual increase of stiffness in the beginning of loading is affected only by the relative
differences in the filament lengths and that it diminishes for longer specimens. As a consequence, this
effect can be considered in an isolated way and the distribution of ε0

(i) can be calibrated separately from
the other parameters as has been done in the preceding chapter or paper due to Chudoba, Vořechovský,
and Konrad (2004).

Using the distributions of ε0
(i) obtained for the studied lengths in Part I the gradual growth of stiffness

can be reproduced as shown there in the Fig. 16. For the sake of simplicity, ε0 has not been randomized.
Instead of this, the inverse cumulative activation density function has been used to deterministically
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σ(l(i)) σ(A(i)) σ(ε0
(i)) σ(f t

(i),j) σ(E(i),j)

A(l): delayed activation (.) (.) (−) (.) (.)
B(l): max. tensile force (+) (.) (+) (−) (+)
C(l): scatter in tensile force (.) (.) (−) (−) (−)
D(l): stiffness (+) (.) (+) (.) (.)
E(l): scatter in stiffness (−) (.) (−) (.) (−)
F (l): post-peak range (−) (.) (−) (−) (−)

Table 6.1: Influence of randomness in material parameters on the measured load-deformation diagrams
with increasing length

assign the appropriate fraction of activation strain to the corresponding fraction of filaments. In this
way, only the mean load-deformation curve gets reproduced but not the variations in different specimens.
In other words, there is no scatter in the observed delayed activation denoted as A in Table 6.1. This
little methodological transgression can be accepted in the light of the overall simulation concept and does
not reduce the generality of the present modeling strategy.

As demonstrated in previous chapter, the effect of random l(i) and A(i) can be neglected so that we
may focus on the calibration of the last two parameters listed in Fig. 6.1 – E(i)j and f t

(i). The results
of the simulation are shown in Fig. 6.8 without and with the delayed activation. Both filament tensile
strength f t and stiffness in form of Young’s modulus E were represented by Weibull distributed random
process with the autocorrelation structure given in Eq. 6.6. These two properties were assumed mutually
independent and independency was assumed also among filaments. The following values were found to
best fit the experiments:

µft = 1.25 GPa, σft = 0.3125 GPa, (COVft = 25%) (6.28)
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Figure 6.8: Comparison of numerical simulations with experiments (red). Left: Simulations without
delayed activation, randomized stiffness and strength. Diagram computed with DA plotted with dashed
line. Right: Simulations with included delayed activation, randomized stiffness and strength. Diagrams
computed with mean values plotted with dashed line.

The correspondence between the size effect curves obtained in previous sections and the complex size
effect observed in the tensile test is shown in Fig. 6.9. The experimental curve has been reproduced by
the stochastic model including the influence of all three random properties simultaneously: E, f t and ε0.
In order to show the influence of randomness of each parameter separately, the size effect curves have
been plotted for isolated randomizations of (ε0), (f t) and (f t, E)

In addition to the size effect curves obtained from the random process simulations Fig. 6.9 also shows
the size effect obtained with the Daniels’s and Smith’s models calculated with nf = 1600. Assuming that
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Figure 6.9: Size effect curves obtained numerically for the randomized f t, ε0, ft together with E and
all three parameters simultaneously.

the filaments follow the Weibull scaling we may construct the bundle power law as a product of Daniels’s
prediction of the mean total strength specified in Eq. (6.15) with the Weibull scaling f(l) = (l0/l)1/m

µ⋆ (l) = µ⋆f(l) = µ⋆

(
l0
l

)1/m

= s0 · m−1/m · e−1/m

(
l0
l

)1/m

. (6.29)

The values s0 and l0 represent the reference scale and length on the Weibull size-effect line for one
filament. The obtained Weibull modulus m = 4.54 matches with the size effect measured and calculated
for long specimens (l ≫ lρ). We remark, that this value of m falls into the realistic range m ∈ 〈4 − 6〉 for
glass fibers.

Regarding the short specimens, the measured total bundle strength departs significantly from the
Weibull-type power law. This fits into our arguments presented in Sec. 6.3 concerning the existence of the
statistical length-scale (autocorrelation structure) of the bundle. The computation with random strength
(6.28) and stiffness (6.27) (no delayed activation) produces constant size effect for short specimens, i.e.
(m = ∞).

It remains to discuss the reduction of the total strength observed in the experiment for short specimens
(30mm). As discussed earlier, this reduction may be caused either by the scatter of stiffness or by the
delayed activation. Fortunately, both the distributions of stiffness and of the delayed activation are known
from the previous analyzes. The distribution of stiffness given in Eq. (6.27) could be calibrated using
the tensile tests on single filaments and the delayed activation could be calibrated from the evolution of
stiffness in the beginning of the loading (Part I, Fig. 16). The calculation with these distributions shows
that we are able to reproduce the reduction of the total strength. Moreover, the contributions to the
strength reduction may be quantified separately for the scatter in stiffness and for the delayed activation.

The reduction due to the scatter in stiffness remains constant for short specimens l ≪ lρ. Its contri-
bution has been quantified for the performed tests as high as kE = 0.957 (see Eq. (6.26)). The reduction
due to delayed activation gets intensified for short specimens. In other words, the disorder in the yarn
structure dominates the strength reduction for very short specimens.
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6.5.3 Systematic identification of the distribution parameters

Based on the experience with fitting the performed tests we are able to suggest a systematic approach
for deriving the statistical characteristics of the multi-filament yarn. The previously described procedure
represents the most difficult case including the delayed activation and may be simplified for other types
of yarns for which this effect is less pronounced (e.g. polypropylene yarns).

The crucial problem in planning the experimental sequence for constructing the size effect curve is
the estimation of the autocorrelation length lρ. A possible strategy to estimate the right asymptote of
the size effect law is to perform replicated tests on at least two selected lengths l ≫ lρ and to determine
the slope (1/mslope) of the line connecting the obtained mean strength values in double logarithmic plot.

The determination of the left asymptote requires the test of short bundles l ≪ lρ usually exhibiting a
high amount of experimental distortions (irregular load transmission from the clamps to the filaments).
Due to these difficulties it is more effective to test single filaments extracted from the bundle. The statis-
tical data analysis allows us to determine the Weibull modulus mscatter from Eq. (6.4). We recommend
to test the filaments for at least two lengths in order to ensure that the condition l ≪ lρ applies for both,
i.e. that the estimate of lρ is realistic and the mean strength of both lengths is equal. Of course, the
modulus mscatter obtained for each length must be equal.

Now, the condition mslope = mscatter may be used to verify that the two bundle lengths used to
determine the right asymptote slope fulfill the condition l ≫ lρ. If mslope > mscatter, the autocorrelation
length lρ has probably been underestimated and the chosen specimen lengths are in range l ≈ lρ. In such
a case, longer specimens must be tested.

The mean strength measured on filaments may be easily transferred to the mean bundle strength with
nf filaments by using the Daniels’s or Smith’s formulas (6.15), (6.16).

Besides of determining the mean strength, the tests on single filaments can further be exploited to de-
termine the randomness of the E-modulus. In order to determine the reduction of strength kE introduced
in Eq. (6.26) random variable simulation with the experimentally obtained distribution parameters the
together with the SFR algorithm may be employed.

Finally, the sought autocorrelation length can be determined as an intersection of the two indepen-
dently determined asymptotes. With the known lρ at hand we may express the resulting approximation
of the MSEC as a product of Eqns. (6.17) with (6.26)

µ⋆⋆
II(nf , l, E) = µ⋆⋆(nf ) · f(l) · rE(l). (6.30)

If the strength of single filaments cannot be measured reliably (as in the case of the used glass
filaments) and there is no chance to judge about the autocorrelation length, we have to fit the formula
(6.30) to the data by applying the stochastic simulation of the bundle and find all the parameters of the
MSEC by fitting as shown in the previous section.

6.6 Conclusions

In the two companion chapters we have identified and studied five different sources of disorder in the
bundle tensile test: delayed activation of filaments, variable cross sectional area of filaments, differences
in filament lengths, variability of E-modulus and of tensile strength along the filaments.

Based on the efficient micromechanical model of the fiber bundle developed in Part I we have performed
stochastic simulation with randomized stiffness and strength along the filaments in the bundle. The
stochastic modeling framework has been used to derive size effect laws for each of the considered sources
of randomness separately. Based on the lessons learned from the numerical analysis we have suggested
approximation formulas describing the size effect laws due to the random strength or stiffness along the
bundle. The obtained results have been verified with the help of the available analytical and numerical
fiber bundle models by Smith and Daniels.

The available fiber bundle models could not be used for modeling the response measured in the yarn
tensile test, because they impose piratically unachieveable assumptions of regular force transmission in
the clamping and do not capture the disorder in the structure of filaments in the bundle. For this reason,
we have developed a deterministic simplified computational model in order to include additional sources
of randomness affecting the evolution of the stiffness during the loading.
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The detailed knowledge of the length-dependent performance of the yarn allowed us to quantify the
parameters of the statistical distribution of the filament and bundle properties as a means of disorder
in the material structure. An extensive testing program has been worked out so that the results of the
simulation could be compared with the test results of the tensile test on bundles and on filaments with
varied length.

The performed stochastic simulations with the available experimental data revealed the existence
of statistical length scale that could be captured by introducing autocorrelation of random material
properties. This represents the departure from the classical Weibull-based models that are lacking any
kind of length-scale.

The introduced model delivers a quasi-ductile response of the bundle from the ensemble of interacting
linear-elastic brittle components with irregular properties. In this respect the present approach falls into
the category of lattice models used to model quasi-brittle behavior of concrete. It should be noted, that
due to the possibility to trace the failure process in a detailed way both in the experiment and in the
simulation, the modeling of multi-filament yarns provides a unique opportunity to study the local effects
in quasi-brittle materials. To possibility to generalize the results for other quasi-brittle materials is worth
further intensive studies.

The obtained statistical material characteristics turned out to be of crucial importance for robust
modeling of crack bridges occurring in the cementitious textile composites. The “well designed” mi-
crostructure of the yarn and of the bond layer in the crack bridge may significantly increase the overall
deformation capacity (ductility) of structural elements. The lessons learned from the present study can be
applied in a more targeted development of new yarn and textile structures with an improved performance
of crack bridges.

As a final remark, we note that the phenomena of delayed activation may be present in any material
structure. The only question is at which length scale of material structure it appears. In case of multi-
filament yarns the length scale of delayed activation overlaps with the length scale of other sources of
randomness (varying strength and stiffness) so that it must be included in the evaluation of the true size
effect. Generally effects similar to (or caused by) delayed activation or large variability of stiffness may
distorts experimental data. For example in case size effect test of dog-bone specimens made of concrete
and loaded in tension (Van Vliet and Van Mier, 1998, 2000) the unusual shape of mean size effect curve
can certainly be satisfactorily explained by the structural disorder in testing the small scale sample.
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Part III

STOCHASTIC MODELING OF
QUASIBRITTLE MATERIALS





Chapter 7

Size effect on modulus of rupture of
concrete structures: state of the art

The chapter introduces the problem of modulus of rupture of concrete structures. The state of the art is
reviewed as the starting point for author’s investigations presented in the following chapters of this part
of thesis.

7.1 Introduction

The modulus of rupture, which characterizes the bending strength (or the apparent tensile strength) of
unreinforced beams, is known to depend on the beam size. The structure size effect on the modulus
of rupture of plain concrete beams as well as other quasibrittle materials (such as rocks, composites,
ceramics or ice) has classically been explained purely statistically – the randomness of the intrinsic
material strength (see e.g. Bažant and Planas, 1998, for a review), as suggested already by Mariotte
(1686) and mathematically described in a final form by the theory of Weibull (1939a,b) .

However, as revealed by the finite element calculations of Hillerborg et al. (1976) and thoroughly
demonstrated by Petersson (1981), the statistical explanation ignores the stress redistributions caused by
cracking prior to the maximum load and the mean observed size effect can be described deterministically
by the cohesive (or fictitious) crack model. A simple analytical formula based on this redistribution was
derived by Bažant et al. (1995) and was shown to match all the important test data reasonably well. The
same formula was proposed earlier on an empirical basis by (Rokugo et al., 1995) (cf. Bažant 1996). It
was also shown that this formula can be derived from fracture mechanics if the non-negligible size of the
fracture process zone near the tensile face of beam is taken into account (Bažant, 1997), Fig. 7.1.

The size effect on the modulus of rupture is of a different kind than the size effect on failures that
occur after a long stable crack growth that is typical for reinforced concrete structures. Until the mid
1980’s, that size effect was also generally believed to be statistical but it is now widely accepted that
its cause is primarily deterministic – the energy release due to crack growth (Bažant, 1984). The basic
explanation to the deterministic part of size effect on the modulus of rupture is to be found in the theory
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of quasibrittle fracture, describing materials of heterogeneous microstructure in which the formation of
distinct fractures is preceded by distributed cracking.

The maximum load of plain concrete beams occurs before a continuous crack initiates. But it occurs
only after a boundary layer of distributed cracking of a certain critical thickness develops at the tensile face
of beam. For beams of different sizes made of the same concrete, the thickness of this layer appears to be
about the same, probably dictated mainly by the maximum aggregate size. Formation of this boundary
layer, representing a fracture process zone (FPZ), is the principal reason why the direct tensile strength
f ′

t differs from the modulus of rupture, fr, which is defined (for an unreinforced beam of a rectangular
cross section) as:

fr =
6Mu

bD2
(7.1)

where Mu = ultimate bending moment, D = characteristic size of the structure, chosen to coincide with
the beam depth (often denoted as h), and b = beam width (see figure 7.1).

The randomness of the heterogeneous microstructure of concrete and of its strength must nevertheless
have at least some influence, as demonstrated by nonlocal finite element simulations with random spatially
correlated strength (e.g. Breysse, 1990; Breysse and Fokwa, 1992; Breysse et al., 1994; Breysse and
Renaudin, 1996; Frantziskonis, 1998). For quasibrittle structures failing after large stable crack growth,
this question was studied by Bažant and Xi (1991) and Bažant and Planas (1998). They presented a
generalization of Weibull-type theory in which the material failure probability depends not only on the
local continuum stress but also on the average strain of a characteristic volume of the material.

The key point in Bažant and Xi’s analysis Bažant and Xi (1991), which allows handling of the crack tip
singularity, is the introduction of the nonlocal continuum concept for determining the failure probability
of a material element. If the Weibull probability integral is applied to the redistributed stress field, the
dominant contribution comes from the fracture process zone at the crack tip. The contribution from the
rest of the structure is nearly vanishing, which is explained by the fact that the fracture cannot occur
outside the process zone.

In the case of the modulus of rupture (different type of strength dependency on the size), the Weibull-
type size effect can dominate only in unreinforced beams that are far deeper than the boundary layer
of distributed cracking and thus fail right at crack initiation, as suggested by Petersson (1981). The
beam depth D, however, would have to exceed about a few meters (for a standard concrete mix), which
is hardly a realistic case. Besides, good practice requires designing structures so as not to fail at crack
initiation.

A recent studies of Bažant and Novák (2000b,c) resulted in a statistical structural analysis model that
takes into account the post-peak strain softening of the material and calculates the failure probability from
the redistributed stress field using the nonlocal Weibull approach of Bažant and Xi (1991), representing
an extension of deterministic nonlocal damage theory (Pijaudier-Cabot, 1987; Bažant and Planas, 1998).
They demonstrated a good agreement with the existing test results on the modulus of rupture of concrete.

7.2 Nonlinear fracture mechanics and deterministic size effect
of concrete structures

Deterministic size effect represents a transition from ductile behavior of relatively small specimens to
brittle behavior of large structures. In the numerical investigations, the ductile behavior can be covered
by plasticity, while the brittle behavior corresponds to the linear elastic fracture mechanics (LEFM). For
the transition nonlinear fracture mechanics (NLFEM) with softening based on fracture energy (Bažant
and Planas, 1998) can be effectively used. NLFEM is suitable for analysis of quasi-brittle materials
with certain toughness like concrete. The plastic and the elastic-brittle behavior can be treated as limit
situations. Due to the energetic basis deterministic size effect can be obtained efficiently by NLFEM.
The nonlinear analysis of the concrete beams presented here has been performed by computer program
ATENA. Suitability of this program for simulation of size effect behavior of concrete structures was
reported by Pukl et al. (1992) and by Cervenka and Pukl (1994). The constitutive model used in
ATENA reflects all the essential features of concrete behavior, namely cracking in tension. It is based on
nonlinear damage and failure functions in plane stress state (Cervenka, 2000). A smeared crack approach
simulates discrete cracks occurring in real concrete structures by strain localization in a continuous
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displacement field. Concrete fracture is covered by nonlinear fracture mechanics based on fracture energy
(Margoldová et al., 1998). Objectivity of the finite element solution is assured by crack band approach
– the descending branch of the stress-strain relationship is adjusted according to the finite element size
and mesh orientation (Bažant and Oh, 1983). The transition from ductile (small beam) to brittle (large
beam) behavior is documented in fig. 7.2. The shape of the fracture process zone obtained in ATENA
simulations for very small (a) and very large (b) beams using data of Sabnis and Mirza (1979) is shown.
Corresponding load-deflection diagrams are included (Vořechovský, 2000a).

Figure 7.2: Calculated shapes of fracture process zone and load-deflection diagrams (based on data of
Sabnis and Mirza (1979)) a) small beam (span 0.0381 m), b) large beam (span 4.0 m).

7.3 Stochastic nonlinear fracture mechanics and complex size
effect

The difference between the deterministic (energetic) and statistical size effect was discussed. It is a clear
demonstration that without random fields modeling the trend cannot be captured using any sophisticated
nonlinear fracture mechanics analysis. Some preliminary statistical numerical experiments in order to
show cumulative probability distribution functions of modulus of rupture fr were already performed by
Novák, Vořechovský, Pukl, and Červenka (2001).

Two basic approaches should be applied and compared for size effect prediction: Extreme value the-

ory and random field theory eventually simplified into the random variable level. Relationships between
the characteristic length (driving the deterministic size effect) and the autocorrelation length of ran-
dom/variable material properties should be clarified. It was shown by Carmeliet (1994) that generally
both characteristic length and correlation length are needed: first to avoid strain localization, second to
introduce spatial randomness. The question remains what is the relationship of these two fundamen-
tal parameters related to the material (de Borst and Carmeliet, 1996; Gutiérrez and de Borst, 2002).
As will be shown in the part III and explained in section 6.2 an appropriate stochastic alternative for
strength representation should be chosen for calculation depending on both correlation length lρ and total
dimension of a structure l (Vořechovský, 2002b).

