STRU**Č**NÝ NÁVOD PRO POUŽÍVÁNÍ PROGRAMU SCIA ENGINEER 2010.1

(RÁMOVÉ KONSTRUKCE)

http://www.scia-online.com/

STUDENTSKÁ VERZE PROGRAMU SCIA ENGINEER 2010.1

http://www.scia-campus.com/

STAŽENÍ STUDENTSKÉ VERZE PROGRAMU SCIA ENGINEER 2010.1

Na webových stránkách společnosti Nemetschek Scia je po zaregistrování se možné si stáhnout studentskou verzi programu Scia Engineer 2010.1

Rozdíl mezi verzemi:

SEN 2009 – pro spuštění studentské verze programu je nutné být stále připojen na internet, pokud nejste připojeni, program je spuštěn v DEMO verzi.

SEN 2010 a vyšší – připojení na internet je nutné pouze při aktivaci licence, po této aktivaci již není nutné být připojen k internetu a program lze spustit jako studentskou verzi.

http://www.scia-campus.com/

- 1. Výběr jazyka
- <u>Registrace a stahování</u> je nutné vyplnit všechny údaje "Potvrdit a přejít na stránku stahování".
- Na email, který jste zadali při registraci, Vám dojdou veškeré informace jak postupovat při stahování a instalaci programu a jeho následné aktivaci (email obsahuje linky na stažení verze 2010.1 a návodů).
- eLearning <u>http://elearning.scia-online.com/</u> pouze anglicky nebo německy návod na základní práci v programu – prezentace

DÁLE JE UVEDEN STRUČNÝ NÁVOD JAK PRACOVAT S PROGRAMEM SCIA ENGINEER, TENTO NÁVOD JE PRO VERZI 2010.1

1. SPUŠTĚNÍ PROGRAMU SEN 2010.1

Automaticky se otevírá okno pro otevření již stávajícího projektu (lze změnit Nastavení – Možnosti – Ostatní – Automatické načtení projektu)

2. ZÁKLADNÍ NABÍDKA PŘI NEOTEVŘENÉM PROJEKTU

<u>Záložka "Soubor"</u> Nový Otevřít Import – lze importovat různé typy projektů

Záložka "Nastavení"

Možnosti – Prostředí – Aktuální styl nástrojových lišt (úplně dole)

LZákladní (pouze některé součásti nabídek)

L Plné nástrojové lišty (kompletní nabídky)

Ostatní – Automatické načtení projektu

– Automatické ukládání dat

– Nastavené jazykové verze

- ∟Program
- ∟Výstup

Ochrana – Otevřít nastavení ochrany

Záložka "Nápověda"

Obsah – referenční příručka – základní manuál programu

– manuály k jednotlivým částem programu – pro většinu pouze anglicky

 SOUBOR – NOVÝ – KONSTRUKCE S VÝPOČTEM Automaticky se otevře okno "Data o projektu" Záložka "Základní data"

Data – lze zadat vlastní název, popis, autora a datum vytvoření projektu

- Konstrukce výběr dle typu konstrukce, kterou chceme modelovat
- Úroveň projektu standard × rozšířená (doporučeno, některé funkce navíc)

– Model – jeden (běžně) × fáze výstavby a provozu (speciální úloha)

Materiál – výběr výchozích materiálů projektu, které budou při zadávání konstrukce automaticky nastaveny (lze dodatečně změnit)

..... – charakteristiky vybraného materiálu

Norma – dle které normy bude výpočet proveden, pokud je vybrána norma EC-EN ⇒ výběr národního dodatku–do projektu lze přidat další normy

Záložka "Funkcionalita"

různá nastavení projektu, pokud chceme počítat nějaké speciální případy

Klimatická zatížení – pokud chceme na konstrukci uvažovat zatížení větrem a sněhem

Záložka "Zatížení" (nastavení lze měnit při vybrané funkcionalitě Klimatická zatížení)

Zatížení větrem – Podle normy×Uživatelský (lze zadat vlastní průběh zatížení) *Zatížení sněhem* – Podle normy×Tíha sněhu (vlastní hodnota)

