HOW TO DESIGN TRANSVERSAL BRACING?

...worked examples for BO003 and BO006

WORKED EXAMPLE 5: TRANSVERSAL BRACING OF TRUSS GIRDER ROOF STRUCTURE

Make assessment of transversal bracing of truss girder roof structure. Bracing members are made of solid timber C20. Diagonals of K-shape bracing are designed as solid sections. Service class no 2 is considered.

Axonometry

Spatial structure members:
blue - truss girder + columns
orange - purlins
red - longitudinal vertical bracing green - transversal bracing (roof part + wall part)

Building geometry

$L=12 \mathrm{~m}$	truss girder span = building width
$d=48 \mathrm{~m}$	building length
$h=8 \mathrm{~m}$	building high
$\alpha=12^{\circ}$	pitch of the roof (slope)

Material

Solid timber C20 according to the EN 338
$f_{\mathrm{c}, 0, \mathrm{k}}=19 \mathrm{MPa} \quad$ characteristic compressive strength along the grain
$f_{\mathrm{c}, 0, \mathrm{~d}}=k_{\mathrm{mod}} \cdot \frac{f_{\mathrm{c}, 0 \mathrm{k}}}{\gamma_{\mathrm{M}}}=0,9 \cdot \frac{19}{1,3}=13,15 \mathrm{MPa} \quad$ design compressive strength along the grain

Load states

LS1 Wind pressure and wind suction on gable walls
$q_{\mathrm{p}}(z)=0,864 \mathrm{kN} / \mathrm{m}^{2}$ (for CZ wind area II, terrain category II and building high 8 m above terrain)

pressure coefficients for external pressure for areas D and E for geometrical ratio $h / d=8 / 48=0,166$
$c_{\mathrm{pe}, \mathrm{D}}=+0,7$
$c_{\mathrm{pe}, \mathrm{E}}=-0,3$
wind pressure on windward wall and wind suction on leeward wall
$w_{\mathrm{e}, \mathrm{D}}=q_{\mathrm{p}}(z) \cdot c_{\mathrm{pe}, \mathrm{D}}=0,864 \cdot 0,7=0,60 \mathrm{kN} / \mathrm{m}^{2}$
$w_{\mathrm{e}, \mathrm{E}}=q_{\mathrm{p}}(z) \cdot c_{\mathrm{pe}, \mathrm{E}}=0,864 \cdot-0,3=-0,26 \mathrm{kN} / \mathrm{m}^{2}$
actions on transversal roof bracing
$f_{\mathrm{w}, \mathrm{D}}=w_{\mathrm{e}, \mathrm{D}} \cdot \frac{h}{2}=0,60 \cdot \frac{8}{2}=2,40 \mathrm{kN} / \mathrm{m} \quad f_{\mathrm{w}, \mathrm{E}}=w_{\mathrm{e}, \mathrm{E}} \cdot \frac{h}{2}=0,26 \cdot \frac{8}{2}=1,04 \mathrm{kN} / \mathrm{m}$

LS2 Wind friction on the roof cladding
Friction length
$d_{\mathrm{fr}}=d-\min \{2 \cdot b ; 4 \cdot h\}=48-\min \{2 \cdot 12 ; 4 \cdot 8\}=48-\min \{24 ; 32\}=24 \mathrm{~m}$
Friction area

$$
A_{\mathrm{fr}}=d_{\mathrm{fr}} \cdot \frac{L}{\cos \alpha}=24 \cdot \frac{12}{\cos 12^{\circ}}=294 \mathrm{~m}^{2}
$$

Friction force
$F_{\mathrm{fr}}=c_{\mathrm{ff}} \cdot A_{\mathrm{fr}} \cdot q_{\mathrm{p}}(z)=0,02 \cdot 294 \cdot 0,864=5,08 \mathrm{kN}$
where $c_{\mathrm{fr}}=0,02$ is friction coefficient for asphalt shingle
Transfer to uniformly distributed load
$f_{\text {fr }}=\frac{F_{\text {fri }}}{L / \cos \alpha}=\frac{5,08}{12 / \cos 12^{\circ}}=0,41 \mathrm{kN} / \mathrm{m}$