It is expected that correlation length modifies size effect curve in the way that higher correlation
length (stronger spatial correlation) of strength along the structure causes smaller decrease of nominal
strength. As mentioned before, a theory for size effect explanation should be general enough to capture
the complex phenomenon for both, reasonable sizes of beams and very large sizes (asymptotics). For
very large sizes the solution would bring just above mentioned extreme value theory. The problematic
transition from small and reasonable sizes to very large sizes is tackled in the following chapter.

7.3.1 Statistical size effect and Nonlocal Weibull theory

The history of description of phenomenon called size effect can be seen as history of two fundamentally
different approaches, deterministic and statistical explanations. First explanation was statistical, it dates
back to the pioneering works of Weibull (1939a); Tippett (1925); Fisher and Tippett (1928) and many
others, mainly mathematicians. Phenomenon that larger specimens will usually fracture under smaller
applied load was that time purely associated with the statistical theory of extreme values and size of
defects.
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Then most of researchers focused on energetic basis of size effect and all achievements were purely
deterministic, leading to a “mean size effect curve” (MSEC). Let us mention e.g. the book of Bažant and
Planas (1998) as an extensive source of information. Failure in quasi-brittle materials is associated with
strain localization, as a consequence nonlinear finite element method exhibit a severe mesh sensitivity.
This fact verified e.g. by Pijaudier-Cabot (1987) brought nonlocal formulations of damage, which provides
proper regularization techniques to avoid strain localization. Local and nonlocal formulations appeared
to be decisive to capture deterministic size effect (section 7.2).

But because of heterogeneity of quasi-brittle materials like concrete, the randomness must play some
role and the use of statistical description and stochastic approaches seems to be essential. That is why
recent research concentrated to this point. Weibull weakest link theory for stochastic damage model
was utilized by Mazars (1982) and Mazars et al. (1991). Probabilistic formulation of damage based on
probabilistic law of fracture in Weibull form was presented by Breysse (1990). These models do not
provide full statistical information on nominal strength, which represent the important restriction.

According to the weakest-link model (Tippett, 1925; Fisher and Tippett, 1928) underlying the classical
Weibull theory, the theoretical failure probability of a structure with a continuously variable uniaxial stress
σ(x) is (Bažant and Planas, 1998):

pf = 1 − exp

{
−

∫

V

〈
σ(x) − σu

σ0

〉m
dV (x)

Vr

}
(7.2)

Here V = volume of structure; σ0, σu and m are the parameters of Weibull probability distribution
of the strength of the material (scale parameter, strength threshold and shape parameter), Vr is the
representative volume of the material, and x is the coordinate vector of material point. 〈 〉 denotes the
positive part of the argument (used because only positive tensile stresses contribute to failure probability).

The integral in (7.2) diverges (for realistic m values) if the singular stress field of a sharp crack or
notch is substituted. This means that the classical Weibull theory cannot be applied to failure (stability
loss) that occurs only after large stable crack growth. To overcome this problem, a nonlocal continuum
approach has been introduced (Bažant and Xi, 1991; Bažant and Planas, 1998). In this approach, the
stress at a point depends not only on the strain at that point but also on the strain field within a
certain neighborhood of that point. In the simplest version, it depends on the weighted spatial average
of the strain in that neighborhood, representing the representative volume of the material. In the case
of materials with strain-softening, the nonlocal concept is necessary to regularize the boundary value
problem. Within the framework of Weibull integral, such kind of averaging introduces, in a statistical
sense, a spatial correlation (this is also demonstrated by the numerical results of Breysse and Fokwa
(1992).

The fact that very different strength thresholds (with very different m-values) can usually give equally
good representations of test data lead to assume a zero threshold σu = 0. Then, if the stresses are at
the same time replaced by the nonlocal stresses as proposed by Bažant and Xi (1991) and (Bažant and
Novák, 2000b,c), the multi-dimensional generalization of Eq. (7.2) may be written as:

pf = 1 − exp

{
−

∫

V

n∑

i=1

〈
σi(x)

σ0

〉m
dV (x)

Vr

}
(7.3)

where n is the number of dimensions, σi are the principal stresses (i = 1, ..., n), and an overbar denotes
nonlocal averaging. The failure probability now depends not on the local stresses σi(x) but on the
nonlocal stresses σi(x) which are the results of some form of spatial averaging.

One suitable form of averaging type is the spatial averaging of the inelastic strain, representing the
difference of the current strain and the elastic strain corresponding to the same stress (Fig. 7.1):

ǫ′′(x, y) =
1

α(x, y)

∫ L

0

∫ h/2

−h/2

α(x′ − x, y′ − y) ǫ′′[σ(x′, y′)] dx′ dy′ (7.4)

Integral is written for 2D case – concrete beam of depth D. Then nonlocal stresses are:

σ(x, y) = E [ǫ(x, y) + ǫ′′(x, y)] (7.5)

The spatial averaging integral is approximated by a finite sum over all the points of the structure.
Different choices of the weight function α(x, y) for spatial averaging are possible, but the results are
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not too sensitive to the choice made. For instance, one may simply choose a uniform weight function
that is non-zero only over a certain representative volume such as a circle (or for convenience a square).
However, according to the computational experience, a better convergence is achieved by using a smooth,
bell-shaped weight function, which also appears more realistic. One suitable form of such a weight
function, which is adopted here, is the modified bivariate normal (Gaussian) probability distribution
function suggested by Bažant et al. (1984):

α(x, y) = e −2
√

x2+y2 / l (7.6)

Here l is the characteristic length of the nonlocal continuum (or material length), which characterizes
the size of the representative volume Vr. It represents the diameter of a cylinder of height 1 that has
the same volume as the weight function. This condition requires that Vr = πl/8. For concrete, the
characteristic length can be approximately taken as l = 3 da, which is the band width used for the crack
band model (da = maximum aggregate size).

For l → 0, the material becomes local and Eq. (7.3) becomes the classical Weibull probability
integral. So the classical Weibull theory is a special case of the present theory. For beams so large that
the characteristic length is negligible compared to the depth of the cross section, the classical Weibull
size effect on the modulus of rupture must be approached (as observed by Petersson (1981)).

Compared to the stochastic finite element approaches (see, e.g., the review by Breysse et al. (1994)
or the ‘numerical concrete’ model (Roelfstra et al., 1985), an important feature which brings about great
simplification is that the nonlocal structural analysis with strain softening, or the structural analysis
with a cohesive crack, can be carried out deterministically, i.e. independently of the probability analysis.
However, iterations of the deterministic solution are required if the failure probability of the structure
is specified. But the number of these iterations is very small compared to the classical approaches of
reliability engineering (where calculations of failure probability usually require thousands of repetitive
deterministic solutions using advanced Monte Carlo type simulation techniques). Bažant and Novák
(2000b,c) showed efficiency of this theory for prediction of size efficient on modulus of rupture.
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Chapter 8

Connections of fiber bundles models
and size effect of concrete structures

Published in paper: Bažant, Pang, Vořechovský, Novák, and Pukl (2004b)

This chapter analyzes various modeling alternatives for the statistical size effect in quasibrittle struc-
tures. The role of reliability techniques, encompassing the classical reliability theory at random variables
level, the theory of extreme values in Weibull form, and the stochastic finite element method with ran-
dom strength field, is examined with a view toward capturing both the deterministic and statistical size
effects. The theoretical development describing deterministic and statistical size effects is documented
using the crack initiation problem. Theoretical predictions are compared with the existing test data in
the following chapter.

8.1 General size effect theory

8.1.1 Energetic size effect

There are two basic types of energetic size effect which are distinguishable (Bažant, 1997, 2001; Bažant
and Chen, 1997; Bažant, 2002b). Structures of positive geometry having no notches or preexisting cracks
are classified as Type 1 size effect (Bažant et al., 1995, 1996; Bažant, 1998a, 2001). For positive structure
geometries, the maximum load occur as soon as the fracture process zone (FPZ) gets fully developed.
Positive geometry is one of the requirements for the applicability of Weibull-type weakest link model.
Type 2 size effect (Bažant, 1984, 2002b; Bažant and Kazemi, 1990) occurs also for positive geometry
structures but with notches, as in fracture specimens, or with large stress-free (fatigued) cracks that
have grown in a stable manner prior to the maximum load. The mean nominal strength for this type
of size effect is not significantly affected by material randomness (Bažant and Xi, 1991; Bažant, 2002b),
but the variance of course is. There exists also a Type 3 size effect (Bažant, 2001, 2002b), occurring in
structures with initially negative geometry. However, this type is so similar to Type 2 that it is barely
distinguishable experimentally.

8.1.2 Probabilistic size effect

Traditionally, the probabilistic size effect has been explained by Weibull-type statistical weakest link
model (Fisher and Tippett, 1928; Weibull, 1939b,a, 1949, 1951, 1956; Epstein, 1948; Freudenthal and
Gumbel, 1953; Freudenthal, 1956a, 1968; Gumbel, 1958; Saibel, 1969). Its basic hypothesis is that the
structure fails as soon as the material strength is exhausted at one point of the structure. This is true for
quasibrittle materials only if the size of the structure is much larger than the FPZ. For quasibrittle failures
of smaller sizes, there are other avenues of research which could explain the stress redistribution before
failure. Fiber bundle model due to Daniels (1945) is one of the earliest generalizations of the extreme
value statistics of the weakest link model, in which a hypothesis of load-sharing among fibers is invoked.
This avenue of approach has been thoroughly investigated by S. Leigh Phoenix and co-workers (Harlow
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and Phoenix, 1978a,b; Smith and Phoenix, 1981; Smith, 1982; Phoenix and Smith, 1983; McCartney and
Smith, 1983; Phoenix, 1978b; Phoenix et al., 1997; Phoenix and Beyerlein, 2000; Mahesh et al., 2002).
The other, more recent, avenue of approach attempts to amalgamate the statistical and deterministic
theories by means of a nonlocal generalization of Weibull theory (Bažant and Xi, 1991; Bažant and
Novák, 2000b,c, 2001; Bažant, 2002a). This allows stochastic numerical simulations of the mean as well
as variance of the deterministic-statistical size effect in structures of arbitrary geometry. In particular,
this approach automatically captures the dependence of stress redistribution and energy release rate on
the structure size D.

8.2 Asymtotics of size effect

8.2.1 Small-size asymptotes

The small-size mean asymptotic properties should agree with the theoretical small-size asymptotic prop-
erties of the underlying continuum model, which can be the cohesive crack model, the crack band model,
or the nonlocal damage model. Each of these models implies that the value of the nominal strength σN

for D → 0 should be finite and should be approached linearly in D (Bažant, 2002b), as shown in Fig.
8.1. Agreement with these small-size asymptotic properties can be achieved by modeling the failure
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Figure 8.1: Failure probability density and cumulative distribution function for three different elemental
distributions: Gaussian, Weibull and rectangular

mechanism for the small-size limit with a fiber bundle. For a vanishing size, the failure tends to follow
the theory of plasticity, and it is well known (e.g. Jirásek and Bažant, 2002) that in plasticity the failure
proceeds according to a single-degree-of-freedom mechanism, i.e., is simultaneous, non-propagating. It
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follows that the failure probability distribution for D → 0 ought to obey Daniel’s (1945) ‘fiber bundle’,
model rather than the Weibull-type weakest link model for a chain.

For D → 0, a body with a cohesive crack (or crack band) approaches the case of an elastic body
containing a perfectly plastic cohesive crack. The fits of the energetic size effect to extensive experi-
mental data on the modulus of rupture (or flexural strength) of unreinforced concrete beams (Bažant
and Novák, 2000a,c,b) and of fiber-polymer composite laminates (Bažant, 2003), which reveal that the
small-size asymptote is closely approached only for extrapolation to specimen sizes much smaller than a
representative volume of the concrete, considered here to be about three aggregates in size. This volume
fractures simultaneously, which is why its statistics should be adequately described by the fiber bundle
model, in which the breakages of fibers correspond to the breaks of microscopic bonds along the failure
surface. By formulating and solving a recursive relation for the failure probability distribution, Daniels
(1945) showed that the failure probability Gn(x) follows the standard normal distribution given by Eq.
(6.14), where the mean µ⋆ and variance σ⋆2/n can be expressed implicitly as follows using the probability
distribution of failure of the fibers F (x) (see page 68), which are assumed to be identical and statistically
independent (IID).

8.2.2 Large-size asymptotes

On the other extreme, the failure for a very large structure of positive geometry occurs as soon as the FPZ
becomes fully developed. Structures of positive geometry are those in which the stress intensity factor,
or the energy release rate, increases if the crack extends at constant load. The failure of such a structure
could be modeled with a single chain of elements, each representing a FPZ and the failure probability of
such a structure follows the weakest link model (Eq. 9.1; compare to Eq. 6.11). The equations feature
P1(σ), the cumulative probability distribution of the element, which represents the FPZ in this case.
PN (σ) is the cumulative distribution function of the chain.

Although there are no substantial amount of experimental data that test on very large structures to
verify the correctness of the weakest link model, numerical simulation on such large scale such as dams (to
be presented in another paper) and the theoretical argument that very large positive definite structures
fail at crack initiation, provides strong argument for the weakest link model.

(Fisher and Tippett, 1928) has proved that there exist three and only three asymptotic forms of the
extreme value distribution:
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• Fisher-Tippett-Gumbel distribution

• Fréchet distribution

• Weibull distribution

In this document, we focus on generic Weibull distribution with zero threshold for each FPZ; the cumu-
lative probability distribution can be expressed as follows:

P1 (σ) = 1 − e−(σ/s0)
m

(8.1)

where m and s0 are the Weibull shape and scale parameters respectively (m = Weibull modulus). The
asymptotic probability distribution for the weakest link model will remain Weibull at varying D but the
mean and standard deviation will shift as follows (compare to Eq. 9.8):

µN = µ1 (N)
−1/m

= s0 (N)
−1/m

Γ (1 + 1/m) (8.2)

According to the expressions in Eqs. (8.2, 9.8) & (9.9), it is clear that the coefficient of variation of σN

depends only on the shape parameter and can be expressed as follows given by Eq. 6.4.
Note that the coefficient of variation of σN is independent of the structure size D. This implies that,

if the size effect is purely statistical, the Weibull modulus, m, which is completely determined by the
experimentally observed scatter of the results of tests of identical specimens of one size, must be the same
as the m identified from the size effect tests. This is a check on the validity of the statistical theory which
has been omitted in many studies. For small and intermediate size structures, the Weibull statistical
theory does not apply and this is most easily recognized by the fact that moduli m obtained according
to Eq. 6.4 from tests at very different sizes do not match each other. For more discussion on this topic
(in the context of composites and fiber structures) see sec. 6.5.3, p. 78.

8.3 Transition between small and large size asymptotes

8.3.1 Chain of bundles model

For intermediate size structures, the size of FPZ is large as compared to the size of the structure. Stress
redistribution and energy release are significant for these structures, which suggests that the deterministic
effect should not be neglected. The size effect curve could be determined by numerous simulations of
intermediate size structures using a nonlinear stochastic finite element program. This is reviewed later
in the paper. Now an alternative approach with a transition based on the chain of bundles model (Figs.
8.1, 8.2) proposed by Freudenthal (1963) and later by Bažant (2004) will be studied.

Visible macro-cracks are assumed to appear at a minimum crack spacing equal to characteristic length
which is approximately three maximum aggregate sizes. For hypothetical specimens smaller than this
characteristic length, the failure should follow the fiber bundle model in which each fiber in the bundle
of the lowest hierarchy represents a micro-bond. The failure probability distribution of the fiber bundle
(Fig. 8.1) consisting of a large number of fibers can be described well by Daniels’s approximation in Eq.
(6.14) For typical test specimen sizes (larger than the aforementioned characteristic length), the failure
mechanism is modeled with a hybrid of series and parallel coupling as shown in (Figs. 8.1, 8.2). The
statistical effect of the stress redistribution causing energy release can be modeled by the parallel coupling
of elements, each of a characteristic volume. The number of characteristic volumes in a normal structure
would be small and the probability distribution could not be approximated accurately by Eq. (6.14). The
failure probability could be computed exactly by a recursive formula (Daniels, 1945; Smith and Phoenix,
1981; Smith, 1982) expressed by Eq. (6.13), where n is the number of elements of characteristic volumes
in a bundle and F (x) is the probability distribution of each element.

On the other hand, the possibility of cracks appearing along the span of a flexed beam or along the
length a tensioned bar can be accounted for by coupling the bundles in a chain-like manner. In this way,
the deterministic and statistical size effect can be fused in a single approximate model which also provides
an asymptotically correct transition from small to large size asymptotes. In one extreme, in which the
specimens are very small, the chain-of-bundles model would collapse into a bundle of micro-bonds. In the
other extreme for large structures, the size of the bundles is fixed since the FPZ has been fully developed
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while the number of bundles in the chain scales according to the size of the structure and the model
behaves as a weakest link.

The chain of bundles model offers flexibility in the choice of the generic probability distribution for
the micro-bonds, resulting in different size effect curves. Existing literature on limited tensile test data
suggested different probability distributions, namely Weibull, Normal and Log-normal distribution and
the chain of bundles model can be used to gain insight into the probability distribution for the generic
probability distribution by using the computed size effect curve with different probability distribution to
match to experimental data.

8.3.2 Nonlinear stochastic finite element method

A simple but primitive approach to stochastic finite element analysis is to subdivide a structure into
elements of the size of the characteristic volume. Such an approach is feasible for small structures
but would be hardly possible to implement in very large structures. As proposed by Novák, Bažant,
and Vořechovský (2003a), this difficulty could be overcome by using stochastic macro-elements where
each macro-element has stochastic properties that are scaled according to Fisher & Tippett’s (1928)
fundamental stability postulate of extreme value distributions (see section 9.3, p. 100).

