HOW TO DESIGN NAILED JOINT?

...worked examples for BO003 and BO006

WORKED EXAMPLE 4: NAILED JOINT OF DIAGONAL AND BOTTOM CHORD OF TRUSS GIRDER

Make design and assessment of nailed joint of diagonal D1 and vertical V2 and bottom chord of truss girder. Calculation will be performed for load combination composed of permanent load and snow load. Members are made of solid timber C24. Joint is made of nails with diameter $4,5 \mathrm{~mm}$ with two shear planes. Service class no 2 is considered.

Axis scheme

Detail of calculated joint

Material

Solid timber C24 according to the EN 338
$\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3} \quad$ characteristic value of timber density

Predrilling

```
\(d=4,5 \mathrm{~mm} \leq 6 \mathrm{~mm} \quad \quad \quad\) - it is not necessary to make predrilling
\(\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3} \leq 500 \mathrm{~kg} / \mathrm{m}^{3} \quad\) => it is not necessary to make predrilling
```

$t=50 \mathrm{~mm} \geq \max \left\{\begin{array}{l}7 \cdot d \\ (13 \cdot d-30) \cdot \frac{\rho_{\mathrm{k}}}{400}\end{array}\right\}=\max \left\{\begin{array}{l}7 \cdot 4,5 \\ (13 \cdot 4,5-30) \cdot \frac{350}{400}\end{array}\right\}=\max \left\{\begin{array}{l}31,5 \\ 24,9\end{array}\right\}=31,5 \mathrm{~mm}$
=> it is not necessary to make predrilling
=>No predrilling

Load carrying capacity per one fastener

Definition of thicknesses t_{1} and t_{2}
$t_{2}=50 \mathrm{~mm}$

$t_{1}=\min \{50 ; 40\}=40 \mathrm{~mm} \geq 8 \cdot d=8 \cdot 4,5=36 \mathrm{~mm} \quad$-> it can be considered as double-shear joint
Characteristic yield moment of nail made of wire with minimum tensile strength 600 MPa

$$
M_{\mathrm{y}, \mathrm{Rk}}=0,3 \cdot f_{\mathrm{u}} \cdot d^{2,6}=0,3 \cdot 600 \cdot 4,5^{2,6}=8987 \mathrm{Nmm}
$$

Characteristic embedding strength

$$
f_{\mathrm{h}, 1 \mathrm{k}}=f_{\mathrm{h}, 2 \mathrm{k}}=0,082 \cdot \rho_{\mathrm{k}} \cdot d^{-0,3}=0,082 \cdot 350 \cdot 4,5^{-0,3}=18,3 \mathrm{~N} / \mathrm{mm}^{2}
$$

Characteristic embedding strengths ratio
$\beta=\frac{f_{\mathrm{h}, 2 \mathrm{k}}}{f_{\mathrm{h}, 1 \mathrm{k}}}=\frac{18,3}{18,3}=1$
Characterisitc load-carrying capacity of one nail per one shear plane should be taken as smallest valeu found from the following formulae for different failure modes

$$
\begin{aligned}
& F_{\mathrm{v}, \mathrm{Rk}}(\mathrm{~g})=f_{\mathrm{h}, 1 \mathrm{k}} \cdot t_{1} \cdot d=18,3 \cdot 40 \cdot 4,5=3290 \mathrm{~N}=3,29 \mathrm{kN} \\
& F_{\mathrm{v}, \mathrm{kk}}(\mathrm{~h})=0,5 \cdot f_{\mathrm{h}, 2 \mathrm{k}} \cdot t_{2} \cdot d=0,5 \cdot 18,3 \cdot 50 \cdot 4,5=2060 \mathrm{~N}=2,06 \mathrm{kN} \\
& F_{\mathrm{v}, \mathrm{Rk}}(\mathrm{j})=1,05 \cdot \frac{f_{\mathrm{h}, 1 \mathrm{k}} \cdot t_{1} \cdot d}{2+\beta} \cdot\left[\sqrt{2 \cdot \beta \cdot(1+\beta)+\frac{4 \cdot \beta \cdot(2+\beta) \cdot M_{\mathrm{y}, \mathrm{Rk}}}{f_{\mathrm{h}, 1 \mathrm{k}} \cdot d \cdot t_{1}^{2}}}\right]= \\
& =1,05 \cdot \frac{18,3 \cdot 40 \cdot 4,5}{2+1} \cdot\left[\sqrt{2 \cdot 1 \cdot(1+1)+\frac{4 \cdot 1 \cdot(2+1) \cdot 8987}{18,3 \cdot 4,5 \cdot 40^{2}}}\right]=1380 \mathrm{~N}=1,38 \mathrm{kN} \\
& F_{\mathrm{v}, \text { Rk }}(\mathrm{k})=1,15 \cdot \sqrt{\frac{2 \cdot \beta}{1+\beta}} \cdot \sqrt{2 \cdot M_{\mathrm{y}, \mathrm{Rk}} \cdot f_{\mathrm{h}, 1 \mathrm{k}} \cdot d}=1,15 \cdot \sqrt{\frac{2 \cdot 1}{1+1}} \cdot \sqrt{2 \cdot 8987 \cdot 18,3 \cdot 4,5}=1400 \mathrm{~N}=1,40 \mathrm{kN}
\end{aligned}
$$