4. OTEVŘE SE NOVÝ PROJEKT

Automaticky se otevře nabídka *"Konstrukce"* – slouží k zadání geometrie a podepření konstrukce

Pokud chceme kdykoliv změnit "Data o projektu": Strom – Projekt

- 5. ZADÁNÍ PR**ůř**ezů
 - → Knihovny Průřezy

 \rightarrow Nástrojový panel "*Projekt"* – ikonka 🗓

→ pokud chci zadat nějaký konstrukční prvek a nejsou předem nadefinovány průřezy ⇒ automatické otevření *"knihovny průřezů"*

dle nastavených materiálů v projektu ⇒ nabídka různých typů průřezů (válcované průřezy, beton, číselný, obecný průřez,...)

"Obecný průřez" – můžu zadat vlastní geometrii průřezu, popř. importovat z CADu

- lze využít, pokud potřebujeme zjistit průřezové charakteristiky nějakého průřezu
- 6. ZADÁNÍ GEOMETRIE KONSTRUKCE

→ při založení nového projektu se automaticky otevře nabídka "Konstrukce"

 \rightarrow Strom – Konstrukce

"Prutový prvek" – Prvek – geometrie se zadá na obrazovce (souřadnice, bodový rastr)

Nosník – přímý vodorovný prut o zadané délce *Sloup* – svislý prut o zadané délce

- absolutní × relativní souřadnice (pomocí @); Oddělovač X a Z souřadnic ";"
- ukončení příkazu klávesa "Esc"
- bodový rastr příkazová řádka ikonka (Nástroje Nastavení bodového rastu a trasování); lze nastavit typ a rozteče rastru, ke kterému se bude při zadávání konstrukce automaticky kurzor přichytávat
- Nastavení Jednotky, nastavení používaných jednotek a počtu desetinných míst (automaticky: m, kN, °, MPa, kg, deformace: mm, mrad)

7. PODEPŘENÍ KONSTRUKCE

Po zadání konstrukčních prvků se zpřístupní nabídka: Konstrukce - Výpočtová data

- Podpora (v uzlu, na prutu)
- Klouby na prutu

alternativa – Příkazová řádka – ikony 🚈 🕿 돰 긐 🚅 🖼

8. ZATĚŽOVACÍ STAVY

Strom – Zat. stavy, Kombinace – Zat. stavy

"Typ působení" – stálé: vl. tíha (automaticky se spočítá) × standard (ostatní stálé) – nahodilé: statické

"Skupina zatížení" – LG1 – Stálé, LG2 – LGn – nahodilé

- vztah - standard, výběrová (př. vítr - zleva×zrava), společně

- zatížení - stálé, nahodilé, mimořádné, zemětřesení

- EC1 - typ zatížení - zařazení do skupin uvedených v normě

<u>"Specifikace"</u> – standard, teplota, statický vítr a sníh (funkcionalita klim. zatížení) <u>"Působení"</u> – dlouhodobé, střednědobé, krátkodobé, okamžité

9. KOMBINCE ZATĚŽOVCÍCH STAVŮ

Strom – Zat. stavy, Kombinace – Kombinace

"Typ" – lze vybrat z přednastavených kombinací dle zvolené normy

- obálka předpis pro automatickou generaci kombinací
- lineární jedna konkrétní uživatelská kombinace
- EC-EN nejčastěji EN-MSÚ, EN-MSP,

- do kombinace lze vybrat všechny nebo pouze některé zat. stavy

10. ZATÍŽENÍ

Strom – Zatížení

- → výběr ZS do kterého se bude zatížení vkládat, do ZS typu VI. tíha nelze vkládat zatížení
- \rightarrow bodová síla, spojité zatížení, teplota, moment, posun bodu

11. OKNO VLASTNOSTI

Pokud je vybraný uzel, prvek, podpora atd. lze pomocí tohoto okna měnit jejich vlastnosti a nastavení

Uzel - jméno, souřadnice, atd.

Prvek – jméno, průřez, natočení prvku, geometrie, atd.

Podpora – jméno, natočení, volná×tuhá×pružná v jednotlivých směrech Zatížení – jméno, směr, typ, úhel, hodnota, ZS, atd.