The advantage is that the number of macro-elements can be kept fixed but while their size is increased
in proportion to structure size D. This allows efficient stochastic computations for very large structures.
The treatment of the macro-element and the selection of the extreme value for each macro-element is
described in detail in Novák, Bažant, and Vořechovský (2003a). The scaling of the mean strength and
variance of the macro-element are given by Eqs. (9.8,8.2) and (9.9). The scaling formula is applicable
only if the probability distribution of each micro-element of characteristic length could be described by
Weibull distribution of Weibull modulus m and scale parameter s0. An additional condition of validity is
that the structure must reach the peak load at crack initiation. The macro-element approach is checked
against Koide et al. (1998, 2000) tests of plain concrete beams under four-point bending with different
bending spans (200, 400 and 600mm) but identical cross sections (100 by 100mm) (which eliminates the
energetic part of size effect). Nonlinear fracture mechanics software ATENA (Cervenka and Pukl, 2003) is
integrated with probabilistic software FREET (see Appendix A or papers by Novák et al. (2002d, 2004))
to perform statistical simulation of Koide’s beam. The detailed description of the numerical example can
be found in the following chapter 9 (sec. 9.4, p. 101).

8.4 Concluding remarks

The chapter shows how the statistical size effect at fracture initiation can be captured by a stochastic finite
element code based on extreme value statistics, simulation of the random field of material properties, and
chain of bundles transition. The computer simulations of the statistical size effect in 1D based on stability
postulate of extreme value distributions match the test data. However, the correct behavior cannot be
achieved for other tests using a 1D treatment. A proper way of treating the stress redistribution is by the
proposed macro-elements in 2D (or 3D), the scaling which is based on the fiber bundle model capturing
partial load-sharing and ductility in the finite element system, see next chapter.
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Chapter 9

Computational modeling of
statistical size effect: extreme value
approach

Published in papers: Novák, Bažant, and Vořechovský (2003a); Vořechovský (2003); Vořechovský and
Novák (2004); Bažant, Novák, Vořechovský, and Pang (2004a); Bažant, Pang, Vořechovský, Novák, and
Pukl (2004b)

The chapter begins by discussing some fundamental features of the statistics of extremes important
for the computational modeling of the statistical size effect, whose asymptotic behavior is not correctly
reproduced by the existing stochastic finite element methods. The chapter proposes a new approach to
finite element estimation of loads of very small probability. A simple strategy for capturing of statistical
size effect using stochastic finite element methods in the sense of extreme value statistics is suggested.
Such probabilistic treatment of complex fracture mechanics problems using the combination of feasible
type of Monte Carlo simulation and nonlinear fracture mechanics computational modeling are presented
using numerical example of crack initiation problem - size effect due to bending span of four-point bending
tests.

9.1 Introduction

Large concrete structures usually fracture under a lower nominal stress than geometrically similar small
structures (the nominal stress being defined as the load divided by the characteristic cross section area).
This phenomenon, called the size effect, has in general two physical sources – deterministic and statis-
tical. The deterministic source consists of the stress redistribution and the associated energy release
described by nonlinear fracture mechanics (in finite element setting, the crack band model or cohesive
crack model). The deterministic size effect represents a transition from ductile failure with no size effect,
asymptotically approached for very small structures, to brittle failure with the strongest possible size
effect, asymptotically approached for very large structures (Bažant and Planas, 1998).

The classical explanation of size effect used to be purely statistical – simply the fact that the minimum
random local strength of the material encountered in a structure decreases with an increasing volume of
the structure. This idea was qualitatively proposed already in the middle of the 17th century by Mariotte
(1686). Although what became known as the Weibull distribution was in mathematics discovered already
in 1928 by Fisher and Tippett (1928) (in connection with Tippett’s studies of the length effect on the
strength of long fibers, see Tippett (1925)), the need for this extreme value distribution in describing
fatigue fracture of metals and the size effect in structural engineering was first developed, independently
of Fisher & Tippett’s cardinal contribution, by Weibull (1939a,b). His pioneering work was subsequently
refined by many other researchers, mainly mathematicians; e.g. Epstein (1948) and Saibel (1969).

The classical (but erroneous) view that any observed size effect should be described by extreme value
statistics prevailed in structural engineering until about 1990. However, beginning with the studies
at Northwestern University initiated in the mid 1970s, it gradually emerged that there exists a purely
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deterministic size effect, caused by energy release associated with stress redistribution prior to failure,
and that this energetic size effect usually dominates in the so-called quasibrittle structures (i.e., structures
in which fracture propagation is preceded by a relatively large fracture process zone which, in contrast
to brittle-ductile fracture of metals, exhibits almost no plastic deformations but undergoes progressive
softening due to microcracking). Beginning with the 1990s, many studies focused on the deterministic
size effect; see the reviews in Bažant (1986); Bažant and Chen (1997); Bažant and Planas (1998); Bažant
(1999a,b).

The recent development of nonlocal Weibull theory by Bažant and Novák (2000b,c) in connection
with statistical studies of the modulus of rupture (or flexural strength) of plain concrete beams showed
the that, for large quasibrittle structures failing at crack initiation, the deterministic energetic size effect
needs to be combined with the Weibull probabilistic size effect. In this connection, some fundamental
questions arose regarding the applicability of various statistical approaches to the statistical size effect. As
shown by Bažant and Novák (2000b) and Bažant (2002a), the existing stochastic finite element method
(SFEM) does not have the correct large size asymptotic behavior and fails to capture the statistical size
effect on nominal strength.

Arguments mentioned above are basis for the need to combine efficient reliability techniques with
present knowledge in the field of nonlinear fracture mechanics. There are stronger calls for complex
reliability treatment of nonlinear fracture mechanics problems.

The decisive parameter in SFEM is the correlation length which governs spatial correlation over
the structure. The correlation length modifies the size effect curve in the region where this parameter is
smaller than the element size. There is a clear relationship – the larger the correlation length, the stronger
is the spatial correlation of strength along the structure and, consequently, the weaker is the decrease
(due to local strength randomness) of the nominal strength with increasing structure size. Computational
problems, however, develop in trying to simulate the extreme value asymptotic size effect using the random
field approach. Approximately, the requirement is that the ratio of the correlation length to the element
size should not drop bellow one. This poses a major obstacle to using SFEM for describing the size effect,
especially for large structure sizes.

Some advances in this problem were achieved by several authors, e.g. Gutiérrez and de Borst (2002)
who, however, confined their studies to the size range of real structures. The ratio of the correlation
length to the element size implies, unfortunately, a severe limitation. To actually compute the extreme
value asymptote using the random field approach, the number of discretization points (e.g. nodes in
a finite element mesh) would have to increase proportionally to the structure size, which is in practice
impossible since an extremely large structure size would have to be considered to approach the asymptotic
behavior closely. To make computations feasible, it is necessary to devise a way to increase the element
size in proportion to the structure size, keeping the number of elements constant. Therefore, the aims of
this chapter are:

1. To introduce the problem by summarizing the vital features of the statistics of extremes established
by mathematical statisticians in a form meaningful to engineers, putting emphasis on the philosophy
of derivation of the probability distribution of extreme values in a set of independent stochastic
variables having an arbitrary elemental probability distribution.

2. To draw the consequence for capturing the statistical size effect with the help of SFEM.

3. To propose a method for computer simulation of the statistical size effect based directly on the basic
concept of extreme value statistics in combination with nonlinear fracture mechanics, and verify it
by an example (size effect of four-point bending strength due to bending span).

9.2 Weakest link concept and theory of extreme values

The weakest link concept for the strength of a chain-like structure with N elements (Fig. 9.2b) is
equivalent to the distribution of the smallest values in samples of size N . If one element, the weakest
element, fails, the whole structure fails, i.e., the failure is governed solely by the element of the smallest
strength. To clarify the problem, it will be useful to recall some basic formulae of the statistical theory of
extremely small values. The strength distribution of an element of a chain-like (or statically determinate)
structure, see Fig. 9.3a), i.e., the distribution of the failure probability of an element as a function of the
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applied stress σ, may be characterized by continuous probability density function p1(σ) with the associated
cumulative distribution function P1(σ) (in statistical literature called the elemental, underlying, basic or
primary distribution). Then the cumulative distribution of the failure probability of a structure of N
elements (or the distribution of the smallest strength value in samples of size N) is given by

PN (σ) =

∫ σ

−∞

p1(σ)dσ = 1 − (1 − P1(σ))N (9.1)

and the failure probability density is (compare to Eq. 6.11, p. 67, part II)

pN (σ) = np1(σ)(1 − P1(σ))(N−1) (9.2)

These basic equations provide an overall representation of the failure distribution pN (σ) (or PN (σ))
corresponding to a given elemental distribution p1(σ). Different elemental distributions can give different
failure distributions PN (σ), however, it is remarkable that the asymptotic forms PN (σ) can be only three.
Before discussing this fact, let us illustrate the influence of the type of elemental distribution on the failure
distribution graphically.
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Figure 9.1: Failure probability density and cumulative distribution function for three different elemental
distributions: Gaussian, Weibull and rectangular

Figure 9.1 shows the plots of the failure probability density functions pN (σ) and the cumulative
distribution functions PN (σ) calculated for N = 1, 10, 100 and 1000 according to eqs. (9.1–9.2) for the
various elemental distributions, in particular the (a) normal, (b) Weibull and (c) rectangular distributions
(the last one is included merely for comparison purposes). All three elemental distributions are chosen to
have a common unit mean value, and standard deviation of 1/3. A general trend may be noticed: Both
the mean value and the variance decrease with an increasing sample size (i.e., number N of elements).
Cases (a) and (b) are very similar in these overall plots, having a bell-shaped form. But, as discussed
later, for large N , the differences are becoming very significant especially for very small probabilities
normally required in design (the domain of attraction of minima Weibull distribution is Weibull but the
minima of Gaussian converge to Gumbel extreme value distribution allowing negative strength values).
When the elemental distribution is rectangular (case c), the extreme value is seen to converge very
quickly to the threshold of the rectangular distribution. This distribution exhibits no size effect, which
makes it unacceptable (aside from physical reasons) for strength modeling. But the elemental normal
and lognormal distributions give also a physically unacceptable distribution of structural strength, since
for small enough probability they give a negative strength value. Thus Fig. 9.1 provides a qualitative
insight into the statistics of extremes.
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Figure 9.3: a) Statically determinate structure that behaves as a chain; b) Stability postulate of extreme
values (chain and sub-chains)

Differences in structural strength for various elemental distribution are particularly pronounced for
large N and small probabilities (i.e., in the tail). This phenomenon is illustrated in Fig. 9.2, in which
the basic equation (9.1) is used in the inverse: For a chosen failure probability PN (σ), the strength σ is
solved. Naturally, even for the elemental distributions, the main differences lie in their tails (case N = 1).
But as N increases, the differences in strength get larger and larger, not only for the tails but also for
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the medians. The dependence of strength on N is plotted in Fig. 9.2 for selected failure probabilities
PN = 0.5, 0.05, 10−6. Three elemental distributions, normal, Weibull and lognormal, with common unit
mean, and common standard deviation of 0.1, are considered and compared (see Fig. 9.2d), and enormous
differences among them are found. For the elemental normal distribution, the fact that the size effect
on the mean is stronger than on the tail is unrealistic. A more realistic, and much stronger, size effect
is observed for the Weibull elemental distribution. For the elemental mean 1 and standard deviation
0.1, the statistical parameters for the Weibull (two-parametric) distribution are: m = 12.15 (Weibull
modulus) and s0 = 1.043 (scale parameter). In the double logarithmic plot of Fig. 9.2a, the Weibull size
effect is, for any specified failure probability, a straight line of slope −1/m, see eqs. (6.1, 6.2), p. 63.

To show the differences among structures that are scaled in one-, two- and three-dimensions (1D, 2D,
3D), figure 9.2a includes three horizontal scales (a sketch of 1D structure is in Fig. 9.2b and a 2D structure
in Fig. 9.2c,). For the validity of (9.1) and (9.2) in multi-dimensional situations, it is required that the
whole structure fails when a single element fails (can be considered to be connected in series –weakest
link principle of a chain). This is a property of a chain as well as all statically determinate structural
systems, and is also a good approximation for fracture of unnotched structures of positive geometry
(e.g., unreinforced concrete beams in flexure). In that case, N represents the ratio of the structure
volume to the characteristic volume Vc of the micro-heterogeneous material. Vc is here understood as the
volume having the size of the autocorrelation length of the random field of the local material strength, in
which case the strength limits of various characteristic volumes can be considered as nearly statistically
independent (uncorrelated) random variables, a basic hypothesis in the statistical theory of extremes
(note that Vc is in general different (and larger) than the representative volume Vr of the material, which
is the smallest volume for which the continuum concepts of stress and strength make sense, or a volume
for which the mean strength is unaffected by randomness of microstructure as this volume is shifted
through the material). With respect to the situation in concrete structures, Vr may be considered to be
approximately 0.01 m2 (for 2D) and 0.001 m3 (for 3D).

The foregoing illustrations bring to light a salient point (which will be discussed in detail later)
– namely, the selection of the elemental probability distribution is of fundamental importance for the
statistical size effect, and must therefore be realistic. The importance of extreme value theory in stochastic
mechanics has been emphasized by Bažant (2002a).

9.2.1 Limiting forms of distribution of minimum

In a population of N statistically independent IID random variables Xi (i = 1, 2, ...N), i.e. with arbitrary
but independent and identical statistical distributions Prob(Xi ≤ x) = P1(x), henceforth called the
elemental distribution (x = σ/s0 = scaled stress, Xi = scaled random strength), the distribution of YN

= minN
i=1 Xi for very large N has the general expression:

PN (y) = 1 − e−NP1(y) (9.3)

where PN (y) = Prob(minN
i=1Xi ≤ y ); PN (y) = Pf = failure probability of structure, provided that

the failure of one element causes the whole structure to fail. As proven by Fisher and Tippett (1928),
there exist three and only three asymptotic forms (or limiting forms for N → ∞) of the extreme value
distribution PN (y):

1) Fisher-Tippett-Gumbel distribution:

PN (y) = 1 − e−ey

(9.4)

2) Fréchet distribution:

PN (y) = 1 − e|y|
−m

(9.5)

3) Weibull distribution:

PN (y) = 1 − e−ym

(9.6)

(Case 1 is usually called the Gumbel distribution, but Fisher and Tippett derived it much earlier and
Gumbel gave them credit for it.) Case 3 is obtained if the elemental distribution P1(y) has a power-law
tail with a finite threshold (the simplest case is the rectangular probability density function, for which
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m = 1). Case 1 is obtained if P1(y) has an infinite exponentially decaying tail, and case 2 if P1(y) has an
infinite tail with an inverse power law (such as |σ|−m) (see also Gnedenko, 1943; Gumbel, 1958; Bouchaud
and Potters, 2000).

Fisher and Tippett (1928) based their proof on three arguments: (1) The key idea is that the extreme
of a sample of ν = Nn independent identical random variables x (the strengths of the individual links
of a chain) can be regarded as the extreme of the set of N extremes of the subsets of n variables, e.g.,
the strengths of n links of a chain (Fig. 9.3 b). (2) As both n → ∞ and N → ∞, the distributions of
the extremes of samples of sizes n and Nn must have a similar form if an asymptotic form exists. This
implies that that these distribution must be related by a linear transformation in which only the mean
and the standard deviation can change; i.e., σ′ = aNσ + bN where aN and bN are functions of N (N ∼
structure size). Although an asymptotic distribution of the extremes, as a limit for N → ∞, does not
exist, an asymptotic form (or shape) of the extreme value distribution should exist, i.e., the asymptotic
distribution form should be stable with regard to increasing N .

The asymptotic behavior rests on the so-called stability postulate of extreme value statistics, generally
accepted beginning with Fréchet (1927). In this postulate, the extreme value of a set of ν = Nn identical
independent random variables x (the strengths) is regarded as the extreme of the set of n extremes of
the subsets of N variables. When both n → ∞ and N → ∞, it is perfectly reasonable to postulate
that the distribution of the extreme of set Nn must be similar to the distribution of the extreme of each
subset N (i.e., related to it by a linear transformation). In other words, the asymptotic form of the
distribution must be stable. From this property it can be shown that the survival probability fN of a
structural system with a very large size N as a function of applied strength σ must asymptotically satisfy
the functional equation bellow, (9.7).

Thus the argument of a joint probability of survival of all N segments of the chain yields for the
asymptotic form of the cumulative distribution of the survival probability F (σ) = 1 − Pf = 1 − PN of a
very long chain the recursive functional equation:

[F (σ)]N = F (aNσ + bN ) (9.7)

which is called the stability postulate of extreme value distribution, where aN and bN are functions
of size N . In the most important paper of extreme value statistics motivated by the strength of textile
fibers, Fisher and Tippett (1928) showed that this recursive functional relation for function F (σ) can be
satisfied by three and only three distributions, and that they are given by eqs. (9.4)–(9.6). One of them
had already been found by Fréchet (1927) and the other two have later become known as the Gumbel and
Weibull distributions (curiously, not the Fisher and Tippett distributions). By substituting these forms
into functional equation (9.7), one can check that indeed this equation is satisfied. The substitutions
further give the dependence of aN and bN on N , which in turn characterizes the dependence of the mean
and the standard deviation of each asymptotic distribution on N .

The infinite negative tails of PN of the Fréchet distribution and the Fisher-Tippett-Gumbel distribu-
tion are not acceptable for describing the strength. Therefore, these two distributions are are ruled out.
So, in the case of strength, there is no other acceptable tail distribution but Weibull distribution.

9.3 Implications for finite element method

Since the failure probabilities acceptable for design are of the order of 10−7, at least 1 billion material tests
of identical specimens would be needed to verify the elemental statistical distribution purely experimen-
tally. This is obviously impossible. However, a verification is made possible by scaling up the structure
to a very large size, a size that would comprise 10003 characteristic volumes. Thus a verification of the
strength distribution of such a structure is equivalent to conducting 1 billion material tests, provided
that the structure is of a type for which the failure of one element causes the whole structure to fail.
The strength distribution of such a structure is known, based on a mathematical argument. Therefore,
one needs to consider the large size asymptotic behavior and verify that it conforms to this distribution
(Bažant, 2004; Bažant and Novák, 2003).

The first two distributions have no threshold and admit negative values of the argument, and so are
unsuitable for strength. Hence, the Weibull distribution is the only realistic distribution for structural
strength.
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Consequently, the only way to ensure the correctness of SFEM for failure analysis is to make it match
the large size asymptotic behavior, in particular, the Weibull power law size effect, typical of structures
failing at crack initiation. But how to overcome the obstacle of a forbiddingly large number of random
variables associated with all the finite elements?