LS3 Stabilizing load (forces)

$f_{\mathrm{st}}=k_{L} \cdot \frac{n \cdot N_{\mathrm{c}, \mathrm{d}}}{k_{\mathrm{f}, 3} \cdot L / \cos \alpha}=1 \cdot \frac{4,0 \cdot 48,23}{30 \cdot 12 / \cos 12^{\circ}}=0,52 \mathrm{kN} / \mathrm{m}$
where
length coefficient
$k_{L}=\min \left\{\begin{array}{l}1 \\ \frac{15}{L / \cos \alpha}\end{array}\right\}=\min \left\{\begin{array}{l}1 \\ \left.\sqrt{\frac{15}{12 / \cos 12^{\circ}}}\right\}=\min \left\{\begin{array}{l}1 \\ 1,11\end{array}\right\}=1\end{array}\right.$
factor of manufacturing quality
$k_{\mathrm{f}, 3}=30$ (for bad manufacturing quality)
number of roof girders (upper chords) stabilized by one transversal bracing
$n=\frac{\text { number of roof girders }}{\text { number of transversal bracing }}=\frac{16}{4}=4$

weighted average of design normal forces in upper chords where lengths of upper chord l_{i} is weight
$N_{\mathrm{c}, \mathrm{d}}=\frac{\Sigma N_{i} \cdot l_{i}}{\Sigma l_{i}}$

Upper chord	Load state		Load combination
	LS1 permanent	LS2 snow	LC1 $=1,35 \times \mathrm{LS} 1+1,5 \times \mathrm{LS} 2$
	$[\mathrm{kN}]$		$[\mathrm{kN}]$
H1	$-5,50$	$-13,25$	$-27,30$
H2	$-8,51$	$-20,48$	$-42,20$
H3	$-10,60$	$-25,53$	$-52,60$
H4	$-10,60$	$-25,53$	$-52,60$
H5	$-10,82$	$-26,05$	$-53,67$
H6	$-10,82$	$-26,05$	$-53,67$

upper chords notation and lengths

$N_{\mathrm{c}, \mathrm{d}}=\frac{27,30 \cdot 0,818+42,20 \cdot 0,818+52,60 \cdot 1,124+52,60 \cdot 1,124+53,67 \cdot 1,124+53,67 \cdot 1,124}{0,818+0,818+1,124+1,124+1,124+1,124}=48,23 \mathrm{kN}$

$\underline{\text { Load combinations }}$

There are special load combination for each transversal bracing (on the safe side)
$f_{1}=f_{\mathrm{w}, \mathrm{D}} \cdot \gamma_{\mathrm{Q}}+f_{\mathrm{st}}=2,40 \cdot 1,5+0,52=4,12 \mathrm{kN} / \mathrm{m}$
$f_{2}=f_{\mathrm{st}}=0,52 \mathrm{kN} / \mathrm{m}$
$f_{3}=f_{\mathrm{st}}=0,52 \mathrm{kN} / \mathrm{m}$
$f_{4}=f_{\mathrm{w}, \mathrm{E}} \cdot \gamma_{\mathrm{Q}}+f_{\mathrm{fr}} \cdot \gamma_{\mathrm{Q}}+f_{\mathrm{st}}=1,04 \cdot 1,5+0,41 \cdot 1,5+0,52=2,70 \mathrm{kN} / \mathrm{m}$

All of the transversal bracing are the same geometry and members cross sections. The most loaded of them will be analysed with load f
$f=\max \left\{f_{1} ; f_{2} ; f_{3} ; f_{4}\right\}=\max \{4,12 ; 0,52 ; 0,52 ; 2,70\}=4,12 \mathrm{kN} / \mathrm{m}$

Internal forces

Uniformly distributed load f is transformed on forces F_{i} acting in joints. The purlins which are not joint to the bracing (dashed verticals) are not considered in the calculation of internal forces.