12. GEOMETRICKÉ MANIPULACE

- $\rightarrow O pravy$
- → Nástrojový panel "Geometrické operace"
- → kopírování, přesouvání, otáčení, zrcadlení, řez, atd.
- → kopírovat nebo přesunout přídavná data (podpory, zatížení)

13. !!!ULOŽIT PROJEKT PŘED VÝPOČTEM!!!

Pokud si neuložíme model před výpočtem, mohou se nám výpočtem data poškodit, poté by nebylo možné v případě potřeby model pouze upravit, ale musel by se dělat celý znovu.

14. VÝPO**Č**ET

Strom – Výpočet, Síť – Kontrola geometrických dat

- Propojit prvky/uzly
- Nastavení sítě
- Nastavení řešiče Zanedbat deformaci od smykové síly

(výsledky shodné s ručním výpočtem)

- Lokální zahuštění sítě (význam u 2D prvků)
- Generace sítě (význam u 2D prvků)
- Výpočet dle typu analýzy lze zvolit typ výpočtu

15. VÝSLEDKY

(přístupné po proběhnutí výpočtu)

Strom – Výsledky – Přemístění uzlů

- Podpory Reakce
- Nosníky Vnitřní síly na prutech
 - Deformace prutu

Okno – Vlastnosti – nastavení co přesně chceme zobrazit za výsledky \rightarrow obnovit

16. DOKUMENT

Slouží pro textové výstupy z programu. Strom – Dokument

příklad 1

Pomocí programu Scia Engineer zjistěte uzlové deformace a průběhy vnitřních sil na následující konstrukci:

- 1. SPUŠTĚNÍ PROGRAMU SEN
- ZALOŽENÍ NOVÉHO PROJEKTU Soubor – Nový – Konstrukce s výpočtem Automaticky se otevře okno "Data o projektu" Konstrukce – Rám XZ

Materiál – Beton – C 12/15 – zkontrolovat zda hodnota modulu pružnosti odpovídá zadání

- 3. ZADÁNÍ PR**ŮŘ**EZU
 - → Knihovny Průřezy

 \rightarrow Nástrojový panel "*Projekt"* – ikonka

Vložíme průřez typu "*Beton" – "obdélník" – Přidat* Zkontrolujeme, zda se automaticky nastavil námi zvolený materiál a zadáme rozměry našeho průřezu H = 300 mm, B = 200 mm – *Aktualizovat Vlastnosti* – zkontrolujeme A a I_y s ručním výpočtem \rightarrow OK \rightarrow Zavřít

4. ZADÁNÍ GEOMETRIE KONSTRUKCE

→ Strom – Konstrukce – Prutový prvek – Nosník Otevře se okno "Vodorovný nosník" – Průřez – zkontrolovat nastavení průřezu

– *Délka* – 5 m

 $\rightarrow OK$

- \rightarrow vložíme 1. prut (Příkazová řádka Zadejte bod zadáme souřadnice bodu 0;0)
- \rightarrow ukončíme příkaz pomocí klávesy "Esc"
- \rightarrow stisknutí klávesy "Esc" podruhé \Rightarrow zrušení výběru prvku

→ Strom – Konstrukce – Prutový prvek – Prvek

Otevře se okno "Prvek" – Průřez – zkontrolovat nastavení průřez – OK

- \rightarrow vložíme 2. prut (zadáme souřadnice počátečního bodu 5;0; koncový bod @4;0)
- → ukončíme příkaz pomocí klávesy "Esc"
- \rightarrow stisknutí klávesy "Esc" podruhé \Rightarrow zrušení výběru prvku
- 5. PODEPŘENÍ KONSTRUKCE

Konstrukce – Výpočtová data – Podpora – v uzlu Otevře se okno "Podpora v uzlu" – nastavíme X, Z, Ry – Tuhý \rightarrow OK \rightarrow vložíme podpory do krajních uzlů (0;0 a 9;0) \rightarrow 2× klávesa "Esc" Příkazová řádka – \leq – vybereme vnitřní uzel \rightarrow 2× klávesa "Esc" Zavřeme nabídku "Konstrukce"

6. ZATĚŽOVACÍ STAVY

Strom – Zat. stavy, Kombinace – Zat. stavy Typ působení – Stálé, Typ zatížení – Standard \rightarrow Zavřít (zajímá nás pouze průběh vnitřních sil od daného zatížení)