The basic idea proposed here is to exploit directly the fundamental stability postulate from which
Fisher and Tippett (1928) derived the asymptotic forms of the extreme value distributions. In regard
to SFEM, this postulate may be literally implemented as follows: Instead of subdividing a very large
structure into the impracticably large number ν of finite elements having the fixed size of the characteristic
volume, we must use a mesh with only n macroelements (finite elements) associated with n random
strength variables, keeping n fixed and increasing the macroelement size with the structure size, while
the subdivision N of each macroelement is defined as the ratio of its volume to the characteristic volume
of the material. Then each of these n subsets of N variables is simulated statistically, and for each subset
the extreme is selected to be the representative statistical property of the finite element (macroelement).
These n extremes of the subsets of N variables are then used in FEM analysis of the whole structure. This
procedure ensures that the extreme value statistics is correctly approached, with one crucial advantage—
the number n of finite elements (macroelements) remains reasonable from the computational point of view.
Although N increases with the structure size, the determination of the extreme from the subdivision of
each macroelement does not add to the computational burden since it is carried out outside FEM analysis.

One basic hypothesis of the classical Weibull theory of structural strength is the statistical indepen-
dence of the strengths of the individual characteristic volumes l0

2 (in 2D) or l0
3 (in 3D), where l0 is the

characteristic length. The strength of each of these volumes can be described by Weibull distribution with
Weibull modulus m and scale parameter σ0 (the threshold being taken as zero, as usual). Each of the
aforementioned macroelements, whose characteristic size is L0 and characteristic volume L0

2 or L0
3, may

be imagined of being discretized into N characteristic volumes l0
2 or l0

3, i.e. N = L0
2/l0

2 or L0
3/l0

3.
This consideration provides, according to (9.1) or (9.2), the statistical properties of the macroelement.
Since we are interested only in very small tail probabilities, we may substitute in these equations the tail
approximation of the elemental (generic) Weibull distribution with a certain modulus and scale param-
eter. The tail approximation is the power function σm (times a constant), and its substitution leads for
the strength of the macroelement again to Weibull distribution but with a different modulus and scale
parameter, and thus with a different mean and variance, which are expressed as follows:

µ = σ0(N)−1/mΓ(1 + 1/m), (9.8)

σ2 = µ2

(
Γ(1 + 2/m)

Γ2(1 + 1/m)
− 1

)
(9.9)

9.4 Numerical example: size effect of span in four-point bending
tests

9.4.1 Experiment and attempt at deterministic simulation

By this time, abundant experimental evidence on the statistical size effect on plain concrete beams has
been accumulated by now in the literature. Unfortunately, test data on bending of plain concrete beams
are usually within the range of reasonable sizes (dictated by experimental feasibility). Recently, Koide
et al. (1998, 2000) tested 279 plain concrete beams under four-point bending, aimed at determining
the influence of the beam length L on the flexural strength of beams. These excellent data permit a
comparison of the cumulative probability distribution function (CPDF) of the maximum bending moment
Mmax at failure (Bažant and Novák, 2000c; Novák, Vořechovský, Pukl, and Červenka, 2001). Beams of
three different bending spans, 200, 400 and 600 mm (series C of Koide et al.) are shown in figure 9.4a),
along with the cracks obtained by deterministic finite element calculations, figure 9.4b) (with the code
ATENA, Cervenka and Pukl (2003); Vořechovský and Červenka (2002)). The cross-sections of all the
beams were kept constant (0.1 m × 0.1 m). The experimental data show that Mmax decreases as the
span increases. To explain this size effect of the span, shown in Fig. 9.6a), Koide et al. (1998, 2000)
provided a Weibull theory based approach.
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Unfortunately, only the compression strength of the concrete used is known, whereas the direct tensile
strength and fracture energy have not been tested. The experimental data depicted in Fig. 9.6a) represent
the mean values for each size. The double logarithmic plot of Mmax versus the span forms a straight line
with a slope D−n/m, where n is the spatial dimension and m is the Weibull modulus. The problem is
properly analyzed as one-dimensional, and then the overall slope of the experimental data in the figure
is matched best using m = 8 (which is an unusually low value for concrete, indicating a relatively high
scatter).

Deterministic simulation with nonlinear fracture mechanics software ATENA yields results consistent
with a flat size effect curve, i.e., absence of size effect. This is not surprising. According to fracture
mechanics, there is almost no deterministic size effect in flexure of unreinforced beams when the beam
depth is not varied because the energy release function is almost independent of the beam span. This is
useful for our focus on the statistical size effect. It allows a purely statistical analysis of the test data in
figure 9.6a), reflecting the fact that, the longer the beam, the higher is the probability of encountering in
it a material element of a given low strength.

In finite element simulations, the beams were loaded by force increments in order to avoid a non-
symmetric bending moment distribution when the crack pattern (Fig. 9.4b) becomes nonsymmetric, due
to material randomness. The load-deflection curves, including the peak and postpeak, were calculated
under load control using the arc length method.

a) b)
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200 400
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200 600

Figure 9.4: a) Koide’s beams of bending span 200, 400 and 600 mm, series C ; b) Deterministic cracks
for the corresponding beam sizes

9.4.2 Statistical size effect

The question stands: how to simulate the observed statistical size effect by finite elements? The prob-
abilistic version of nonlinear fracture mechanics software ATENA (Pukl et al. 2003) was utilized to
simulate the tests of Koide et al. (1998, 2000) by finite elements, in accordance with the theory of ex-
treme values. This was made possible by integrating ATENA with the probabilistic software Novák et al.
(2002d, 2004).

In this simulation, the finite element mesh is defined by using only 6 stochastic macroelements placed
in the central region of test beams in which fracture initiates randomly; see Fig. 9.5. The chosen
macroelements have the form of strips. The strips suffice for simulating the Weibull size effect. We
imagine N elements per macroelement of width L0, while the finite element meshes for all the sizes are
identical (except for a horizontal stretch).

The characteristic length is considered to be approximately 3-times the maximum aggregate size, i.e.,
about 50 mm. The Weibull modulus is taken as m=8, and the scale parameter is 1.0. The statistical
parameters of the strength of the macroelements, imagined to consist of N = L0/l0 material elements
each, are calculated from (9.8). For the three sizes (spans) considered here, L0 = 50, 100, 150 mm and
N = 1, 2, 3.
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Figure 9.5: Macroelements and examples of random crack initiation for the first size; left: random tensile
strength only, right: random and correlated tensile strength and fracture energy

In the present approach, a stochastic computational model with n=6 random tensile strength variables
is defined for each beam size (span); 16 random simulations of these 6 statistically independent variables,
based on the method of Latin hypercube sampling, are performed using FREET and ATENA softwares
(Vořechovský and Novák, 2002, 2003b; Novák et al., 2003b, 2002d, 2004; Cervenka and Pukl, 2004; Pukl
et al., 2003b), using methods described in chapters 3 and appendix A. The statistical characteristics of
the ultimate force can then be evaluated. The mean values of nominal strength obtained from a statistical
set of maximum forces are determined first. Figure 9.5 shows the random cracking pattern at failure,
obtained for four realizations of three progressively improved alternatives of solution.

To illustrate the random failures, the corresponding random load-deflection curves are shown in figure
9.6b). The three alternatives, for which the results are presented in Fig. 9.6a), are as follows:

• Alternative I: The first alternative is a pure Weibull type approach in which only the random
scatter of tensile strength is considered, the generic mean value of tensile strength being fixed as
3.7 MPa. For the three sizes (spans) considered here then, according to formulas (9.8) and (9.9)
the means of tensile strengths are µ = 3.484, 3.195 and 3.037 MPa, coefficient of variation COV =
0.148 (driven by the Weibull modulus m only).

The resulting size effect curve obtained by probabilistic simulation is found to have a smaller slope
than the experimental data trend, in spite of the fact that an unusually low Weibull modulus
(m = 8) is used. This can be explained easily. The Weibull theory strictly applies only when the
failure occurs at crack initiation, before any (macroscopically) significant stress redistribution with
energy release. However, the material, concrete, is relatively coarse, the test beams not being large
enough compared to the aggregate size, and so a nonnegligible fracture process zone must form
before a macroscopic crack can form and propagate, dissipating the required fracture energy Gf

per unit crack surface. Therefore, the beam, analyzed by nonlinear fracture mechanics (the crack
band model, approximating the cohesive crack model) does not fail when the first element fails (as
required by the weakest link model imitating the failure of a chain). Rather, it fails only after a
group of elements fails, and several groups of failing elements can develop before the beam fails; see
Fig. 9.5. The finite element simulations are able to capture this behavior thanks to the cohesive
nature of softening in a crack, reflecting the energy release requirement of fracture mechanics.

• Alternative II: The idea to overcome the problem and match the size effect data is to take
the randomness of fracture energy Gf into account. Using the generic mean of fracture energy,
Gf = 93 N/m, for the three spans, according to formulas (9.8) and (9.9) the means of fracture
energy are Gf = 87.6, 80.3 and 76.3 N/m, COV 0.148. The generic mean of tensile strength is
again µ = 3.7 MPa. But we cannot ignore the statistical correlation of Gf to tensile strength.
For lack of available data, we simply assume a very strong correlation, characterized by correlation
coefficient 0.9. Such a correlation tends to cause an earlier onset of (macroscopic) crack propagation,
compared to Alternative I. The result is shown in Fig. 9.6a) as Alternative II. The resulting slope
of the simulated size effect curve is now close to the slope of experimental data. However, the whole



104 Computational modeling of statistical size effect: extreme value approach

curve is shifted down, i.e., all the beams are weaker than they should be. It can be seen that the
strong correlation between tensile strength and fracture energy causes the macroelements with a
lower tensile strength to be more brittle. The failure, therefore, localizes into these macroelements
(Fig. 9.5).

• Alternative III: In seeking a remedy, we must realize that Koide et al. have not measured the
tensile strength nor the fracture energy, and our foregoing estimate may have been too low. So a
heuristic approach is the only option. While keeping Alternative II, we are free to shift the size
effect curve up by increasing the generic mean value of tensile strength and the fracture energy
value. We increase them to 4.1 MPa and 102 N/m, respectively, and this adjustment is found
to furnish satisfactory results; see Fig. 9.6a). Although the size effect of Alternative III in the
double logarithmic plot is not as straight as the trend of data, the differences from the data are
negligible. These small differences may have been easily caused, for instance, by insufficient size
of the calculated data set, or by weaker numerical stability near the peak load, making a precise
detection of the peak (under load control) less accurate.

Finally, it may be emphasized that the result of Alternative III is in excellent agreement with the
previous analysis of these data according to the nonlocal Weibull theory (Bažant and Novák, 2000c).
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Figure 9.6: a) Comparison of means of Koide’s data and ATENA deterministic and statistical simula-
tions; b) Random load deflection diagrams for one size of Koide’s beams (note the curvatures indicating
appreciable stress redistributions before peak)

9.5 Conclusions

The chapter tackles a problematic feature of stochastic finite element method: How to capture the
statistical size effect for structures of very large sizes. A simple and effective strategy for capturing the
statistical size effect using stochastic finite element methods is developed. The idea is to emulate the
recursive stability property from which the extreme value distribution, the Weibull distribution, is derived.
Using the combination of a well feasible type of Monte Carlo simulation and of computational modeling
of nonlinear fracture mechanics, a probabilistic treatment of complex fracture mechanics problems is
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rendered possible. The approach may be understood as a computational trick based on extreme value
theory similar to its counterpart in deterministic nonlinear analysis of fracture – crack band model.

The feasibility of the approach is documented by simulating the size effect in plain concrete beams
under four-point bending, for which extensive statistical test data have recently been reported by Koide
et al. (1998, 2000). The idea works well for large enough structures where the deterministic part of size
effect (causing the stress redistribution) is weak.

9.6 Further discussion

The third alternative leading to a good mean size effect curve (MSEC) still does not mean that the
statistical size effect is captured correctly. In order to ensure this one would have to check the whole
distribution function for each size. If the real structure is brittle or if it fails right after the first crack
initiation, the distribution function for each size must be Weibull and moreover, the COV (or m) must
be the same, constant and equal to those used for the elemental strength distribution. Although Koide
measured the strength for a relatively high number of specimens for each size (35-40) this still does
not allow us to draw conclusions about the whole distribution, mainly the tail behavior. Although we
approached more “brittle” behavior by high positive correlation between the strength and fracture energy,
the load-deflection diagrams (Fig. 9.6b) still shows considerable strength redistribution before the peak
is reached. This may cause deviation from the simple 1-dimensional Weibull statistical model illustrated
in Fig. 9.7.

In case of quasibrittle materials, such as concrete, the largest beams must fail after development of
relatively short cracks (in comparison with the beam depth D). But this is not the case for small beams.
When the peak load is reached the crack length is not negligible and this calls for more sophisticated
statistical model illustrated in Fig. 9.8.

L0 L0L0 L0

Figure 9.7: Simple 1-D Weibull model (chain) in the bottom layer of 4PB beam. Left: Random variables
– macroelements. Right: a statistical “chain” model driving the strength of a whole structure

L0 L0L0 L0

Figure 9.8: Illustration of stress redistribution captured by parallel chains – more sophisticated statistical
model for small sizes (the bundle of chains model)

Since the deterministic size effect is highly suppressed by having the depth D constant, we may expect
the MSEC (plot in Fig. 9.6a) inclined due to statistical size effect only (straight line in double-logarithmic
plot). However, the influence of different load-sharing rules in case of the model in Fig. 9.8 may cause
deviation of statistics for all sizes from the pure Weibull type scaling. This is under investigation now.

The comparison of three alternatives studied reveals the influence of the basic parameters: A decrease
of modulus m or the characteristic length causes a stronger size effect, reflected in a larger slope in
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the MSEC. An increase of tensile strength shifts the entire MSEC upwards. A decrease of the fracture
energy, or the correlation factor between strength and fracture energy, leads to a stronger size effect
(slope of MSEC) and at the same time shifts the MSEC downwards, which represents better the behavior
of a chain. The third alternative of the study is able to fit the size effect curve by changing the mean
tensile strength and fracture energy of the finite elements, which is admissible because Koide’s tests did
not include measurement of these parameters. Despite the good fit of Koide’s test data, the Weibull
modulus, found to be m = 8, is surprisingly low compared to Weibull modulus m = 24 obtained by
fitting many data with a nonlocal generalization of Weibull theory (Bažant and Novák, 2000b,c).

The Weibull modulus found for Koide’s beams could reflect the slope near the intermediate asymptote
(see Fig. 8.1, p. 90), which however decreases when the deterministic size effect wears out as the size
D → ∞. Although Koide’s results could not be extended or directly applied to very large structures, they
reveal strong Weibull-type stochastic behavior when a slender structure is scaled longitudinally. Koide’s
beam has been simulated in ATENA with a macro-element, the parameters of which are scaled in one
dimension (1D). This represents the weakest-link chain model which can be imagined to describe the
bottom layer of finite elements in the beam. Despite the good match with 1D treatment, the material
parameters used in these computations could not be reproduced on a different set of experiment. The
deterministic size effect is not properly treated with the 1D model as this model does not fail immediately
at the first crack initiation (Fig. 9.6b). The scaling of Koide’s beams for the strength should better be
done in two dimensions (2D) because it involves considerable stress redistribution across the beam depth.

The difficulty with the 2D treatment is that the stability postulate could not be directly applied to the
macro-elements. The coupling of the macro-elements in a load-sharing manner violates the assumption
of the weakest-link chain model. The probability distribution of the macro-element could be derived by
other methods, e.g. a bundle model capturing the coupling effect of the macro-element, and the shift in
mean and variance could be computed accordingly using the fiber bundle model. Such an approach is
currently being pursued by the author.

To conclude, we may say that there are two main problems of the proposed technique: (i) stress
redistribution prior failure cannot be captured by a statistical model of a chain (extreme value statistics)
and (ii) spatial correlation of random properties (e.g. strength) in cases when the autocorrelation length
is not negligible compared to structure size (or FPZ size) is not taken into account. The first problem
can be to some extent captured by chain of bundle or bundle of chain models with various load sharing
rules, see e.g. Peirce (1926); Daniels (1945); Epstein (1948); Coleman (1958); Phoenix (1978a,b); Harlow
and Phoenix (1978b,a); Smith and Phoenix (1981); Smith (1982); Hohenbichler and Rackwitz (1983);
Hohenbichler (1983); Madsen et al. (1986); Bogdanoff and Kozin (1987, 1989); Grigoriu (1990); Beyer-
lein and Phoenix (1996); Byeerlein and Phoenix (1997); Beyerlein and Phoenix (1997); Phoenix et al.
(1997); Ibnabdeljalil and Curtin (1997); Marston et al. (1997); Kun et al. (2000); Mahesh et al. (2002);
Vořechovský and Chudoba (2004a). The second problem of autocorrelated material properties can be
effectively solved by modeling the properties with spatially fluctuating random fields. Both problems are
tackled in the following chapter.

However, both problems disappear in modeling of structures that are larger than both the statistical
length scale (measure of autocorrelation) and deterministic length scale (the length related to size of
zone of stress redistribution). For such problems, the proposed approach is advantageously utilized in
the theoretical and numerical verification of the new size effect law proposed in the following chapter.



Chapter 10

Combined deterministic-energetic
and statistical size effect in
quasibrittle failure

Published in papers: Bažant, Vořechovský, and Novák (2004c); Vořechovský, Bažant, and Novák (2005)
An improved generalized law for combined energetic-probabilistic size effect on the nominal strength

for structures failing by crack initiation from a smooth surface is proposed. The law features two separate
scaling lengths of structures governing the two different source of size effect: deterministic and statistical.
The role of these two lengths in the transition from energetic to statistical size effect of Weibull type is
clarified. Relations to the previously developed deterministic-energetic and energetic-statistical formulas
are presented.

Theoretical achievements are then utilized for practical purposes - the paper proposes a procedure to
capture both deterministic and statistical size effects on the nominal strength of quasibrittle structures
failing at crack initiation. The advantage of the proposed approach is that the necessity of time consuming
statistical simulation is avoided, only deterministic nonlinear fracture mechanics FEM calculation must
be performed.