$F_{\mathrm{v}, \mathrm{Rk}}=\min \left\{F_{\mathrm{v}, \mathrm{Rk}}(\mathrm{g}) ; F_{\mathrm{v}, \mathrm{Rk}}(\mathrm{h}) ; F_{\mathrm{v}, \mathrm{Rk}}(\mathrm{j}) ; F_{\mathrm{v}, \mathrm{Rk}}(\mathrm{k})\right\}=\min \{3,29 ; 2,06 ; 1,38 ; 1,40\}=1,38 \mathrm{kN}$

g

h

j

k

Design load-carrying capacity of one nail per one shear plane

$$
F_{\mathrm{v}, \mathrm{Rd}}=k_{\mathrm{mod}} \cdot \frac{F_{\mathrm{v}, \mathrm{Rk}}}{\gamma_{\mathrm{M}}}=0,9 \cdot \frac{1,38}{1,3}=0,96 \mathrm{kN}
$$

Nails spacing and distances

Minimum values for diagonal (d): angle between diagonal grain direction and force direction $\delta=0^{\circ}$

- distance from loaded end
$a_{3, t}(\mathrm{~d}) \geq(10+5 \cdot \cos \delta) \cdot d=\left(10+5 \cdot \cos 0^{\circ}\right) \cdot 4,5=68 \mathrm{~mm}$
- distance from edges
$a_{4, \mathrm{t}}(\mathrm{d})=a_{4, \mathrm{c}}(\mathrm{d}) \geq 5 \cdot d=5 \cdot 4,5=23 \mathrm{~mm}$

- spacing parallel to the grain
- spacing perpendicular to the grain
$a_{1}(\mathrm{~d}) \geq(5+5 \cdot|\cos \delta|) \cdot d=\left(5+5 \cdot\left|\cos 0^{\circ}\right|\right) \cdot 4,5=45 \mathrm{~mm}$
$a_{2}(\mathrm{~d}) \geq 5 \cdot d=5 \cdot 4,5=23 \mathrm{~mm}$

Minimum values for bottom chord (s): angle between chord grain direction and force direction $\delta=55^{\circ}$

- distances from loaded edge
- distance from unloaded edge
$a_{4, \mathrm{t}}(\mathrm{s}) \geq(5+2 \cdot \sin \delta) \cdot d=\left(5+2 \cdot \sin 50^{\circ}\right) \cdot 4,5=30 \mathrm{~mm}$
$a_{4, \mathrm{c}}(\mathrm{s}) \geq 5 \cdot d=5 \cdot 4,5=23 \mathrm{~mm}$

- spacing parallel to the grain
- spacing perpendicular to the grain

$$
a_{1}(\mathrm{~s}) \geq(5+5 \cdot|\cos \delta|) \cdot d=\left(5+5 \cdot\left|\cos 50^{\circ}\right|\right) \cdot 4,5=37 \mathrm{~mm}
$$

$$
a_{2}(\mathrm{~s}) \geq 5 \cdot d=5 \cdot 4,5=23 \mathrm{~mm}
$$

Resulting area (orange) usable to nail spacing by minimum distances synthesis (grey)