7. ZADÁNÍ ZATÍŽENÍ

Strom – Zatížení

- \rightarrow výběr ZS do kterého se bude zatížení (v našem případě máme pouze jeden ZS)
- \rightarrow Bodová síla v uzlu Směr Z - Hodnota - -20 $\rightarrow OK \rightarrow Vyberte uzel "N2" \rightarrow 2 \times klávesa "Esc"$ → Bodová síla – v uzlu – Směr – X - Hodnota - -30 $\rightarrow OK \rightarrow Vyberte uzel "N2" \rightarrow 2 \times klávesa "Esc"$ → Spojité zatížení – na prutu – Rozložení – rovnoměrné - Hodnota - -8 $\rightarrow OK \rightarrow$ Vyberte prvek "B1" \rightarrow 2× klávesa "Esc" → Teplotou – na prutu – Rozložení – lineární – Horní delta – -10 – Spodní delta – -5 $\rightarrow OK \rightarrow$ Vyberte prvek "B2" \rightarrow 2× klávesa "Esc" \rightarrow Moment – na prutu – Hodnota – -30 - Pozice x - -0.75 $\rightarrow OK \rightarrow$ Vyberte prvekl "B2" \rightarrow 2× klávesa "Esc"

Zobrazení hodnot zatížení

 \rightarrow Pohled – Parametry zobrazení – Parametry zobrazení pro všechny entity

→ Příkazová řádka – 📴 – Dialog pro nastavení

→ Pravé tlačítko myši – Parametry zobrazení pro všechny entity

Záložka *"Zatížení/Hmoty" – Popis zatížení* – Zobrazit popisy, Hodnota pro výpočet →OK

Zavřeme nabídku "Zatížení"

8. !!!ULOŽIT PROJEKT PŘED VÝPOČTEM!!!

9. VÝPO**č**et

Strom – Výpočet, Síť – Nastavení řešiče – Zanedbat deformaci od smykové síly → OK (výsledky shodné s ručním výpočtem) – Výpočet – Lineární výpočet → OK

Po dokončení výpočtu se nám zobrazí okno s informacemi o výpočtu \rightarrow OK

10. VÝSLEDKY

(přístupné po proběhnutí výpočtu) Strom – Výsledky – Přemístění uzlů Okno – Vlastnosti – Hodnoty – Více složek (Ux, Uz, Fiy) → Obnovit Nastavení – Jednotky – Deformace – Délka, Úhel – nastavit 3 desetinná místa Okno – Vlastnosti → Obnovit (porovnejte s hodnotami získanými ručním výpočtem pomocí ODM)

Strom – Výsledky – Podpory – Reakce Okno – Vlastnosti – Hodnoty – Více složek (Rx, Rz, My) → Obnovit (porovnejte s hodnotami získanými ručním výpočtem pomocí ODM)

Strom – Výsledky – Nosníky – Vnitřní síly na prutech Okno – Vlastnosti – Hodnoty – N (Vz, My); Extrém – Lokální → Obnovit (porovnejte s hodnotami získanými ručním výpočtem pomocí ODM)

Strom – Výsledky – Nosníky – Deformace prutu Okno – Vlastnosti – Hodnoty – Deformovaná konstrukce → Obnovit 11. DOKUMENT
Strom – Dokument – Nový – Knihovny – Průřezy, Materiály → Přidat
Konstrukce – Uzly, Prvky, Podpory v uzlech → Přidat
Zatížení – Bodové zatížení, Moment v uzlu → Přidat
Výsledky – Vnitřní síly na prutech

– Přemístění uzlů, Reakce \rightarrow Přidat

PŘÍKLAD 2

Pomocí programu Scia Engineer zjistěte průběhy vnitřních sil na následující konstrukci:

PŘÍKLAD 3

Pomocí programu Scia Engineer zjistěte průběhy vnitřních sil na následující konstrukci:

Zatížení – Posun bodu – Podpory (alternativa: Na prutu – rel. Posun)

příklad 4

Pomocí programu Scia Engineer zjistěte uzlové deformace a průběhy vnitřních sil na následující konstrukci:

E = 27 GPa (C12/15), H₁ = 600 mm, H₂ = 450 mm, B = 400 mm, α_t = 1.10⁻⁵°C⁻¹

PŘÍKLAD 5

Pomocí programu Scia Engineer zjistěte uzlové deformace a průběhy vnitřních sil na následující konstrukci:

PROGRAM SCIA ENGINEER 2010

PŘÍKLAD 6

Pomocí programu Scia Engineer zjistěte průběhy vnitřních sil na následující konstrukci:

Vzdálenost rámů: 4m; materiál: beton C25/30, výztuž B 500A, užitné zatížení 7,5kN/m²; ostatní stálé zatížení: stropy – g=3,65 kN/m²; střecha – g=4,8 kN/m²; norma: EC–EN; národní dodatek: Česká CSN–EN NA; sněhové pásmo IV (S_k=0,85kN/m²); větrná zóna II (v_{b,0}= 27,5m/s); nadmořská výška: 300m; kategorie terénu II.

- 1. SPUŠT**Ě**NÍ PROGRAMU SEN
- 2. ZALOŽENÍ NOVÉHO PROJEKTU

Soubor – Nový – Konstrukce s výpočtem Automaticky se otevře okno *"Data o projektu"* <u>Záložka *"Základní data"*</u> Konstrukce – Rám XZ Materiál – Beton – C 25/30; Materiál výztuže – B 500A Národní norma – EC–EN Národní dodatek – Česká CSN–EN NA

- EN 1991: Zatížení konstrukcí EN 1991-1-3 (zatížení sněhem) 🛄 dle zadání
- EN 1991: Zatížení konstrukcí EN 1991-1-4 (zatížení větrem) 📖 dle zadání

<u>Záložka "Funkcionalita"</u> Klimatická zatížení – aktivovat

Záložka "Zatížení"

Zatížení větrem – Podle normy – zkontrolovat nastavení viz NA

Zatížení sněhem – Podle normy - zkontrolovat nastavení viz NA

3. ZADÁNÍ PR**ůř**ezu

 \rightarrow Knihovny – Průřezy

 \rightarrow Nástrojový panel "*Projekt"* – ikonka 🗓

Vložíme průřez typu "*Beton" – "obdélník" – Přidat* Zkontrolujeme, zda se automaticky nastavil námi zvolený materiál a zadáme rozměry průřezů $\rightarrow OK \rightarrow Zavřít$

4. ZADÁNÍ GEOMETRIE KONSTRUKCE

Strom – Konstrukce – Rozšířené zadání – Katalogové bloky – Rám 2D (vybereme odpovídající rám dle zadání) \rightarrow OK \rightarrow zadáme rozměry dle zadání (prozatím výška pater shodná 3,6m, následně spodní patro upravíme) \rightarrow OK \rightarrow OK \rightarrow vložíme blok do projektu (bod vložení 0;0,5)

Pozn. Konstrukci lze zadat po jednotlivých prutech viz. Příklad 1.

Úprava výšky spodního patra:

Vybereme všechny uzly se souřadnicí z=0,5m (vybereme 1 uzel \rightarrow v okně vlastnosti označíme "Souř. Z" \rightarrow \searrow tzn. vybrat prvky podle vlastnosti \rightarrow označí se všechny uzly s z=0,5m) \rightarrow změníme "Souř. Z" na 0 \rightarrow pruty se prodlouží na požadovanou délku

5. PODEPŘENÍ KONSTRUKCE

Konstrukce – Výpočtová data – Podpora – v uzlu Otevře se okno "Podpora v uzlu" – nastavíme X, Z, Ry – Tuhý \rightarrow OK \rightarrow vložíme podpory do všech uzlů se souřadnicí z=0 \rightarrow 2× klávesa "Esc" Pozn. Před zadáváním podpor můžeme výše popsaným způsobem vybrat uzly se souřadnicí z=0, poté se podpory vloží do těchto uzlů. Zavřeme nabídku "Konstrukce" 6. ZATĚŽOVACÍ STAVY

Strom – Zat. stavy, Kombinace – Zat. stavy

LC1 – vl. tíha – Typ působení: Stálé; Skupina zatížení: LG1; Typ zatížení: Vlastní tíha