Results of deterministic FEM calculation should follow deterministic-energetic formula, a superimpo-
sition with the Weibull size effect, which dominates for large sizes using the energetic-statistical formula,
is possible. As the procedure does not require a numerical simulation of Monte Carlo type and uses only
the results obtained by deterministic computation using any commercial FEM code (which can capture
satisfactorily deterministic size effect), it can be a simple practical engineering tool. The efficiency of the
procedure is demonstrated on the numerical example of Malpasset dam failure reinterpretation.

10.1 Introduction

The necessity to combine achievements of both fracture mechanics and reliability engineering became ap-
pealing recently. On one side, many sophisticated efficient computational approaches of nonlinear fracture
mechanics have been developed, some of them utilized even within the framework of commercial computer
software developers. They are generally able to capture the deterministic size effect phenomenon. On
the other side, in reliability engineering field, proper fracture mechanics models are still used quite rarely,
but some exemptions already exists (Pukl et al., 2003b; Bergmeister et al., 2002; Novák et al., 2002b,
2003a; Pukl et al., 2003a; Waarts, 2001). To combine these two fields is generally difficult: Computational
effort of FEM nonlinear fracture mechanics in combination with Monte Carlo based simulation techniques
(generally necessary) could be enormous even for simple problems.

Importance of randomness was realized long time ago, prior to the 1990’s, it was commonplace in
design to assume the maximum load of such structures to be governed by the strength of the material,
and sometimes the possibility of a purely statistical, classical size effect of Weibull (1939a) was admitted.
But no attention was paid to the possibility of a deterministic size effect. More than two decades ago,
however, the finite element calculations with the cohesive (or fictitious) crack model by Hillerborg et al.
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(1976) revealed the necessity of a strong deterministic size effect engendered by stress redistribution
within the cross section due to softening inelastic response of the material in a boundary layer of cracking
near the tensile face. A detailed finite element analysis of the size effect on the modulus of rupture with
the cohesive crack model was presented by Petersson (1981). He numerically demonstrated that the
deterministic size effect curve terminates with a horizontal asymptote and also observed that, for very
deep beams, for which the deterministic size effect asymptotically disappears, the classical Weibull-type
statistical size effect must take over.

A combination of the statistical and deterministic aspects of the problem has recently been achieved
by the probabilistic nonlocal continuum model developed by Bažant and Xi (1991); Bažant and Novák
(2000b,c). They showed that this model satisfies the condition that the classical Weibull theory of size
effect must ensue as the limit for infinite structure size. They also deduced a simple energetic-statistical
size effect formula (Bažant and Novák, 2001). Their formula represents asymptotic matching between
the deterministic-energetic formula, which is approached for small sizes, and the power law size effect of
the classical Weibull statistical theory, which is approached for large sizes.

If a nonlinear fracture mechanics computer code is used for modeling of failure at fracture initiation,
the result from the size effect point of view should be purely deterministic. It should follow the energetic
size effect formula (Bažant and Novák, 2001). This was shown on modulus of rupture extensive data
by Novák, Vořechovský, Pukl, and Červenka (2001). But because energetic-statistical size effect formula
developed by Bažant and Novák (2001) is based on the asymptotic matching, the same procedure can
be used to update deterministic FEM size effect results - to combine them with the classical Weibull
statistical size effect. Superposition of these two types of size effect can be suggested and represent a
logical complement of latest research on size effect at crack initiation.

Practical and simple approach to incorporate the statistical size effect into the design or the assess-
ment of very large unreinforced concrete structures (such as arch dams, foundations and earth retaining
structures, where statistical size effect plays a significant role) is important. Failure load prediction can
be done without simulation of Monte Carlo type utilizing the energetic-statistical size effect formula in
mean sense together with deterministic results of FEM nonlinear fracture mechanics codes.

A new law with two scaling lengths (deterministic and statistical) for combined energetic-probabilistic
size effect on the nominal strength for structures failing by crack initiation from smooth surface is pro-
posed. The role of these two lengths in the transition from energetic to statistical size effect of Weibull
type is clarified. Relations to the recently developed deterministic-energetic and energetic-statistical for-
mulas are presented. This paper clarifies the role and interplay of two material lengths deterministic and
statistical.

10.2 Deterministic-energetic size effect formula

The deterministic energetic size effect formula is (Bažant and Novák, 2001):

σN (D) = f∞
r

(
1 +

rDb

D

)1/r

(10.1)

where the structural size is D. Parameters f∞
r , Db, r are positive constants, representing the unknown

empirical parameters to be determined. Parameter f∞
r represents solution of the elastic-brittle strength

reached as a nominal strength for a large structural sizes. The exponent r (a constant) controls the
curvature and the slope of the law. The exponent offers a degree of freedom while having no effect on
the expansion in derivation of the law (Bažant and Planas, 1998). Parameter Db has the meaning of the
thickness of cracked layer. Variation of the parameter Db moves the whole curve left or right - represents
the deterministic scaling parameter and is in principle related to grain size. Drives the transition from
elastic brittle (Db = 0) to quasibrittle (Db > 0) behavior.

An extension to the law can be made by considering the fact, that extremely small structures (smaller
than Db) must exhibit the plastic limit, introducing a new parameter to control this convergence, lp
(Bažant, 2002b):

σN (D) = f∞
r

(
1 +

rDb

D + lp

)1/r

(10.2)
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This formula represents the full size range transition from perfectly plastic behavior (when D → 0;
D ≪ lp) to elastic brittle behavior (D → ∞; D ≫ Db) through quasibrittle behavior. Parameter lp
governs the transition to plasticity for small sizes D (crack band models or averaging in nonlocal models
leads to horizontal asymptote). The case of lp 6= 0 shows the plastic limit for vanishing size D and the
cohesive crack and perfectly plastic material in the crack both predicts equivalent plastic behavior. For
large sizes the influence of lp decays fast and the case of lp 6= 0 is therefore asymptotically equivalent to
case of lp = 0 for large D.

Therefore the predicted strength of an infinitely small structure should equal to what theoretical limit
plastic analysis provides us with (uniform stress, full rotation capability,. . . etc). This fact should be used
to calibrate the formula: the limiting strength for D → 0 is given by the asymptote which is a horizontal
line at the nominal strength (for lp 6= 0):

lim
D→0

σN (D) = f∞
r

(
1 +

rDb

lp

)1/r

(10.3)

Knowing the ratio between the maximum plastic and elastic moment - nominal strength of fully
plasticized lim

D→0
σN (D) and elastic solution lim

D→∞
σN (D) = f∞

r (plastic reserve)

ηp =
Mpl

Mel
=

(
1 +

rDb

lp

)1/r

(10.4)

one can solve the equation (10.2) for the parameter lp:

lp =
rDb

ηr
p − 1

(10.5)

For example in case of rectangular cross section (used for the numerical example later in the paper)
the highest possible ratio ηp is 3: the cross section is stressed by tensile stresses equal to f∞

r and resulting
force is balanced by force acting in thin compressed layer of infinite compressive strength.

In practical cases of concrete structures the transition to fully plastic behavior occurs for structure
sizes far bellow the maximum aggregate size and is therefore purely theoretical. For practical purposes
we may take the parameter lp = 0 which leads to change of asymptotic behavior of the law for small
sizes:

lim
D→0

σN (D) = f∞
r

(
rDb

D

)1/r

∝ D−1/r

a straight line of the slope −1/r in double log plot of characteristic size against the nominal strength.

10.3 Energetic-statistical size effect formula

The large size asymptote of the deterministic energetic size effect formulas (10.1,10.2) is horizontal,
σN/f∞

r = 1, see figures 10.3 and 10.1. The same is true of all the existing formulae for the modulus
of rupture, see e.g. Bažant and Planas (1998). But this is not in agreement with the results of Bažant
and Novák (2000b,c) nonlocal Weibull theory as applied to modulus of rupture, in which the large-size
asymptote in the logarithmic plot has the slope −n/m corresponding to the power law of the classical
Weibull statistical theory (Weibull, 1939a). In view of this theoretical evidence, there is a need to
superimpose the energetic and statistical theories. Such superimposition is important, for example, for
analyzing the size effect in vertical bending fracture of arch dams, foundation plinths or retaining walls.

A statistical generalization of (10.1) may be deduced as follows (Bažant and Novák, 2001). According
to the deterministic energetic model, ∆r = (fr/f0

r )r − rDb/D = 1, which is the value of the large-size
horizontal asymptote. From the statistical viewpoint, this difference, characterizing the deviation of
the nominal strength from the asymptotic energetic size effect for a relatively small fracture process zone
(large D), should conform to the size effect of Weibull theory, D−n/m, where m = Weibull modulus and n
= number of spatial dimensions (n = 1, 2 or 3, in the present calculations 2). Therefore, instead of ∆ = 1,
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Figure 10.1: Best fit of extended deterministic formula. a) for a wide range of Malpasset dam sizes; b)
example of two erroneous fits with simplified deterministic formula to (1) whole range of data, (2) data
without the smallest size.

one should set ∆ = (D/Db)
−n/m. This leads to the following Weibull-type statistical generalization of

the energetic size effect formula (10.1):

σN (D) = f∞
r

[(
Db

D

)rn/m

+
rDb

D

]1/r

(10.6)

Because in all practical cases rn/m < 1 (in fact, ≪ 1), formula (10.6) satisfies three asymptotic
conditions:

1. For small sizes, D → 0, it asymptotically approaches the deterministic energetic formula (10.1);

lim
D→0

σN (D) = f∞
r r1/r

(
Db

D

)1/r

∝ D−1/r (10.7)

2. For large sizes, D → ∞, it asymptotically approaches the Weibull size effect;

lim
D→∞

σN (D) = f∞
r

(
Db

D

)n/m

∝ D−n/m (10.8)

3. For m → ∞, the limit of (10.6) is the deterministic energetic formula (10.1).

Equation (10.6) is in fact the simplest formula with these three asymptotic properties. It may be
regarded as the asymptotic matching of the small-size deterministic and the large-size statistical size
effects.

In case we consider the extended deterministic law (with plastic limit), the statistical generalization
reads:

σN (D) = f∞
r

[(
Db

D

)rn/m

+
rDb

D + lp

]1/r

(10.9)

and the asymptotic strength behavior for small structural size is not a power law (straight line with the
slope 1/r in double-log plot).

In the recent paper by Bažant (2004) a generalized law for the mean size effect is derived together with
approximate PDF for the whole range by asymptotic matching. The paper argues with the existence of
intermediate asymptotics. The resulting size effect formula for any specified probability of failure reads:

σN = [− ln(1 − Pf )]1/m sD (10.10)
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where

sD = s0f0

[(
Db

D + γl

)rn/m

+ αr
Db

D + γl

]1/r

(10.11)

where the coefficient γ > 0 in denominators limit both: statistical and deterministic part from growing
to infinity for small D. So it remedies the problem that all the previous statistical formulas intersect the
deterministic law at the size D = Db and therefore gives higher mean nominal strength prediction for
small structures compared to the deterministic case.

The statistical part of size effect and the existence of statistical length scale has been investigated
in detail by Vořechovský and Chudoba (2004a) for particular case of glass fibers. The authors argue
that having the summation in the denominator of mean statistical size effect term in formula imposes a
horizontal asymptote of the mean strength (as opposed to local Weibull approach) because the randomly
fluctuating strength field must be limited (since it is autocorrelated). An important outcome of their paper
is the comparison of statistical size effect due to extremes of random strength field and classical (local)
Weibull approach (concentration of flaws, power law). Their work shows, briefly, that the statistical part
of size effect in structures with stationary strength random field has a large-size asymptote in the classical
Weibull form (straight line in double-log plot n/m) while the left (small size) asymptote is horizontal.
The value of the horizontal asymptote for D → 0 is the mean strength of the random field, and in Weibull
understanding it is mean strength measured for the reference length being equal to the autocorrelation
length lρ). So by introduction of the random strength field we introduce the length scale (lρ).

Clearly, if strength is the matter, we always deal with the minimum value of a random strength field
realization. When a structure is much smaller compared to lρ, the random strength field reduces to a
random variable (material is treated as one random element) whose mean of minimum is the variable
mean itself (“minimum of a variable is the variable itself so the statistics are preserved”). In case of large
structure the autocorrelation length lρ becomes negligible and the random field minimum is represented
by minimum of independent identically distributed random variables (IID).

The extreme values in IID case is well elaborated field. For Weibull distributed strength random field
the IID’s are Weibull and extreme values (minima) belong to the domain of attraction of Weibull. The
recursive stability postulate of extreme value distribution (Fisher and Tippett, 1928; Gnedenko, 1943;
Gumbel, 1958) shows that the scaling of minima for arbitrary number of random variables (strengths of
material points) leads to power law.

In case of minima of strength random field the remaining problem is the transition between small
enough sizes (lengths) and large sizes. Vořechovský and Chudoba (2004a) have shown that the mean of
extremes of Weibull random process can be well approximated with asymptotic matching by µ(σN (D)) =

µ0 (lρ/(D + lρ))
(1/m)

, where µ0 is the mean value of the process and lρ is the autocorrelation length.
By incorporating this result (statistical part) into the formula (10.9) we get a final law (similar to

that derived by Bažant (2004)):

fr = f∞
r

[(
L0

D + L0

)rn/m

+
rDb

D + lp

]1/r

(10.12)

This new formula exhibits following features:

• Small size left asymptote is correct (deterministic), parameter lp drives to fully plastic transition
for small sizes.

• Large size asymptote is Weibull (statistical, with the slope −n/m)

• The formula introduces two scaling lengths, deterministic (Db) and statistical (L0). The mean
size effect is partitioned into deterministic and statistical parts. Each have its own length scale,
the interplay of both embodies behavior expected and justified by previous research. Db drives
the transition from elastic-brittle to quasibrittle and L0 drives the transitional zone from constant
property to local Weibull via strength random field.

Note that the autocorrelation length lρ has direct connection to our statistical length L0. This
correspondence is explained later and illustrated by formula (10.14)
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Figure 10.2: Parametric study of the proposed law. a) influence of Weibull modulus (scatter); b) interplay
of the scaling lengths

Fig. 10.2 shows the behavior of formula – parametric study (10.12) for a broad range of introduced
parameters. Fig. 10.2a) shows the behavior for different Weibull modulus m, note that for m = ∞
it degenerates to deterministic formula. The same applies if L0 → ∞. The interplay of two scaling
lengths using the ratio L0/Db is demonstrated in Fig. 10.2b) for constant Weibull modulus m. For
large structures the ratios of L0/Db results in parallel bundle of Weibull asymptotes. Note that the ratio
ηp between plastic and elastic brittle nominal strength used here is that for rectangular cross section
(ηp = 3).

The question arises what is in reality the ratio L0/Db? Since both scaling lengths are in concrete
probably driven mainly by grain sizes, we expect L0 ≈ Db, so the simpler law with (Db = L0) should be
an excellent performer in practical cases. We do not answer this question at this moment purposely, it
is beyond the scope of this paper. But it is certainly a key point for next investigation. However, the
arguments for splitting and generalization of a new formulae are fundamentally clear.

The statistical (or probabilistic) part must approach the Weibull asymptotic straight line for size
D → ∞, but different statistical formulations lead to different formula for the statistical mean size effect
curve (MSEC). From the statistical point of view the deterministic alternative can be captured follows:
No scatter of material properties, statistical part of size effect shrinks to 1 for all sizes and the MSEC
is the only result (the law is deterministic). Such result is not possible in nature (where the scatter is
inherently present) and represents a theoretical limit for the COV → 0 (or Weibull modulus m → ∞).

10.4 Superimposition of FEM deterministic-energetic and sta-
tistical size effects

As was already mentioned deterministic modeling with NLFEM can capture only deterministic size
effect. A procedure of superimposition with statistical part should be established. Such procedure of the
improvement of the failure load (nominal stress at failure, deterministic size effect prediction) obtained
by a nonlinear fracture mechanics computer code can be as follows:

1. Suppose that the modeled structure has characteristic dimension Dt. The natural first step is to
create FEM computational model for this real size. At this level the computational model should be
tuned and calibrated as much as possible (meshing, boundary conditions, material etc.). Note that
we obtain a prediction of nominal strength of the structure (using failure load corresponding to the
peak load of load-deflection diagram) for size Dt, but it reflects only deterministic-energetic features
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of fracture. Simply, the strength is usually overestimated at this (first) step, the overestimation
is more significant as real structure is larger. Result of this step is a point in the size effect plot
presented by a filled circle in Fig. 10.3 a).
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Figure 10.3: Illustration of superimposition steps. a) Steps 1-4 resulting in deterministic formulae fit; b)
Step 5 - determination of parameter L0; c) Final formula and strength prediction for the real size Dt

2. Scale down and up geometry of our computational model in order to obtain the set of similar
structures with characteristic sizes Di, i = 1, . . . , N . Consider N = 3 as the minimum set size,
however higher number of sizes is recommended. Based on numerical experience a reasonable
number is around 10 sizes and depends how the sizes cover transition phases. Therefore, sizes Di

should span over large region from very small to very large sizes. Then calculate nominal strength
for each size σN,i, i = 1, . . . , N . Note that for two very large sizes nominal strengths should be
almost identical as this calculation follows energetic size effect with horizontal asymptote. If not,
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failure mechanism is not just only crack initiation, other phenomena (stress redistribution) plays
more significant role and the procedure suggested here cannot be applied. The computational
model has to be mesh-objective in order to obtain objective results (eg. crack band model, nonlocal
damage continuum) for all sizes.

In order to ensure that phenomenon of stress redistribution (causing the size effect for the range of
sizes) is correctly captured, well tested models are recommended for strength prediction. A special
attention should be paid to the selection of constitutive law and localization limiter. The result of
this step is a set of point (circles) in the size effect plot as shown in Fig. 10.3 a).