Designed nail spacing

Area limitations

$$
\begin{aligned}
& a_{3, \mathrm{t}}(\mathrm{~d})=71,6 \mathrm{~mm} \geq 68 \mathrm{~mm} \\
& a_{4}(\mathrm{~d})=27,5 \mathrm{~mm} \geq 23 \mathrm{~mm} \\
& a_{4, \mathrm{t}}(\mathrm{~s})=35 \mathrm{~mm} \geq 30 \mathrm{~mm} \\
& a_{4, \mathrm{c}}(\mathrm{~s})=34 \mathrm{~mm} \geq 23 \mathrm{~mm}
\end{aligned}
$$

Nails spacing
$a_{1}(\mathrm{~d})=45 \mathrm{~mm} \geq 45 \mathrm{~mm}$
$a_{2}(\mathrm{~d})=35 \mathrm{~mm} \geq 23 \mathrm{~mm}$
$a_{1}(\mathrm{~s})=42,5 \mathrm{~mm} \geq 37 \mathrm{~mm}$
$a_{2}(\mathrm{~s})=37 \mathrm{~mm} \geq 23 \mathrm{~mm}$

Load carrying capacity of whole joint

Load carrying capacity of whole joint is a sum of load-carrying capacity of all rows with effective number of nails.

Row no 1

Reduction factor depending on nail diameter d and spacing a_{1} ratio

$$
a_{1}=45 \mathrm{~mm}=10 \cdot d \Rightarrow k_{\mathrm{ef}}=0,85
$$

Effective number on nails in the row
$n_{\text {ef }, 1}=n_{1}^{k_{\text {ef }}}=4^{0,85}=3,25$
Load-carrying capacity of the rows per two shear planes

$$
F_{\mathrm{v}, \mathrm{ef}, \mathrm{Rd}, 1}=n_{s} \cdot n_{\mathrm{ef}, 1} \cdot F_{\mathrm{v}, \mathrm{Rd}}=2 \cdot 3,25 \cdot 0,96=6,24 \mathrm{kN}
$$

Row no 2
$a_{1}=45 \mathrm{~mm}=10 \cdot d \Rightarrow k_{\text {ef }}=0,85$
$n_{\mathrm{ef}, 2}=n_{2}^{k_{\mathrm{ef}}}=4^{0,85}=3,25$
$F_{\mathrm{v}, \mathrm{ef}, \mathrm{Rd}, 2}=n_{s} \cdot n_{\mathrm{ef}, 2} \cdot F_{\mathrm{v}, \mathrm{Rd}}=2 \cdot 3,25 \cdot 0,96=6,24 \mathrm{kN}$
Rowno 3
$a_{1}=45 \mathrm{~mm}=10 \cdot d \Rightarrow k_{\text {ef }}=0,85$
$n_{\text {ef, } 3}=n_{3}^{k_{\text {ef }}}=2^{0,85}=1,8$
$F_{\mathrm{v}, \mathrm{ef}, \mathrm{Rd}, 3}=n_{s} \cdot n_{\mathrm{ef}, 3} \cdot F_{\mathrm{v}, \mathrm{Rd}}=2 \cdot 1,8 \cdot 0,96=3,46 \mathrm{kN}$
Rowno 4

$$
F_{\mathrm{v}, \mathrm{ef}, \mathrm{Rd}, 4}=n_{s} \cdot n_{\mathrm{ef}, 4} \cdot F_{\mathrm{v}, \mathrm{Rd}}=2 \cdot 1 \cdot 0,96=1,92 \mathrm{kN}
$$

$\underline{\text { All the rows together }=\text { whole joint }}$

$$
F_{\mathrm{v}, \mathrm{ef}, \mathrm{Rd}}=\Sigma F_{\mathrm{v}, \mathrm{ef}, \mathrm{Rd} j}=6,24+6,24+3,46+1,92=17,86 \mathrm{kN}
$$

$$
\frac{N_{\mathrm{Ed}}}{F_{\mathrm{v}, \mathrm{ef}, \mathrm{Rd}}}=\frac{16,24}{17,86}=0,91 \leq 1,0
$$

Joining of vertical V2 will be done the same way