$$
\begin{aligned}
& F_{1}=f \cdot \frac{l_{1}}{2}=4,12 \cdot \frac{1636}{2}=3,37 \mathrm{kN} \\
& F_{2}=f \cdot \frac{l_{1}+l_{2}}{2}=4,12 \cdot \frac{1,636+2,250}{2}=8,00 \mathrm{kN}
\end{aligned}
$$

$F_{3}=f \cdot \frac{l_{2}+l_{3}}{2}=4,12 \cdot \frac{2,250+2,250}{2}=9,27 \mathrm{kN}$
$F_{4}=f \cdot \frac{l_{3}+l_{4}}{2}=4,12 \cdot \frac{2,250+2,250}{2}=9,27 \mathrm{kN}$

Reactions

$R_{\mathrm{a}}=R_{\mathrm{b}}=\frac{\Sigma F_{i}}{2}=\frac{2 \cdot(3,30+7,83+9,07)+9,07}{2}=24,74 \mathrm{kN}$
Normal force in diagonals D1

$$
N_{\mathrm{D} 1}= \pm \frac{R_{\mathrm{a}}-F_{1}}{2 \cdot \cos \delta_{1}}= \pm \frac{24,74-3,30}{2 \cdot \cos 45^{\circ}}= \pm 15,16 \mathrm{kN}
$$

Normal force in diagonals D2

$$
N_{\mathrm{D} 2}= \pm \frac{R_{\mathrm{a}}-F_{1}-F_{2}}{2 \cdot \cos \delta_{2}}= \pm \frac{24,74-3,30-7,83}{2 \cdot \cos 54^{\circ}}= \pm 11,58 \mathrm{kN}
$$

Normal force in diagonals D3

$$
N_{\mathrm{D} 3}= \pm \frac{R_{\mathrm{a}}-F_{1}-F_{2}-F_{3}}{2 \cdot \cos \delta_{3}}= \pm \frac{24,74-3,30-7,83-9,07}{2 \cdot \cos 54^{\circ}}= \pm 3,86 \mathrm{kN}
$$

In one diagonal is tension force and in the second there is compression force of the same value. The compression is more unfavourable situation thus the diagonals will be check on flexural buckling.

Diagonal D1

$b=40 \mathrm{~mm}$ section depth
$h=160 \mathrm{~mm}$ section high
$N_{\text {Ed }}=-15,16 \mathrm{kN}$

Buckling to the z-axis (in y direction) is decisive.
Design compression stress along the grain
$\sigma_{\mathrm{c}, 0, \mathrm{~d}}=\frac{N_{\mathrm{Ed}}}{A}=\frac{15,16 \cdot 10^{3}}{6400}=2,37 \mathrm{MPa}$
Critical length (half of the actual length of diagonal due to joining to the neglected verticals $=$ purlins)
$L_{\mathrm{cr}, \mathrm{Z}}=1157 \mathrm{~mm}$
Moment of inertia
$I_{\mathrm{z}}=\frac{1}{12} b^{3} \cdot h=\frac{1}{12} 40^{3} \cdot 160=0,853 \cdot 10^{6} \mathrm{~mm}^{4}$
Radius of gyration

$i_{\mathrm{z}}=\sqrt{\frac{I_{\mathrm{z}}}{A}}=\sqrt{\frac{0,853 \cdot 10^{6}}{6400}}=11,5 \mathrm{~mm}$
Slenderness
$\lambda_{\mathrm{z}}=\frac{L_{\mathrm{cr}, \mathrm{z}}}{i_{\mathrm{z}}}=\frac{1157}{11,5}=100$
Relative slenderness
$\lambda_{\mathrm{rel}, \mathrm{Z}}=\frac{\lambda_{\mathrm{z}}}{\pi} \cdot \sqrt{\frac{f_{\mathrm{c}, 0, \mathrm{k}}}{E_{0,05}}}=\frac{100}{\pi} \cdot \sqrt{\frac{19}{6400}}=1,74$
Factor for reduction factor calculation
$k_{\mathrm{z}}=0,5 \cdot\left(1+\beta_{\mathrm{c}} \cdot\left(\lambda_{\mathrm{rel}, \mathrm{Z}}-0,3\right)+\lambda_{\mathrm{rel}, \mathrm{z}}^{2}\right)=0,5 \cdot\left(1+0,2 \cdot(1,74-0,3)+1,74^{2}\right)=2,16$
Reduction factor
$k_{\mathrm{c}, \mathrm{z}}=\frac{1}{k_{\mathrm{z}}+\sqrt{k_{\mathrm{z}}^{2}-\lambda_{\mathrm{rel}, \mathrm{z}}^{2}}}=\frac{1}{2,16+\sqrt{2,16^{2}-1,74^{2}}}=0,29$
Reliability criterion
$\frac{\sigma_{\mathrm{c}, 0, \mathrm{~d}}}{k_{\mathrm{c}, \mathrm{z}} \cdot f_{\mathrm{c}, 0 \mathrm{~d}}}=\frac{2,37}{0,29 \cdot 13,15}=0,62 \leq 1,0$