3. Next step is to obtain the optimum fit of the deterministic-energetic formula (10.1 or 10.2) using
the set of N pairs ({Di, σN,i} : i = 1, . . . , t, . . . , N). Since the deterministic formula is generally
nonlinear in fitted parameters (if r 6= 1 or lp 6= 0) the algorithm for nonlinear regression fit is
needed. The Levenberg - Marquardt optimization algorithm is the most suitable technique to
determine unknown parameters of formula (10.1 or 10.2). The result of this step are values of
three parameters: f∞

r , Db and r. We consider the parameter lp to be substituted based on the
fact that the ratio ηp is determined using the plastic analysis of very small structure and elastic-
brittle analysis of very large structure. Knowing the ratio ηp we incorporate formula (10.5) into the
deterministic formula (10.2):

σN, determ(Di) = f∞
r

(
1 +

(ηr
p − 1)rDb

Di(ηr
p − 1) + rDb

)1/r

i = 1, . . . , N (10.13)

Two alternatives of fit can be utilized, fit of all three parameters (f∞
r , Db and r) or fit of only two

parameters Db and r. The second alternative is possible and recommended as it is reasonable to
prescribe for very large sizes σN/f∞

r = 1 as asymptotic limit. This limit can be estimated from
nonlinear FEM analysis as the value to which the nominal strength converges with increasing size.
The result of this step is illustrated by a fitted curve to the set of points in Fig. 10.3 a).

4. There are three remaining parameters which should be substituted into statistical-energetic formula
(10.6): n, m and L0:

Parameter n is the number of spatial dimensions (n = 1, 2 or 3).

Parameter m represents the Weibull modulus of FPZ with Weibull distribution of random strength.
Recent study (Bažant and Novák, 2000a) reveals that, for concrete and mortar, the asymptotic value
of Weibull modulus m ≈ 24 rather than 12, the value widely accepted so far. Ratio n/m therefore
represents the slope of MSEC in size effect plot for D → ∞. This means that for extreme sizes
the nominal strength decreases, for two-dimensional (2D) similarity (n = 2), as the −1/12 power
of the structure size. Note, that for different material the asymptotic value of Weibull modulus is
different, eg. for laminates much higher than 24. Result of these 4 steps are shown for illustration
in Fig. 10.3a).

Parameter L0 is now only remaining parameter to be determined. As it represents statistical length
scale it seems to be that we will need to utilize a statistical software incorporated into your NLFEM
code. But there is much simpler alternative based on simple calculation of local Weibull integral.
A choice of statistical length scale lρ is a primary task (a good judge may be probably lρ ≈ Db).
Since the choice about a scatter of FPZ strength is made (Weibull modulus m driving the power
of size effect for large sizes), one can compute large size structure having the Weibull strength of
each FPZ. Once the mean strength of such large structure is known (a point in the size effect plot
with coordinates Dstat, σ̂stat), one can pass a straight line of slope n/m through the point (Weibull
asymptote). Graphically, the intersection of the statistical (Weibull) asymptote with deterministic
strength for infinite structure size (horizontal asymptote) f∞

r gives the statistical scaling length on
D-axis, see Fig. 10.3b). The numerical solution to L0 is written as:

L0 = Dstat

(
σ̂stat

f∞
r

)m/n

(10.14)
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so this parameter does not need to be fitted, analytical expression can be used. Note that the large
size strength (mean strength σ̂stat) can be computed by Weibull integral (described in detail e.g.
by Bažant and Planas (1998)):

Pf = 1 − exp

(
−

∫

V

〈
σ(x)

s0

〉m
dV (x)

V0

)
(10.15)

where V is the volume (area, length) of the structure depending on dimension (n), s0 is the Weibull
scaling parameter and V0 is an elementary volume of the material for which the Weibull distribution
has parameters m and s0. σ(x) is maximum principal stress at a point of coordinate vector x.

One can avoid the computation of nonlocal integral (and determination of load leading to Pf

corresponding to the mean load) by means of numerical simulation of Monte Carlo type. In such
case we recommend to use the stability postulate of extreme values for discretization of random
blocks and their association with scaled PDF. This approach is later shown/used for the numerical
example and has been described in detail by Novák et al. (2003a) and is described in the preceding
chapter.

5. As all parameters of statistical-energetic formula are determined, nominal strength can be calculated
for any size. Using real size of the structure Dt the prediction of corresponding nominal strength
σN,t can be done using (10.6). This prediction will be generally different (lower) from initial
deterministic prediction, Fig. 10.3c). The larger structure the larger difference is.

The formula will provide us the strength prediction for the mean strength. Additionally, a scatter
of strength can be determined just using the fundamental assumption of Weibull distribution.

For the distribution we know two parameters, shape parameter m is prescribed initially, and scale
parameters s can be calculated easily from predicted mean and Weibull modulus.

10.5 Numerical example

Case description

In order to show the applicability of the proposed approach to a real structural problem of failure at
crack initiation, a very special example of structural failure has been selected. The Malpasset Dam in
French Maritime Alps, an arch dam of record-breaking slenderness built in 1954, failed catastrophically
on its first complete filling in 1959 (Fig. 10.4), causing a flood which wiped out the town of Fréjus
founded by the Romans (e.g. Levy and Salvadori, 1992). The arch angle was 133o and the thickness at
the base D = 6.78 m. Catastrophic failure of Malpasset dam left 412 people died. The failure started
by vertical cracks due to flexural action in the horizontal plane and was attributed to the movement
of rock in the left abutment, magnified by a thin clay-filled seam. There can be no dispute that this
explanation was correct. The energetic size effect was unknown in 1959 and the Weibull statistical size
effect was not yet established for concrete. Bažant and Novák (2000c) already showed, the size effect
must have been a significant contributing factor including statistical one. That analysis was based only on
simplified judgement of parameters of deterministic–energetic and statistical–energetic formulas without
any computational modeling. The case is analyzed here more precisely utilizing the new formula and
superimposition procedure described above.

10.5.1 Tool of deterministic NLFEM modeling

For FEM nonlinear fracture mechanics calculations, the commercial software ATENA was used (Cervenka
and Pukl, 2003). Suitability of the software for simulation of size effect behavior of concrete structures
was reported by Pukl et al. (1992) and by Cervenka and Pukl (1994). ATENA includes several material
models for concrete reflecting all the essential features of concrete behavior, namely cracking in tension.
It is based on nonlinear damage and failure functions in plane stress state. A smeared crack approach
simulates discrete cracks occurring in real concrete structures by strain localization in a continuous
displacement field. Objectivity of the finite element solution is assured by crack band approach (Bažant
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Displacement
of abutment

Water flow

Figure 10.4: Malpasset dam. Left top and bottom: Photos of the dam before and after failure. Figures
from internet source http://www.aude.pref.gouv.fr/ddrm/risque-barr/bar2.html; Right: Sketch of a dam
failure redrawn from Levy and Salvadori (1992). Note that cracks must have been much more localized

and Oh, 1983), which is built in microplane model. Recently also microplane model for concrete in the
version of M4 has been implemented into ATENA. Simplified failure modeling of Malpasset dam worked
out at 2D level has been performed using ATENA.

10.5.2 Superimposition modeling

A simplified 2D plane strain computational NLFEM model is worked out, one abutment is fixed, second
is subjected to movement. This is modelled by prescribed deformation in chord direction. This is
a rough assumption as no proper information on direction of rock abutment movement is available.
For the simplicity no loading by water is considered, the behavior of dam strip in principle should be
approximately similar. We do not account for the continuous clamping of the bottom of the dam to rock.
Model of the dam height 1 m is performed. Only 1 meter height of a dam at the bottom is modelled as
plain strain problem. The example serves as simplified example, the reality is substituted by very rough
2D computational model.

Microplane model for concrete was selected as the most efficient material constitutive law available in
ATENA. The concrete compression strength measured during construction was 32.5MPa and the same
value was used in ATENA microplane model. Based on compression strength other microplane model
parameters have been generated/proposed by the software as a default. In particular, the (strength
related) parameter called K1 was set to 1.19 · 10−4, other parameters were: K2 = 500, K3 = 15 and
K4 = 150. The modulus of elasticity E = 31.3 GPa. We used 21 microplanes and the crack band width
of 30mm has been used. This crack band width was chosen as an estimation and it leads to relatively
brittle behavior for the real size dam model (as can be judged from the size of aggregate vs. size of the
dam), see Fig. 10.1. As will be shown later, the crack band width of 3 cm resulted in Db approximately
28 cm (the layer of cracking width – perpendicular to the face of strip).

The real size has been scaled down (ratios 1/2, 1/5, 1/10 and 1/200 were basic scaling, other sizes
were modelled as well) and up (ratios 10, 100 and 1000). The reaction vs. deformation of abutment
(in direction of line connecting the supports) for all sizes of the dam together with crack patterns are
shown in Fig. 10.5. Nominal strength σN was defined as σN = 6Mf/D2. The Mf = Rd is the maximum
bending moment at failure in the middle of the dam computed as a product of horizontal reaction R in
the direction of prescribed deformation and the perpendicular distance d.

The nominal strength for real characteristic size (thickness of the strip) D = 6.78 m was computed
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Figure 10.5: Deterministic NLFEM calculation for different virtual sizes of the dam: a) nominal strength
vs. normalized displacement; b) Crack patterns

2.35 MPa and for size 10 times larger the nominal strength decreased to 2.25 MPa. When it was virtually
scaled up again by ratios 10 and 100, the same value was obtained, it means that horizontal flat large
size asymptote of deterministic formula was achieved and we can prescribe f∞

r = 2.25 MPa. Scaling the
real size down (to the minimum thickness of 33.9 mm) nominal strength significantly increased (nearly
three times: ηp = 2.9 ⇒ lp = 0.147 m), Fig. 10.5a).

The range of sizes of “virtual” size effect testing was 1 : 200, 000. Figure 10.5b) shows predicted
deterministic crack patterns obtained by microplane model with crack band approach for various sizes
of Malpasset dam. The distribution of horizontal stresses σx in the middle of the span as predicted by
the model is also sketched. Both crack patterns and stress distribution are presented for the peak load.
Compressive cracks occur during pre-peak for small sizes. Crack band remains constant throughout the
range of scaled dams in order to keep objectivity of modeling. It posses a limitation of finite elements
for small sizes as coarse mesh leads to too stiff models of smallest and the second smallest size because
of rough mesh: crack band model localization crack elements in microplane model.

For optimum fit of deterministic formula (10.13) the stable alternative with two parameters was used.
Results are: Db = 280 mm and r = 1.0. The best fit of extended formula (10.2) is shown in Fig. 10.1. The
fit is very good. However, an attention must be paid to fitting of formula parameters to computational
results: if the small structure size computations are not available the fit may result in considerable higher
value of r for the simplified formula (lp = 0) compared to the case where a broad/proper range of results
is available. The problem is that computed results (points in the graph) in practical small size range
may look to have a straight left asymptote (take a look on the numerical results, points are nearly on a
line). This may explain very high values of r fitted by Bažant and Novák (2000b); authors used a real
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size range and a simpler formula (10.6; lp = 0). We can recommend to estimate the ratio ηp and fit the
limited range with the full formula. Of course, practically lp may than be taken as zero, but the correct
r remains to be determined.

Computations of the small size structure with crack band method may lead to practical problems: one
must ensure the crack band be smaller than the finite element (band must be embedded) and so we have
difficulties to analyze structure smaller than a certain size: the mesh is too coarse. Therefore we suggest
to estimate the maximum plastic strength, compute the ratio ηp (Eq. 10.4) and use the extended law for
deterministic-energetic size effect (10.2). Comparison of formulas with or without lp and the influence
on r value is given in Fig. 10.1b). The fitted r depends on the range of structural sizes with computed
nominal strengths. Example of two erroneous fits of deterministic formula are shown in Fig. 10.1b).

Based on analysis we can conclude, the abutment movement that could have been tolerated in order to
prevent the maximum flexural stress multiplied by safety factor from attaining the tensile strength limit
must have been correspondingly smaller than that estimated at that time by the investigating committee
unaware of size effect.

10.5.3 Statistical size effect and formula verification

The study has been made for three different combinations/pairs of Weibull modulus and statistical length
L0. The strength/predictivity of the newly derived formula is documented in Fig. 10.5.3 for the three
alternatives. These alternatives differ in Weibull modulus m and the ration of length scales L0 and Db.
Let us remind that targets were to show using a simplified calculation:

• what is the reduction of design strength caused by statistical/probabilistic size effect using estima-
tion by the statistical formula taking into account particular value of Weibull modulus m)

• to show that if the value m is known, one can say that in the range real sizes of the dam the
distribution of (random) nominal strength is exactly Weibull and the characteristic strength (5%
percentile) and the design strength (1% percentile) can be estimated accurately without sophisti-
cated and time-consuming statistical simulation based on SFEM.

The alternatives in Fig. 10.5.3 shows that the superimposition procedure is feasible.
The question arises how can we check the correctness of new formula in mean sense and also the

variability? Recently developed stochastic fracture mechanics tool based on ATENA software and prob-
abilistic simulation software FREET has been utilized for this purpose. The feasibility and outcomes of
stochastic fracture analysis using such combination have been recently documented on practical examples
of statistical failure simulation and reliability assessment of some existing bridge structures. The software
system can consider uncertainties in material model as random variables with prescribed statistical dis-
tribution and correlation structure. As the basis of superimposition here was NLFEM ATENA software,
utilization of randomized version is a logical step forward to correct numerical verification.

There were two discretization meshes in this stochastic finite element computation: (i) deterministic
FEM mesh; (ii) mesh of stochastic blocks (random variables).

Ad. (i) deterministic mesh must be dense enough to capture stress and strain gradients. But on the
other hand the width of elements (dimension perpendicular to cracks/principal stresses) must be higher
than the crack band width (we use crack band model). The number of elements has been kept for the
majority of scaled dam sizes (8 elements per D, squared elements if possible, small sizes got very “long”
elements due to the requirement of embedded crack band within finite element). The curved edge has
been modelled by circular line.

Ad. (ii) “stochastic mesh” (mesh of random blocks – variables) must be small enough to capture
prescribed spatial variability of the strength parameter K1. However, this would be hardly possible for
large scaled dams: large models would consist of thousands of random variables. Therefore a stability
postulate trick has been used leading to reduction of number of random variables. The fundamental
principle of the role of stability postulate was given by Bažant (1997, 1998b), direct utilization in practical
FEM simulation has been shown by Novák, Bažant, and Vořechovský (2003a) and Lehký and Novák
(2002). Since the bending moment is not constant throughout the span (large dams), the discretization
of random part had to be relatively dense even if we used the stability postulate of extreme values (we
could not use one scaled random variable for the whole span - the stress is not constant).
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The random variables (blocks) has been assigned with random strength scaled according to their
actual size l (Weibull scaling): mean strength µ(l) = µ(l0)(l/l0)

(1/m), COV= const. given by Weibull
modulus m (see Eq. 6.4 p. 63 for two-parameter Weibull PDF).

µ(l0) = s(l0)Γ (1 + 1/m) (10.16)

where l0 is the reference length at which the mean (strength) is µ(l0) (mean of the random strength
field) and the shape parameter of the Weibull distribution is s(l0). We have chosen the reference length l0
to be the autocorrelation length lρ. Therefore for large sizes we actually model the (minima of) Weibull
strength random field with the mean value µ(l0) and autocorrelation length lρ because the minima of
random process converge to minima of IID for large lengths (see Vořechovský and Chudoba (2004a) for
details and numerical study).

The exception to the scaling has been made for random elements (variables) smaller than l0. For
those the mean strength has been used (µ(l0)) supported by the argument that the real random strength
field is spatially correlated (the autocorrelation) and the mean value of strength cannot exceed a certain
limit (the mean value of the random field µ(l0)).

Statistical simulation could capture size effect curve in mean sense and also the scatter represented by
the whole cumulative probability distributions, right part of Fig. 10.5.3. Both position (mean strength)
and slope (representing variability) is captured well. Note that neither the mean size effect curve nor the
distribution are the best fits!!! Some discrepancies appeared, but they can be attributed to numerical
obstacles of nonlinear fracture mechanics calculation and probabilistic simulation LHS (tail sensitivity).

The following table 1 shows the strength reduction (compared to the deterministic value obtained by
NLFEM simulation) due to the statistical size effect for increasing value of Weibull modulus m.

Table 10.1: Reduction of nominal strength of a real size dam. Shows the difference between NLFEM
prediction and Stochastic NLFEM. First column represents reduction percentage factor (a factor by which
the deterministically calculated strength must be multiplied to predict the statistical-energetic size effect
strength)

Weibull COV strength reduction factor percentage difference
modulus m [*100 %] due to statistical size effect [%]

10 12.0% 54% -46%
12 10.1% 60% -40%
18 6.9% 71% -29%
24 5.2% 77% -23%
30 4.2% 81% -19%
40 3.2% 85% -15%

We predict the mean nominal strength by the formula and the whole distribution can be considered
Weibull (whose parameters are known!!)

10.6 Concluding remarks

The chapter clarifies the interplay of deterministic and statistical length scales of quasibrittle structures
and proposes/derives an analytical formula for the nominal mean strength prediction of crack initiation
problems.

The paper suggest a practical procedure of superimposition of deterministic and statistical size effect
at crack initiation. It requires only a few FEM analysis using scaled sizes. The prediction can be done
without any special Monte Carlo simulation, which is usually used to deal with influence of uncertainties
on structural strength.
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standard deviation as predicted by stochastic simulations and comparison with the prediction by the new
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simulations (64 simulations). Curves are not fitted (m known)



Chapter 11

Overall conclusions and
recommendations for future research

The conclusions, main contributions and possible future work directions in four main areas of the thesis
are summarized in the following text.

Simulation of random variables and reliability techniques

The new achievement is mainly the new efficient technique of imposing the statistical correlation based
on Simulated Annealing. The technique is robust, efficient and very fast and has many advantages in
comparison with former techniques. The increased efficiency of small-sample simulation technique LHS
can also be achieved by the proper selection of samples representing the layered probability content of
random variables. The methods are implemented by author and constitutes the computation core of the
multipurpose software package FREET for statistical, sensitivity and reliability analysis of computational
problems (appendix A).

A future work is recommended in:

• Implementation of advanced method for probabilistic analysis, in particular response surface, FORM
and Importance Sampling;

• Further research in simulation of random vectors with prescribed simultaneous probability density
function or just marginals and covariances.

Development and testing of random fields simulation

The superior efficiency of LHS and correlation control is confirmed in the context of sample simulation
of random fields. An attempt has been done to show better the role of correlation control – diminishing
spurious correlation in random field simulation and importance of sampling schemes for simulation of
uncorrelated random variables. It has been shown that a spurious correlation influences significantly
the scatter of estimated autocorrelation function of simulated random fields. A clear indication of this
scatter is the fulfillment of norms used as objective functions in Simulated Annealing algorithm to diminish
spurious correlation at the level of underlying random variables.