LC2 – ost. stálé – Typ působení: Stálé; Skupina zatížení: LG1; Typ zatížení: Standard

LC3 – užitné–šach I – Typ působení: Nahodilé; Skupina zatížení: LG2; Specifikace:

Standard (LG2 - Vztah: Výběrová; EC1-typ zatížení: Kat E-Sklady)

- LC4 užitné–šach II Typ působení: Nahodilé; Skupina zatížení: LG2; Specifikace: Standard
- LC5 užitné–plné Typ působení: Nahodilé; Skupina zatížení: LG2; Specifikace: Standard

- LC6 sníh Typ působení: Nahodilé; Skupina zatížení:: LG3; Specifikace: Sníh (LG3 Vztah: Standard; EC1-typ zatížení: Sníh)
- LC7 vítr-zleva Typ působení: Nahodilé; Skupina zatížení:: LG4; Specifikace: Statický vítr (LG4 – Vztah: Výběrová; EC1-typ zatížení: Vítr)
- LC8 vítr-zprava Typ působení: Nahodilé; Skupina zatížení: LG4; Specifikace: Statický vítr
- 7. KOMBINACE ZATĚŽOVACÍCH STAVŮ

Strom – Zat. stavy, Kombinace – Kombinace

CO1 – Typ: EN-MSÚ (STR GEO) Sada B – Přidat všechny zatěžovací stavy do kombinace

CO2 – Typ: EN-MSP char. – Přidat všechny zatěžovací stavy do kombinace

Projekt – Národní dodatek – Česká CSN-EN NA – EN 1990: Zásady navrhování

konstrukcí – zde lze nastavit součinitele kombinace pro EN-MSÚ (STR GEO) a pro EN-MSP

- 8. ZADÁNÍ ZATÍŽENÍ
 - Strom Zatížení
 - → výběr ZS do kterého se bude zatížení
 - LC2 ost. stálé Spojité zatížení na prutu (stropy 3,65×4=14,6 kN/m; střecha 4,8×4=19,2 kN/m)
 - LC3 užitné-šach I Spojité zatížení na prutu 7,5×4=30 kN/m
 - LC4 užitné-šach II Spojité zatížení na prutu 7,5×4=30 kN/m
 - LC5 užitné-plné Spojité zatížení na prutu 7,5×4=30 kN/m
 - Pozn. Rozmístění užitného zatížení viz obrázky výše.
 - LC6 sníh dvě možnosti:
 - → Spojité zatížení na prutu dle normy spočítáme příslušnou charakteristickou hodnotu
 - → Generátor zat. sněhem zadáme hodnotu vzdálenosti rámů (4m) → OK automaticky se vygeneruje příslušné zatížení dle normy
 - LC7 vítr-zleva dvě možnosti:
 - → Spojité zatížení na prutu dle normy spočítáme příslušnou charakteristickou hodnotu (příp. zatížení do uzlů v úrovni stopů a střechy)
 - → Generátor zat. větrem Směr: zleva; Vzdálenost rámů: 4m → OK automaticky se vygeneruje příslušné zatížení dle normy
 - LC7 vítr-zprava dvě možnosti:
 - → Spojité zatížení na prutu dle normy spočítáme příslušnou charakteristickou hodnotu (příp. zatížení do uzlů v úrovni stopů a střechy)
 - → Generátor zat. větrem Směr: zprava; Vzdálenost rámů: 4m → OK automaticky se vygeneruje příslušné zatížení dle normy
- 9. !!!ULOŽIT PROJEKT PŘED VÝPOČTEM!!!
- 10. VÝPO**č**ET

Strom – Výpočet, Síť – Výpočet – Lineární výpočet \rightarrow OK Po dokončení výpočtu se nám zobrazí okno s informacemi o výpočtu \rightarrow OK

11. VÝSLEDKY

(přístupné po proběhnutí výpočtu) *Strom – Výsledky – Podpory – Reakce Strom – Výsledky – Nosníky – Vnitřní síly na prutech* Okno – *Vlastnosti – Typ zatížení:* Zatěžovací stavy × Kombinace