Diagonal D2

$b=40 \mathrm{~mm}$ section depth
$h=160 \mathrm{~mm}$ section high
$N_{\text {Ed }}=-11,58 \mathrm{kN}$

Buckling to the z-axis (in y direction) is decisive.
Design compression stress along the grain
$\sigma_{\mathrm{c}, 0, \mathrm{~d}}=\frac{N_{\mathrm{Ed}}}{A}=\frac{11,58.10^{3}}{6400}=1,81 \mathrm{MPa}$
Critical length (half of the actual length of diagonal due to joining to the neglected verticals $=$ purlins)
$L_{\mathrm{cr}, \mathrm{Z}}=1360 \mathrm{~mm}$
Moment of inertia
$I_{\mathrm{z}}=\frac{1}{12} b^{3} \cdot h=\frac{1}{12} 40^{3} \cdot 160=0,853 \cdot 10^{6} \mathrm{~mm}^{4}$
Radius of gyration
$i_{\mathrm{z}}=\sqrt{\frac{I_{\mathrm{z}}}{A}}=\sqrt{\frac{0,853 \cdot 10^{6}}{6400}}=11,5 \mathrm{~mm}$

Slenderness
$\lambda_{\mathrm{z}}=\frac{L_{\mathrm{cr}, \mathrm{z}}}{i_{\mathrm{z}}}=\frac{1360}{11,5}=118$
Relative slenderness
$\lambda_{\mathrm{rel}, \mathrm{Z}}=\frac{\lambda_{\mathrm{z}}}{\pi} \cdot \sqrt{\frac{f_{\mathrm{c}, 0, \mathrm{k}}}{E_{0,05}}}=\frac{118}{\pi} \cdot \sqrt{\frac{19}{6400}}=2,05$
Factor for reduction factor calculation
$k_{\mathrm{z}}=0,5 \cdot\left(1+\beta_{\mathrm{c}} \cdot\left(\lambda_{\mathrm{rel}, \mathrm{Z}}-0,3\right)+\lambda_{\mathrm{rel}, \mathrm{Z}}^{2}\right)=0,5 \cdot\left(1+0,2 \cdot(2,05-0,3)+2,05^{2}\right)=2,78$
Reduction factor

$$
k_{\mathrm{c}, \mathrm{z}}=\frac{1}{k_{\mathrm{z}}+\sqrt{k_{\mathrm{z}}^{2}-\lambda_{\mathrm{rel}, \mathrm{z}}^{2}}}=\frac{1}{2,78+\sqrt{2,78^{2}-2,05^{2}}}=0,21
$$

Reliability criterion
$\frac{\sigma_{\mathrm{c}, 0, \mathrm{~d}}}{k_{\mathrm{c}, \mathrm{z}} \cdot f_{\mathrm{c}, 0, \mathrm{~d}}}=\frac{1,81}{0,21 \cdot 13,15}=0,66 \leq 1,0$

Diagonal D3

Has the same geometry as diagonal D3 bur smaller normal force.