The quality of simulated samples of random fields should be assessed. An error assessment procedure
has been proposed and performed for six alternatives of sampling schemes. Diminishing spurious corre-
lation does not influence the capturing of these statistics but does influence significantly a realization of
autocorrelation function of a random field.

A future work is recommended in:

• Study, development and implementation of simulation of non-Gaussian stochastic fields;
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• The newly developed tools of stochastic computational mechanics in the form of stochastic finite
element method (SFEM) will now enable complex numerical investigations. We expect both (i)
verification of newly achieved theoretical results (e.g. in the form of the proposed size effect law for
quasibrittle failure at crack initiation) and (ii) numerical computations of real examples focused on
the influence of nonlinearities on failure probability estimations.

Analysis of sources of randomness and size effect on strength of yarns for textile reinforced
concrete

Deterministic micromechanical computational model has been developed and used for identification and
study of sources of randomness affecting the evolution of the stiffness during the loading of yarns in
tension. It has been shown that the stiffness evolution in the early stages of loading influences the
maximum tensile force in the bundle. The model serves as a basis for a complex stochastic analysis of
the complex size effects including all mentioned effects employing the random field simulation technique.
Such stochastic modeling framework has been used for derivation of new size effect laws for each of the
considered sources of randomness separately. Based on the lessons learned from the numerical analysis
we have suggested approximation formulas describing the size effect laws due to the random strength or
stiffness along the bundle. The obtained results have been verified with the help of the available analytical
and numerical fiber bundle models by Smith and Daniels. However, the available fiber bundle models
could not be used for modeling the response measured in the yarn tensile test, because they impose
pratically unachieveable assumptions of regular force transmission in the clamping and do not capture
the disorder in the structure of filaments in the bundle.

The performed stochastic simulations with the available experimental data revealed the existence

of statistical length scale that could be captured by introducing an autocorrelation of random material
properties. This represents the departure from the classical Weibull-based models that are lacking any
kind of length-scale.

A future work is recommended in the following areas:

• The introduced model delivers a quasi-ductile response of the bundle from the ensemble of interact-
ing linear-elastic brittle components with irregular properties. In this respect the present approach
falls into the category of lattice models used to model quasi-brittle behavior of concrete. It should
be noted, that due to the possibility to trace the failure process in a detailed way both in the exper-
iment and in the simulation, the modeling of multi-filament yarns provides a unique opportunity to
study the local effects in quasi-brittle materials. The possibility to generalize the results for other
quasi-brittle materials is worth further intensive studies;

• The obtained statistical material characteristics turned out to be of crucial importance for robust
modeling of crack bridges occurring in the cementitious textile composites. The “well designed”
microstructure of the yarn and of the bond layer in the crack bridge may significantly increase the
overall deformation capacity (ductility) of structural elements. The lessons learned from the present
study will be applied in a more targeted development of new yarn and textile structures with an
improved performance of crack bridges. Development of micromechanical model of bond behavior
and its coupling with the developed models will be pursued next.

Combined energetic and statistical size effect of quasibrittle materials

We have presented a broader theoretical treatment of connections between fiber bundle models and size
effect of concrete structures. It has been shown how the statistical size effect at fracture initiation can be
captured by a stochastic finite element code based on extreme value statistics, simulation of the random
field of material properties, and chain of bundles transition. The computer simulations of the statistical
size effect in 1D based on stability postulate of extreme value distributions match the test data. However,
in some cases the correct behavior cannot be achieved for other tests using a 1D treatment. A proper
way of treating the stress redistribution is by the proposed macro-elements in 2D (or 3D), the scaling of
which is based on the fiber bundle model capturing partial load-sharing and ductility in the finite element
system.

A simple and effective strategy for capturing the statistical size effect using stochastic finite element
methods is developed which overcomes the problematic feature of stochastic finite element method: How
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to capture the statistical size effect for structures of very large sizes. The idea is to emulate the recursive
stability property from which the Weibull extreme value distribution is derived. Using the combination
of a well feasible type of Monte Carlo simulation and computational modeling of nonlinear fracture
mechanics, a probabilistic treatment of complex fracture mechanics problems is rendered possible. The
approach may be understood as a computational trick based on extreme value theory similar to its
counterpart in deterministic nonlinear analysis of fracture – crack band model.

The interplay of deterministic and statistical length scales of quasibrittle structures has been clarified
and the analytical formula for the nominal mean strength prediction of crack initiation problems has been
derived and proposed. The law features two separate scaling lengths of structures governing two different
sources of size effect: deterministic and statistical. The role of these two lengths in the transition from
energetic to statistical size effect of Weibull type is explained.

A practical procedure of superimposition of the deterministic and statistical size effects at crack
initiation has been suggested. It requires only a few NLFEM analysis using scaled sizes so the necessity
of time consuming statistical simulation is avoided. The prediction can be done without any special
Monte Carlo simulation, which is usually used to deal with the influence of uncertainties on structural
strength. The efficiency of the procedure is demonstrated on the numerical example of Malpasset dam
failure reinterpretation.

A future work is recommended in the following areas:

• Study of nonlocal continuum is needed for its extension to probabilistic nonlocal continuum model.
Numerical studies are needed with strain and stress fields entering the Weibull integral for failure
probability which were computed by an efficient material model and NLFEM code;

• The role of other fracture mechanics parameters besides the tensile strength should be clarified in
the Weibull-type formulation;

• The statistical distribution of the first eigenvalue of the tangential stiffness matrix of the structure
becoming non-positive (a criterion of failure, in the case of load control) should be explored in the
context of several alternatives of SFEM;

• Comparisons with results obtained by discrete lattice models. Questions about the dependence
and/or interaction of deterministic and statistical length scales in the context of this class of models;

• Study and development of the mean universal size effect law and the whole distribution of nominal
strength covering the transition from crack initiation problems to notched specimens will be pursued
next.
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Appendix A

Software FREET

Based on papers: Novák, Vořechovský, Rusina, Lehký, Teplý, and Keršner (2002d); Novák, Teplý,
Keršner, and Vořechovský (2004)

A.1 Introduction

The aim of this chapter is to describe a multi-purpose probabilistic software for statistical, sensitivity
and reliability analyzes of engineering problems FREET (Novák, Vořechovský, Rusina, Lehký, Teplý,
and Keršner, 2002d; Novák, Teplý, Keršner, and Vořechovský, 2004). The software is based on efficient
reliability techniques described above (chapters 3 and 2) and the computational core is implemented by
the author in C++ programming language. The GUI (graphical user interface) is being implemented by
Dr. Rusina in C++. The software is designed in the form suitable for relatively easy assessment of any
user-defined computational problem written in C++, FORTRAN or any other programming languages.
The approach is general and can be applied for basic statistical analysis of computationally intensive
problems. The basic aim of statistical analysis is to obtain the estimation of the structural response
statistics (failure load, deflections, cracks, stresses, etc.). All steps will be illustrated using particular
windows of the software.

The software is based on “randomization” of a particular problem in the sense of Monte Carlo simu-
lation using small-sample Monte Carlo simulation technique LHS (McKay et al., 1979; Ayyub and Lai,
1989; Novák et al., 1998). Random variables are randomly generated under their probability distribution
functions, statistical correlation among them is imposed by the optimization technique called Simulated
Annealing, (Vořechovský and Novák, 2002, 2003b; Vořechovský et al., 2002a). Consequently, the analyzed
problem is repeatedly solved and statistical characteristics of structural response can be obtained and
assessed. The results of such statistical simulation are basically statistical characteristics of structural
response (eg. ultimate capacity, stress, deflection, crack width, etc.). Additionally, sensitivity analysis
can be performed based on non-parametric rank-order statistical correlation. Reliability analysis is sug-
gested based on simplified approach - curve fitting enabling estimation of theoretical failure probability
and/or reliability index. This technique appeared to be very robust.

The software is designed in the form suitable for relatively easy probabilistic assessment of any user-
defined problem. The name of the software reflects this strategy – FREET is the acronym for Feasible
REliability Engineering Tool. FREET can be utilized in two versions – as “stand alone” multipurpose
program for any user-defined problem (M-version) and as module integrated with ATENA (A-version).
FREET is now developed in two versions: the first version FREET–M - the analyzed response or limit
state function is defined completely outside as a subroutine written in C++ or FORTRAN program-
ming languages (a particular problem may be implemented into FREET as DLL unit). This concept
allows to work with complicated problems which have already been tested deterministically at the level
of programming languages. In the second version FREET–A - the ATENA computational model of
nonlinear fracture mechanics for concrete is fully integrated. The main aim of this text is to describe
how to efficiently utilize software FREET with all details and possibilities provided by the graphic user
interface.
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The second aim is to demonstrate the feasibility of the approach to analyze nonlinear fracture mechan-
ics computational models (developed particularly with the commercial FEM software package ATENA:
advanced nonlinear fracture mechanics code to which the FREET software was integrated). The integra-
tion is controlled by SARA Studio software Cervenka and Pukl (2004). Full understanding of the concept
of this integration is beyond the framework of this text. The user of A-version of FREET should get next
information support from ATENA and SARA documentation.

This probabilistic software has been recently successfully integrated with an advanced nonlinear frac-
ture mechanics solution of concrete structures - the finite element program ATENA (Cervenka and Pukl,
2003; Vořechovský and Červenka, 2002). The modeling of uncertainties by random fields (chapter 4) is
under development by the author (Vořechovský and Novák, 2003a; Vořechovský, 2004b) using efficient
simulation techniques (e.g. Yamazaki and Shinozuka, 1990; Zhang and Ellingwood, 1994, 1995; Novák
et al., 2000; Olsson and Sandberg, 2002, and many others).

FREET software has been applied recently for the probabilistic analysis of problems from both the
industrial and academic fields. Due to the limited space and the focus of this thesis no applications are
presented except specialized size effect studies. We only mention that the approach has been already
shown, e.g., on the modulus of rupture size effect problem (Novák, Vořechovský, Pukl, and Červenka,
2001), reliability analysis of concrete bridge (Pukl et al., 2003b).

The FREET software integrated with the ATENA software were used to capture both the statistical
and deterministic size effect obtained from experiments. Probabilistic treatment of nonlinear fracture
mechanics in the sense of extreme value statistics has been recently applied for two crack initiation
problems which exhibits Weibull-type the statistical size effect: four point bending plane concrete beams
due to bending span, (Novák et al., 2003a). This work (and many other applications) are presented in
the final Part III of the dissertation.

A.2 Main program tree

Main program tree is located in the left field of the program window. It represents main features – key
entries of the program guide the user when using the program. There are three basic user’s dialog parts
in present version of software FREET, see Fig. A.1.

1. Stochastic Model

• Random Variables

• Statistical Correlation

2. Latin Hypercube Sampling

• General Data

• Check Samples

• Model Analysis

3. Simulation Results Assessment

• Histograms

• LSF Definition

• Sensitivity Analysis

• Reliability Figure A.1: Main program tree

A.3 Stochastic model

A.3.1 Random variables

The window “Random Variables”, Fig. A.2, allows the user-friendly input of basic random variables
of analyzed problem. Uncertainties are modeled as random variables described by their probability
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density functions (PDF). Every random variable has its name and is described by theoretical probability
distribution and statistical characteristics, statistical parameters or by combination of characteristics
and parameters – button “Descriptors”. The user can select from the set of 20 selected theoretical
models like normal, lognormal, Weibull, rectangular, etc. The current list of distributions implemented
by the author is summarized at the end of this chapter, section A.9 The model is selected from the
list of distributions which will appear when clicking on “Distribution”, see Fig. A.3. Random variables
should be basically described by statistical characteristics (statistical moments): Mean value, standard
deviation (or coefficient of variation) and coefficient of skewness, respectively. Standard deviation or
coefficient of variation is recalculated automatically with respect to mean value when entering the value.
Statistical characteristics or statistical parameters or combination of characteristics and parameters are
used to describe distribution. Parameters symbols are unique for each distribution and the meaning
of parameters is explained fully in section A.9. In order to furnish user with others possible ways to
describe random variables, the three sets of descriptors are available. The first option is a set of statistical
moments (in number of degrees of freedom). The second option of through parameters of distribution.
Since sometimes a mixed information is available (some of parameters and some moments), the third
possibility enables to input the most usual combination of the descriptors. This is possible through the
complex library of distribution functions written by the author in fully object setting and with utilization
of virtual (abstract) classes. There is additional option for calculation at the level of selected PDF model
based on the design of library: “Distribution support calculation” button allows cross-recalculation of
moments, parameters and their combination, probabilities, percentiles, etc., see Fig. A.5.

Random variable can be described also by raw data here – select “User-defined distribution”, Fig A.4.
In this case the name of input text file with statistical set arranged in columns or rows is required or
data can be directly written into the edit box. The shape of probability distribution of particular random
variable is shown in main graphical window, checkbox “Drawing” serves for selection of probability
distribution (PDF) or cumulative probability distribution (CDF) windows.

Figure A.2: Probability distribution window – PDF

Random variables can be divided into several categories (see bottom of the window). User can select
a new category and within a selected category a new variable. This option is included in order to make
handling of large number of random variables more transparent.

The category “Comparative values” is always included in window and can be used in the limit state
function definition. But this category is not always utilized: in case we analyze only a response function or
all variables of limit state function is defined using DLL function (section A.4.1). Briefly, a user-supplied
dynamically linked library gives the user absolute freedom in the type of problem to be solved. User
simply writes his own algorithm and link it independently of FREET program.

M-version: Basic random variables related to response/limit state function should be defined in
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Figure A.3: Combo box for selection of PDF Figure A.4: User-defined distribution (Raw data)

Figure A.5: Distribution support calculation

increasing order – Category 1 – Variable 1, 2, ..., etc., Category 2 – Variable 1, 2, . . . , etc., Category 3 ...,
etc. This order must correspond with a vector of random variables defined in special DLL unit written
in C++, FORTRAN or other programming languages. The structure of a special DLL unit of M-version
is described in section A.4.1.

A-version: Input parameters of ATENA deterministic computational model (decided to be ran-
domized in ATENA) are transferred into FREET (with their name and deterministic value). Groups in
FREET are equivalent to numbers of materials defined in ATENA. Additional random variables can be
defined by “New variable” button to form limit state function in the category “Comparative values”. This
is necessary if reliability analysis is planned – ATENA provides response function (maximum capacity
corresponding to peak load, deflection or crack width) and these quantities should be “compared” (with
load, maximum allowable deflection or maximum crack width) in order to form limit state function.

In order to support the input of statistical characteristics the possibility to work with user-defined
database was worked out. This is fully described in the FREET program documentation (Novák et al.,
2002d).

A.3.2 Statistical correlation

The window “Statistical Correlation” serves for the input of statistical correlation among random variables
described by correlation matrix, see Fig. A.6 or table 3.1, page 21. The user can work at the level of subset
of correlation matrices (each group of random variables has its own submatrix of correlation coefficients)
or at the global level (all random variables resulting to a large correlation matrix – “All variables”).
Statistical correlation among the variables is imposed using simulated annealing algorithm (or by other
methods) in subsequent step. The correlation is illustrated graphically during interactive input: the
active item is highlighted in an upper window (Fig. A.6), the positive definiteness is checked. Note,
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that the simulated annealing applied consequently does not require this strong requirement (theoretically
described in Part 3, section 3.4.2). Since the knowledge on full correlation structure is usually very poor
(and the user can face problems to input a correlation matrix which is positive definite) this feature can
be considered to be an advantage from such practical point of view.

Figure A.6: Window Statistical Correlation

The result of this step is the defined set of input parameters for computational model – the random
vector consisting of input variables.

A.4 Response or limit state function definition

A.4.1 FREET M-version

The analyzed response/limit state function is defined completely outside as subroutine written in C++,
FORTRAN or other programming languages. This subroutine has to be compiled into DLL. The structure
of an DLL program unit should follow prescribed convention. We provide here self-explanatory example
for simple function

G(X) =
∑

i

Xi (A.1)

Program units in C++ and FORTRAN are shown in figs. A.7 and A.8 respectively. Note the
difference in indexing: X1=input[0], X2=input[1], X3=input[2], etc. in C++ and X1=input(1),
X2=input(2), X3=input(3), etc. in FORTRAN. Note, that the number of random variables in DLL
function must correspond with number of random variables defined in “Stochastic model”. This is fully
the responsibility of an user, FREET cannot check this fundamental requirement.

A.4.2 FREET A-version

ATENA computational model of nonlinear fracture mechanics for concrete is integrated fully using spe-
cially developed software environment called SARA Studio developed by Červenka Consulting company
in Prague. It enables communication between FREET and ATENA software. SARA Studio is described
fully in different documentation, here only basic concept is outlined.

Response variable is selected at the level of ATENA deterministic model. It is associated with defini-
tion of monitoring points and assigned quantities. Response function represents ATENA computational
modeling — response is a quantity at monitoring point. Typically it is a peak load of load deflection
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#include

return

_declspec dllexport  double __stdcall         int      double
double ret=0;

ret;
}

(         )                  XlimitC(    *num,       *input){

for(int i=0;i<*num;i++)ret+=input[i];

"math.h"

//Calculates sum of the values

Figure A.7: The structure of external program unit in C++

real*8 function

integer*4
real*8

do

enddo

end function

XlimitF(num,input)

input(*)

i=1,num
XlimitF=XlimitF+input(i)

XlimitF

!DEC$ ATTRIBUTES DLLEXPORT::XlimitF
num,i

! Calculates sum of the values

Figure A.8: The structure of external program unit in FORTRAN

diagram or maximum deflection or maximum crack width. Variables at monitoring points represent
responses and they are transferred into FREET software.

Response variables from ATENA can be evaluated statistically in part “Simulation results assessment”
including sensitivity analysis. For reliability analysis, these response variables have to be combined with
additionally defined comparative values defined as additional variables in “Stochastic model”. Number of
values associated with monitoring points can be combined with number of comparative values. It enables
definition of limit state functions representing ultimate and serviceability limit states. This combination
is described in details in section A.6.

A.5 Sampling

A.5.1 General data

Latin hypercube samples are prepared first, samples are reordered by simulated annealing approach (or
any other approach, section 3.2 and 3.3) in order to match required correlation matrix as close as possible,
see Fig. A.9 or 3.6. Basic parameter — number of simulations of LHS is on input here. Random input
parameters are generated according to their PDF using Monte Carlo type simulation and generated
realizations of random parameters are used as inputs for analyzed function (computational model). The
solution is performed repeatedly and results (structural responses) are saved. Three alternatives of
sampling scheme can be selected (sampling type): LHS – probabilistic means (preferable alternative),
LHS – probabilistic median or crude Monte Carlo. For the information about sampling alternatives see
section 3.2.

Simulated annealing (sec. 3.3, p. 26) is used as the most universal and robust technique to impose
statistical correlation. A heuristic time prediction is included; the estimation is rough and the real time
needed for correlation treatment may differ. Parameters of simulated annealing are estimated as suitable
defaults however, user can change them. The process of the imposing of statistical correlation can be
stopped using the button “Stop Sampling”. The window with information about the achieved accuracy
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(deviations of elements in correlation matrix is controlled – desired and obtained) is displayed after
simulated annealing process, see Fig. A.10.

The result of this step is the table of random realization of random variables which exhibits statistical
correlation as close as possible to prescribed correlation matrix. Note, that in case of very small number
of simulations (e.g. tens), imposition of prescribed correlation is difficult and maximum deviation in
“Reached correlation” window can be high.

Figure A.9: Imposing of statistical correlation, see figure 3.6

Figure A.10: Information about the achieved accuracy

A.5.2 Check of the samples

The aim of this entry is to have the possibility to check the results of sampling scheme applied to random
variables before running repetitive calculation. Achieved correlation matrix, after simulated annealing is
visualized in lower triangular part of correlation matrix, upper triangle contains desired correlation. If
user clicks on diagonal, upper part window will show associated sampled variable, see Fig. A.11. If an
user’s click is targeted to correlation coefficient out of diagonal, the image of sampled values is shown
where correlation is clearly visible, figure A.12 or figures 3.2 and 3.3 (pp. 24–25).

A.5.3 Model analysis

Repetitive calculations of response/limit state functions is started when the user activates this button.
The process is monitored and after all random simulations are completed the results are transferred back
into FREET software.

M-version: Analyzed user-defined function defined in the DLL function unit is repeatedly solved.
FREET will require to input name of DLL function which contains response/limit state function as is
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Figure A.11: Window “Check samples” – sampled marginal variable

Figure A.12: Window “Check samples” – sampled pair of variables (correlation check)

described in section A.4.1. The user has to use double-click on “New Model Function” definition. The
name of internal functions programmed in DLL function is indicated on the screen (Exported functions),
see Fig. A.13. Button “Run Model Analysis” starts the real simulation process.

Note, that not only one DLL function can be defined here. FREET allows to define several functions
here and in consequent step – simulation – treat them simultaneously. Every function will use the same
set of randomly generated parameters. The user should take into account the overall time of whole
simulation in case of computationally demanding response/limit state functions.

A-version: All solutions of nonlinear fracture mechanics analysis with randomized inputs are per-
formed via SARA Studio environment and output files of ATENA outputs are saved. Responses associated
with monitoring points are transferred into FREET after ending simulation process.
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Figure A.13: Input of DLL function window

A.6 Simulation results assessment

A.6.1 Histograms

After simulation process successfully finishes, the resulting set of structural responses can be statistically
evaluated. The results are: histogram, mean value, variance, coefficient of skewness and empirical prob-
ability density function of structural response. This basic statistical assessment is visualized through the
window Histograms, see Fig. A.14. Theoretical models of PDF are treated using a standard Kolmogorov-
Smirnov test in order to describe the most suitable models from the group of available models. The most
suitable model (with the highest significance level) is listed at the top.

Figure A.14: Basic statistical assessment – histogram and statistical characteristics
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A.6.2 Limit state function definition

The window is designed for the definition of a limit state function by combination of response variable
obtained via simulation and comparative values. Usual type of combination is in the form (see Fig. 2.1,
page 10)

Z = R − E (A.2)

where R is a response and E action of loading (carrying capacity limit state).

For serviceability limit state the form is just opposite (comparative value − response, e.g. allowable
maximum deflection − real deflection).

The concept of all possibilities of combinations of response monitor variables and comparative values
using basic algebraic operations (+ , − , / ) to define any basic form. Standard pictures of PDF of R and
E are illustratively shown including safety margin Z, see Fig. A.15.

Figure A.15: Response R, action of loading E, safety margin Z = R − E

A.6.3 Sensitivity analysis

The window “Sensitivity analysis” shows the importance of random variables. Nonparametric rank-order
correlation coefficients are calculated between all random input variables and response variables. Positive
and negative sensitivity is shown in separate columns. There are two ways of graphical representation –
cartesian and parallel coordinates representations. Parallel coordinate representation provides an insight
into analyzed problem. Random variables are ordered with respect of the sensitivity expressed by non-
parametric rank-order correlation coefficient. Positive and negative sensitivity is shown in Fig. A.16 and
in Fig. A.17 (parallel coordinates) and in Fig. A.18 and Fig. A.19 (cartesian coordinates).

Note 1: When the user assess this relative measure of sensitivity it is necessary to take into account
the signs of input random variables considered in Stochastic model. Therefore an option to change the
sign of variable (x−1) is included here.

Note 2: “What–if–study” known as deterministic sensitivity analysis can be done easily by FREET.
To study absolute influence of a specific, we can consider it as random variable with rectangular dis-
tribution (other variables are deterministic). Sensitivity window in cartesian coordinates will provide
just functional relationship between variables, varying between upper and lower limits of rectangular
distribution, and response variable, see Fig. A.20.
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Figure A.16: Window Sensitivity Analysis – positive sensitivity (parallel coordinates)

Figure A.17: Window Sensitivity Analysis – negative sensitivity (parallel coordinates)

A.6.4 Reliability analysis

Histogram of safety margin as specified in limit state function definition is visualized. The aim of this
window is to provide an estimation of theoretical failure probability (and reliability index respectively).

Following alternatives are implemented:

• Cornell’s reliability index and corresponding failure probability based on normal probability distri-
bution for safety margin;

• failure probability estimation based on the selection of the most suitable theoretical model for PDF
of safety margin (curve fitting approach);

• calculation of failure probability based on classical frequency definition of probability, Nf/NSim,
where Nf is number of realizations resulting in a failure (negative limit state function) and NSim is
total number of simulations. Note, that this alternative can be used only for very large number of
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Figure A.18: Window Sensitivity Analysis – positive sensitivity (cartesian coordinates)

Figure A.19: Window Sensitivity Analysis – negative sensitivity (cartesian coordinates)

simulations estimating high failure probabilities. Software FREET is generally designed for small
numbers of simulations, this classical Monte Carlo based estimation of failure probability is included
here only for reference studies.

A.7 Software ATENA

The non-linear finite element program ATENA was designed for realistic numerical simulation of behavior,
damage and failure of concrete and reinforced concrete structures (Margoldová et al., 1998). ATENA is
able to reflect all the essential features of concrete behavior in tension as well as in compression, including
non-linear fracture mechanics. It employs advanced material models and efficient solution strategies, tools
for FE discretization etc. (Cervenka and Pukl, 2003). ATENA is conceptually object oriented, written
in MS Visual C++, and based on MS-Windows environment. ATENA offers user-friendly graphical
interface, which enables an efficient solving of practical engineering problems. It offers an excellent
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Figure A.20: “What–if–study” using sensitivity analysis window

Figure A.21: Curve fitting and estimators of failure probability pf

support during all stages of the non-linear FE-analysis - preparation of input data, analysis run-time (see
Fig. A.22), and evaluation of the obtained results.

Fracture is one of the most important features of concrete behavior with a significant non-linear effect.
Tensile cracking model in ATENA is based on the smeared crack approach, which replaces the discrete
cracks, occurring in real concrete structures, by strain localization in a continuous displacement field.
Concrete fracture in 2D is covered by unique “SBETA material model” of non-linear fracture mechanics
based on fracture energy (best with an exponential softening law derived experimentally by Hordijk
(1991)). Another efficient model available is the microplane model M4 due to Bažant et al. (2000).

The objectivity of the finite element solution is assured by crack band approach of Bažant and Oh
(1983) – the descending branch of the stress-strain relationship is adjusted according to the finite element
size and mesh orientation in SBETA model or more generally, the strains are divided into elastic and
inelastic part according to the prescribed crack band width.

The hierarchical, multilevel layered structure of ATENA (see Fig. A.23) enabled an effective inte-
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gration of the probabilistic software FREET using COM-interface communication. User interaction is
supported also for data-exchange ASCII files. The direct communication between ATENA graphical user
environment (GUE) and FREET graphical user interface enables employment of ATENA GUI during
the stochastic analysis and ensures full compatibility of data information with the deterministic ATENA
analysis.

Figure A.22: ATENA run-time interactive graphical window

1

software shell - FREET COM interface

IMPORT/EXPORT

ASCII DATA-FILES

ATENA SOLUTION CORE

ATENA GUE

USER

Figure A.23: Hierarchical structure of ATENA

A.8 Conclusions

1. Efficient methods of statistical and sensitivity analysis are described and implemented in a multipur-
pose probabilistic software FREET. The FREET software development and its recent applications
are documented. This software is opened to analysis of any particular computational problem and
generally can be used especially in case of computationally intensive problems based on non-linear
FEM. The ability of used statistical techniques based on LHS method to estimate efficiently statis-
tical parameters of response using only small number of samples is an advantage of the approach.
The software is designed in the form suitable for a relatively easy assessment of any user-defined
computational problem. It can be applied without serious difficulties even to realistic computation-
ally demanding reliability problems. This is very important in case of non-linear analysis which
is computationally rather demanding, and number of samples should be minimized as much as
possible.

2. Software FREET was integrated with non-linear fracture mechanics commercial software ATENA
for advanced analysis of concrete and reinforced concrete structures. This complex system enables
to use the stochastic non-linear analysis and reliability assessment consistently in a homogeneous
user-friendly environment, which is an important precondition for the use in practice.
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3. The approach is general and can be applied for basic statistical analysis of computationally intensive
(e.g. fracture mechanics) problems. The aim of stochastic calculation could be the estimation of
reliability of the structure using statistical characteristics of response. Sensitivity analysis can
help to estimate which parameters plays the major role in the structural response and should be
recognized well.

4. These new exciting efforts are advancing beyond strict boundaries of design codes and attempt to
treat in a combined manner the material non-linearity and reliability. The change of engineering
thinking together with economical consequences can be expected in near future.

A.9 Available probability distributions in FREET

This section overviews the probability distribution functions available in the software FREET and pro-
grammed by author.

1. Deterministic

2. Normal (Gaussian)

Parameters (2):

• Scale “Std” σ : σ > 0 (Standard deviation)

• Location “Mean” µ : −∞ ≤ µ ≤ +∞ (mean value)

Probability density function

fX(x) =
e
−1

2

(
X − µ

σ

)2

σ
√

2π
; −∞ ≤ X ≤ +∞

3. Log-Normal

Parameters (3):

• Scale “lambda” λ

• Shape “zeta” ζ : ζ > 0

• Location “bound” s : −∞ < s < ∞ (left bound, a shift)

Probability density function:

fX(x) =
1

ζ(x − s)
√

2π
e
−1

2

[
ln(x − s) − λ

ζ

]2

; s ≤ X ≤ +∞

4. Log-Normal (2 par)

Parameters (2):

• Scale “lambda” λ

• Shape “zeta” ζ : ζ > 0

Probability density function:

fX(x) =
1

ζx
√

2π
e
−1

2

[
ln(x) − λ

ζ

]2

; s ≤ X ≤ +∞

5. Weibull-min (EVT III, 3 par)

Parameters (3):
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• Scale “w” w : w > s

• Shape “m” m : m > 0

• Location “bound” s : −∞ < s < ∞ (left bound, a shift)

Probability density function:

fX(x) =
m

(w − s)

(
x − s

w − s

)m−1

e
−

(
x − s

w − s

)m

= m (w − s)
−m

(x − s)
m−1

e
−

(
x − s

w − s

)m

; s ≤ X ≤ +∞

6. Weibull-min (EVT III, 2 par)

Parameters (2):

• Scale “w” w : w > 0

• Shape “m” m : m > 0

Probability density function:

fX(x) =
m

w

( x

w

)m−1

e
−

( x

w

)m

= m (w)
−m

(x)
m−1

e
−

( x

w

)m

; 0 ≤ X ≤ +∞

7. Weibull-max (EVT III, 3 par)

Parameters (3):

• Scale “w” w : w < s

• Shape “m” m : m > 0

• Location “bound” s : −∞ < s < ∞ (right bound, a shift)

Probability density function:

fX(x) =
m

s − w

(
s − x

s − w

)m−1

e
−

(
s − x

s − w

)m

; −∞ ≤ X ≤ s

8. Weibull-max (EVT III, 2 par)

Parameters (2):

• Scale “w” w : w < 0

• Shape “m” m : m > 0

Probability density function:

fX(x) =
−m

w

( x

w

)m−1

e
−

( x

w

)m

; −∞ ≤ X ≤ 0

9. Rayleigh

Parameters (2):

• Scale “beta” β : 0 < β

• Location (shift)“bound” ε : −∞ < ε < ∞

Probability density function:

fX(x) =
(x − ε)

β
e
−1

2

(
x − ε

β

)2

; ε ≤ X ≤ +∞
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10. Exponential

Parameters (2):

• Scale “lambda” λ : λ > 0

• Location “bound” ε : −∞ < ε < ∞ (Standard Exponential Distribution ε = 0)

Probability density function:

fX(x) = λ eλ (ε − x) ; ε ≤ X ≤ ∞

11. Laplace

Parameters (2):

• Scale “lambda” λ : λ > 0

• Location “Mean” ε : −∞ < ε < ∞ (Standard Laplace Distribution ε = 0)

Probability density function:

fX(x) =
λ

2
e−λ |X − ε| ; −∞ ≤ X ≤ ∞

12. Rectangular (Uniform)

Parameters (2):

• Location “a” a : −∞ < a

• Location “b” b : a < b < +∞

Probability density function:

fX(x) =
1

b − a
; a ≤ X ≤ b

13. Triangular

Parameters (3):

• Location “a” a : −∞ < a

• Location “b” b : b > a

• Location “c” c : a ≤ c ≤ b

Probability density function:

fX(x) =





2 (x − a)
(b − a)(c − a)

, a ≤ X ≤ c;

2 (b − x)
(b − a)(b − c)

, c < X ≤ b;

14. Pareto

Parameters (2):

• Location, Scale “k” k : k > 0

• Shape “a” a : a > 0

Probability density function:

fX(x) =
a

k

(
k

x

)a+1

=
a · ka

xa+1
; k ≤ X ≤ +∞

15. Logistic

Parameters (2):



142 Software FREET

• Scale “beta” β : β > 0

• Location “alpha” α : −∞ ≤ α ≤ +∞(mean value)

Probability density function:

fX(x) =

exp

(
α − x

β

)

β
[
1 + exp

(
α−x

β

)]2 ; −∞ ≤ X ≤ +∞

16. Half-Normal

Parameters (2):

• Scale “beta β : β > 0

• Location “bound ε : −∞ ≤ ε ≤ +∞

Probability density function:

fX(x) =
2

β
ϕ

(
x − ε

β

)
; ε ≤ X ≤ +∞

where ϕ(·) is standard normal distribution function (density)

17. Gumbel-min (EVT I)

Parameters (2):

• Shape “beta” β : β > 0

• Location “mode” s : −∞ < s < ∞ (modus)

Probability density function:

fX(x) =
1

β
exp

[
x − s

β
− exp

(
x − s

β

)]
= fY (y) =

1

β
ey · e−ey

; −∞ ≤ X ≤ +∞

where Y (X) = (X − s)/β (for the standard form)

18. Gumbel-max (EVT I)

Parameters (2):

• Shape “beta” β : β > 0

• Location “mode” s : −∞ < s < ∞ (modus)

Probability density function:

fX(x) =
1

β
exp

[
s − x

β
− exp

(
s − x

β

)]
= fY (y) =

1

β
ey · e−ey

; −∞ ≤ X ≤ +∞

where Y (X) = (s − X)/β (for the standard form)

19. Gamma

Parameters (3):

• Shape “gamma” γ : γ > 0

• Scale “beta” β : β > 0

• Location “bound” ε : −∞ < ε < +∞
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Probability density function:

fX(x) =

(
x − ε

β

)(γ−1)

· e

(
−x − ε

β

)

β Γ (γ)
=

y(γ−1) · e−y

β Γ (γ)
; ε ≤ X ≤ +∞

where Y (X) = (X − ε)/β

20. Gamma (2 par)

Parameters (2):

• Shape “gamma” γ : γ > 0

• Scale “beta” β : β > 0

Probability density function:

fX(x) =

(
x

β

)(γ−1)

· e

(
−x

β

)

β Γ (γ)
=

y(γ−1) · e−y

β Γ (γ)
; 0 ≤ X ≤ +∞

where Y (X) = X/β
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Vanmarcke, E. H., Shinozuka, M., Nakagiri, S., Schuëller, G. I., Grigoriu, M., 1986. Random fields and
stochastic finite elements. Structural Safety (3), 143–166.
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(On reliability calculations of nonlinear continuum mechanics problems). Master’s thesis, Institute
of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Brno, Czech
Republic.
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Scientific PhD international workshop. Brno University of Technology, pp. CD–ROM.
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Vořechovský, M., 2004c. Stabilita a konvergence numerických metod při simulaci extrémńıch hodnot
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anced reliability using concept of Eurocode 1). In: Reliability of Structures, 2nd International Confer-
ence, Faculty of Civil Engineering, Ostrava University of Technology. Academy of Sciences – Institute
of Theoretical and Applied Mechanics of the ASCR Prague, Ostrava, Czech Republic, pp. 141–144.
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Prague, Czech Republic.
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(15c) Vořechovský, M., 2003. Application of extreme value theory for size effect of concrete structures.
In: 5th Scientific international PhD workshop. Brno University of Technology, Faculty of Civil
Engineering, Brno, Czech Republic, CD-ROM proc.
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neering Mechanics, Faculty of Civil Engineering, Brno University of Technology / ČervenkaConsulting,
Praha, Czech Republic, program documentation – Part 1 – Theory.

Diploma thesis
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