Vertical V1

Vertical V 1 is actually roof purlin
$b=100 \mathrm{~mm} \quad$ section depth
$h=160 \mathrm{~mm}$ section high
Normal force in vertical V1 can be calculate from static condition of vertical forces

$$
1100 \quad 1
$$

$$
\sum F_{\mathrm{y}}=0 \quad \Rightarrow \quad R_{\mathrm{a}}-N_{\mathrm{D} 1} \cdot \sin \gamma-N_{\mathrm{v} 1}=0
$$

$N_{\mathrm{V} 1}=R_{\mathrm{a}}-N_{\mathrm{D} 1} \cdot \sin \gamma=24,74-15,16 \cdot \sin 45^{\circ}=14,02 \mathrm{kN}$

Design compression stress along the grain
$\sigma_{\mathrm{c}, 0, \mathrm{~d}}=\frac{N_{\mathrm{Ed}}}{A}=\frac{14,02 \cdot 10^{3}}{16000}=0,876 \mathrm{MPa}$
Because of reliability criterions of member stressed by normal force and biaxial bending reduction factors for both axis have to be calculated

Critical length
$L_{\mathrm{cr}, \mathrm{y}}=L_{\mathrm{cr}, \mathrm{z}}=3200 \mathrm{~mm}$
Moment of inertia

$$
\begin{aligned}
& I_{\mathrm{y}}=\frac{1}{12} b \cdot h^{3}=\frac{1}{12} 0,10 \cdot 0,16^{3}=34,1.10^{6} \mathrm{~mm}^{4} \\
& I_{z}=\frac{1}{12} b^{3} \cdot h=\frac{1}{12} 0,10^{3} \cdot 0,16=13,3.10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Radius of gyration
$i_{\mathrm{y}}=\sqrt{\frac{I_{\mathrm{y}}}{A}}=\sqrt{\frac{34,1 \cdot 10^{6}}{16000}}=46,2 \mathrm{~mm}$
$i_{\mathrm{z}}=\sqrt{\frac{I_{\mathrm{z}}}{A}}=\sqrt{\frac{13,3 \cdot 10^{6}}{16000}}=28,9 \mathrm{~mm}$
Slenderness
$\lambda_{\mathrm{y}}=\frac{L_{\mathrm{cr}, \mathrm{y}}}{i_{\mathrm{y}}}=\frac{3200}{46,2}=69,3$
$\lambda_{\mathrm{z}}=\frac{L_{\mathrm{cr}, \mathrm{z}}}{i_{\mathrm{z}}}=\frac{3200}{28,9}=111$
Relative slenderness
$\lambda_{\mathrm{rel}, \mathrm{y}}=\frac{\lambda_{\mathrm{y}}}{\pi} \cdot \sqrt{\frac{f_{\mathrm{c}, 0, \mathrm{k}}}{E_{0,05}}}=\frac{69,3}{\pi} \cdot \sqrt{\frac{19}{6400}}=1,20$
$\lambda_{\mathrm{rel}, \mathrm{Z}}=\frac{\lambda_{\mathrm{z}}}{\pi} \cdot \sqrt{\frac{f_{\mathrm{c}, 0, \mathrm{k}}}{E_{0,05}}}=\frac{111}{\pi} \cdot \sqrt{\frac{19}{6400}}=1,92$
Factor for reduction factor calculation
$k_{\mathrm{y}}=0,5 \cdot\left(1+\beta_{\mathrm{c}} \cdot\left(\lambda_{\mathrm{rel}, \mathrm{y}}-0,3\right)+\lambda_{\mathrm{rel}, \mathrm{y}}^{2}\right)=0,5 \cdot\left(1+0,2 \cdot(1,20-0,3)+1,20^{2}\right)=1,31$
$k_{\mathrm{z}}=0,5 \cdot\left(1+\beta_{\mathrm{c}} \cdot\left(\lambda_{\mathrm{rel}, \mathrm{Z}}-0,3\right)+\lambda_{\mathrm{rel}, \mathrm{Z}}^{2}\right)=0,5 \cdot\left(1+0,2 \cdot(1,92-0,3)+1,92^{2}\right)=2,51$
Reduction factor

$$
k_{\mathrm{c}, \mathrm{y}}=\frac{1}{k_{\mathrm{y}}+\sqrt{k_{\mathrm{y}}^{2}-\lambda_{\mathrm{rel}, \mathrm{y}}^{2}}}=\frac{1}{1,31+\sqrt{1,31^{2}-1,20^{2}}}=0,54
$$

$$
k_{\mathrm{c}, \mathrm{z}}=\frac{1}{k_{z}+\sqrt{k_{\mathrm{z}}^{2}-\lambda_{\mathrm{rel}, \mathrm{z}}^{2}}}=\frac{1}{2,51+\sqrt{2,51^{2}-1,92^{2}}}=0,24
$$

Reliability criterions
$\frac{\sigma_{\mathrm{c}, 0, \mathrm{~d}}}{k_{\mathrm{c}, \mathrm{y}} \cdot f_{\mathrm{c}, 0, \mathrm{~d}}}+\frac{\sigma_{\mathrm{m}, \mathrm{y}}}{f_{\mathrm{m}, \mathrm{y}, \mathrm{d}}}+k_{\mathrm{m}} \cdot \frac{\sigma_{\mathrm{m}, \mathrm{z}}}{f_{\mathrm{m}, \mathrm{d}}}=\frac{0,876}{0,54 \cdot 13,15}+\frac{8,13}{13,8}+0,7 \cdot \frac{2,66}{13,8}=0,84 \leq 1,0$
=> condition is satisfied
$\frac{\sigma_{\mathrm{c}, 0, \mathrm{~d}}}{k_{\mathrm{c}, \mathrm{z}} \cdot f_{\mathrm{c}, 0, \mathrm{~d}}}-k_{\mathrm{m}} \cdot \frac{\sigma_{\mathrm{m}, \mathrm{y}}}{f_{\mathrm{m}, \mathrm{y}, \mathrm{d}}}+\frac{\sigma_{\mathrm{m}, \mathrm{z}}}{f_{\mathrm{m}, \mathrm{d} \mathrm{d}}}=\frac{0,876}{0,24 \cdot 13,15}+0,7 \cdot \frac{8,13}{13,8}+\frac{2,66}{13,8}=0,87 \leq 1,0$
=> condition is satisfied

[^0]
Upper and bottom chord H3 and S3

Transversal bracing chords (both upper and bottom) are actually upper chord of truss girder
$b=50+40+50=140 \mathrm{~mm} \quad$ section depth
$h=180 \mathrm{~mm} \quad$ section high
Normal force in chords H3 and S3 can be simplified calculate from bending moment on simple beam
$M=\frac{1}{8} \cdot f \cdot(L / \cos \alpha)^{2}=\frac{1}{8} \cdot 4,12 \cdot\left(12 / \cos 12^{\circ}\right)^{2}=77,51 \mathrm{kNm}$

$N_{\mathrm{S} 3}=N_{\mathrm{H} 3}= \pm \frac{M}{h}= \pm \frac{77,51}{3,2}= \pm 24,22 \mathrm{kN}$

Design compression stress along the grain
$\sigma_{\mathrm{c}, 0, \mathrm{~d}}=\frac{N_{\mathrm{Ed}}}{A_{\text {tot }}}=\frac{(53,67+24,22) \cdot 10^{3}}{23400}=3,33 \mathrm{MPa}$
Reliability criterions
$\frac{\sigma_{\mathrm{c}, 0, \mathrm{~d}}}{k_{\mathrm{c}, \mathrm{z}} \cdot f_{\mathrm{c}, 0, \mathrm{~d}}}=\frac{3,33}{0,986 \cdot 13,15}=0,26 \leq 1,0$
$\begin{aligned} & \frac{\sigma_{\mathrm{c}, 0, \mathrm{~d}}}{k_{\mathrm{c}, \mathrm{z}} \cdot f_{\mathrm{c}, 0, \mathrm{~d}}}=\frac{3,33}{0,178 \cdot 13,15}=1,42 \geq 1,0 \\ & \text { it is known from truss girder assessment }\end{aligned}$

[^0]: it is known from roof purlin assessment

